Misplaced Pages

Garrett TFE731

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Hongdu JL-8 Dassault Falcon 900 Hawker 800 Learjet 31 Textron AirLand Scorpion Lockheed Martin RQ-170 Sentinel

#338661

54-412: The Garrett TFE731 (now Honeywell TFE731 ) is a family of geared turbofan engines commonly used on business jet aircraft. Garrett AiResearch originally designed and built the engine, which due to mergers was later produced by AlliedSignal and now Honeywell Aerospace . Since the engine was introduced in 1972, over 11,000 engines have been built, flying over 100 million flight-hours. The TFE731

108-444: A l = γ ⋅ p ρ = γ ⋅ R ⋅ T M = γ ⋅ k ⋅ T m , {\displaystyle c_{\mathrm {ideal} }={\sqrt {\gamma \cdot {p \over \rho }}}={\sqrt {\gamma \cdot R\cdot T \over M}}={\sqrt {\gamma \cdot k\cdot T \over m}},} where This equation applies only when

162-402: A dispersive medium , the speed of sound is a function of sound frequency, through the dispersion relation . Each frequency component propagates at its own speed, called the phase velocity , while the energy of the disturbance propagates at the group velocity . The same phenomenon occurs with light waves; see optical dispersion for a description. The speed of sound is variable and depends on

216-409: A sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air is about 343  m/s (1,125  ft/s ; 1,235  km/h ; 767  mph ; 667  kn ), or 1  km in 2.91 s or one mile in 4.69 s . It depends strongly on temperature as well as the medium through which

270-426: A sound wave is propagating. At 0 °C (32 °F), the speed of sound in air is about 331 m/s (1,086 ft/s; 1,192 km/h; 740 mph; 643 kn). The speed of sound in an ideal gas depends only on its temperature and composition. The speed has a weak dependence on frequency and pressure in ordinary air, deviating slightly from ideal behavior. In colloquial speech, speed of sound refers to

324-488: A candidate to retrofit a number of aircraft equipped with older engines. The TFE731-60 has an inlet diameter of 0.787 m. The fan consists of 22 fan blades, 52 exit-guide vanes, and ten struts, and is driven by a gearbox. The five-stage compressor has four axial (LP) stages and one radial or centrifugal (HP) stage. Jet trainers Business jets Data from FAA Related development Comparable engines Related lists Geared turbofan The geared turbofan

378-453: A compression wave in a fluid is determined by the medium's compressibility and density . In solids, the compression waves are analogous to those in fluids, depending on compressibility and density, but with the additional factor of shear modulus which affects compression waves due to off-axis elastic energies which are able to influence effective tension and relaxation in a compression. The speed of shear waves, which can occur only in solids,

432-410: A computation of the speed of sound in air as 979 feet per second (298 m/s). This is too low by about 15%. The discrepancy is due primarily to neglecting the (then unknown) effect of rapidly fluctuating temperature in a sound wave (in modern terms, sound wave compression and expansion of air is an adiabatic process , not an isothermal process ). This error was later rectified by Laplace . During

486-486: A pipe aligned with the x {\displaystyle x} axis and with a cross-sectional area of A {\displaystyle A} . In time interval d t {\displaystyle dt} it moves length d x = v d t {\displaystyle dx=v\,dt} . In steady state , the mass flow rate m ˙ = ρ v A {\displaystyle {\dot {m}}=\rho vA} must be

540-459: A single given gas (assuming the molecular weight does not change) and over a small temperature range (for which the heat capacity is relatively constant), the speed of sound becomes dependent on only the temperature of the gas. In non-ideal gas behavior regimen, for which the Van der Waals gas equation would be used, the proportionality is not exact, and there is a slight dependence of sound velocity on

594-400: Is a type of turbofan aircraft engine with a planetary gearbox between the low pressure compressor / turbine and the fan , enabling each to spin at its optimum speed. The benefit of the design is lower fuel consumption and much quieter operation. The drawback is that it increases weight and adds complexity. In a conventional turbofan, a single shaft (the "low-pressure" or LP shaft) connects

SECTION 10

#1732783814339

648-419: Is associated with compression and decompression in the direction of travel, and is the same process in gases and liquids, with an analogous compression-type wave in solids. Only compression waves are supported in gases and liquids. An additional type of wave, the transverse wave , also called a shear wave , occurs only in solids because only solids support elastic deformations. It is due to elastic deformation of

702-417: Is called the object's Mach number . Objects moving at speeds greater than the speed of sound ( Mach 1 ) are said to be traveling at supersonic speeds . In Earth's atmosphere, the speed of sound varies greatly from about 295 m/s (1,060 km/h; 660 mph) at high altitudes to about 355 m/s (1,280 km/h; 790 mph) at high temperatures. Sir Isaac Newton 's 1687 Principia includes

756-412: Is determined by the medium's compressibility , shear modulus , and density. The speed of shear waves is determined only by the solid material's shear modulus and density. In fluid dynamics , the speed of sound in a fluid medium (gas or liquid) is used as a relative measure for the speed of an object moving through the medium. The ratio of the speed of an object to the speed of sound (in the same medium)

810-811: Is determined simply by the solid material's shear modulus and density. The speed of sound in mathematical notation is conventionally represented by c , from the Latin celeritas meaning "swiftness". For fluids in general, the speed of sound c is given by the Newton–Laplace equation: c = K s ρ , {\displaystyle c={\sqrt {\frac {K_{s}}{\rho }}},} where K s = ρ ( ∂ P ∂ ρ ) s {\displaystyle K_{s}=\rho \left({\frac {\partial P}{\partial \rho }}\right)_{s}} , where P {\displaystyle P}

864-577: Is fully excited (i.e., molecular rotation is fully used as a heat energy "partition" or reservoir); but at the same time the temperature must be low enough that molecular vibrational modes contribute no heat capacity (i.e., insignificant heat goes into vibration, as all vibrational quantum modes above the minimum-energy-mode have energies that are too high to be populated by a significant number of molecules at this temperature). For air, these conditions are fulfilled at room temperature, and also temperatures considerably below room temperature (see tables below). See

918-472: Is the pressure and the derivative is taken isentropically, that is, at constant entropy s . This is because a sound wave travels so fast that its propagation can be approximated as an adiabatic process , meaning that there isn't enough time, during a pressure cycle of the sound, for significant heat conduction and radiation to occur. Thus, the speed of sound increases with the stiffness (the resistance of an elastic body to deformation by an applied force) of

972-446: The ozone layer . This produces a positive speed of sound gradient in this region. Still another region of positive gradient occurs at very high altitudes, in the thermosphere above 90 km . For an ideal gas, K (the bulk modulus in equations above, equivalent to C , the coefficient of stiffness in solids) is given by K = γ ⋅ p . {\displaystyle K=\gamma \cdot p.} Thus, from

1026-548: The springs , and the mass of the spheres. As long as the spacing of the spheres remains constant, stiffer springs/bonds transmit energy more quickly, while more massive spheres transmit energy more slowly. In a real material, the stiffness of the springs is known as the " elastic modulus ", and the mass corresponds to the material density . Sound will travel more slowly in spongy materials and faster in stiffer ones. Effects like dispersion and reflection can also be understood using this model. Some textbooks mistakenly state that

1080-614: The "One o'Clock Gun" is fired at the eastern end of Edinburgh Castle. Standing at the base of the western end of the Castle Rock, the sound of the Gun can be heard through the rock, slightly before it arrives by the air route, partly delayed by the slightly longer route. It is particularly effective if a multi-gun salute such as for "The Queen's Birthday" is being fired. In a gas or liquid, sound consists of compression waves. In solids, waves propagate as two different types. A longitudinal wave

1134-590: The 17th century there were several attempts to measure the speed of sound accurately, including attempts by Marin Mersenne in 1630 (1,380 Parisian feet per second), Pierre Gassendi in 1635 (1,473 Parisian feet per second) and Robert Boyle (1,125 Parisian feet per second). In 1709, the Reverend William Derham , Rector of Upminster, published a more accurate measure of the speed of sound, at 1,072 Parisian feet per second. (The Parisian foot

SECTION 20

#1732783814339

1188-405: The Newton–Laplace equation above, the speed of sound in an ideal gas is given by c = γ ⋅ p ρ , {\displaystyle c={\sqrt {\gamma \cdot {p \over \rho }}},} where Using the ideal gas law to replace p with nRT / V , and replacing ρ with nM / V , the equation for an ideal gas becomes c i d e

1242-686: The TFE731-2, began rolling off the assembly line in August, 1972, and was used on the Learjet 35/36 and Dassault Falcon 10 , both of which entered production in 1973. The TFE731-3 was developed for use in the Lockheed JetStar re-engining program, and subsequent versions of it have been used on a number of aircraft, including the Learjet 55 . In 1975, the TFE731 was named Aviation Product of

1296-802: The Year by Ziff-Davis Publishing Company . The -5 model was certified in 1982, and a decade later, an engine utilizing the TFE731-5 power section and a TFE731-3 fan was built and designated the TFE731-4, intended to power the Cessna Citation VII aircraft. The most recent version is the TFE731-50, based on the -60 used on the Falcon 900DX , which underwent its flight test program in 2005. Honeywell has developed this engine complete with nacelle as

1350-460: The average stage loadings and, therefore, overall component efficiencies to an acceptable level. In a geared turbofan, a planetary reduction gearbox between the fan and the LP shaft allows the latter to run at a higher rotational speed thus enabling fewer stages to be used in both the LP turbine and the LP compressor, increasing efficiency and reducing weight. However, some energy will be lost as heat in

1404-456: The denser materials. An illustrative example of the two effects is that sound travels only 4.3 times faster in water than air, despite enormous differences in compressibility of the two media. The reason is that the greater density of water, which works to slow sound in water relative to the air, nearly makes up for the compressibility differences in the two media. For instance, sound will travel 1.59 times faster in nickel than in bronze, due to

1458-520: The fan, the low-pressure compressor and the low-pressure turbine (a second concentric shaft connects the high-pressure compressor and high-pressure turbine). In this configuration, the maximum tip speed for the larger radius fan limits the rotational speed for the LP shaft and thus the LP compressor and turbine. At high bypass ratios (and thus also high radius ratios) the rotational speed of the LP turbine and compressor must be relatively low, which means extra compressor and turbine stages are required to keep

1512-445: The fastest it can travel under normal conditions. In theory, the speed of sound is actually the speed of vibrations. Sound waves in solids are composed of compression waves (just as in gases and liquids) and a different type of sound wave called a shear wave , which occurs only in solids. Shear waves in solids usually travel at different speeds than compression waves, as exhibited in seismology . The speed of compression waves in solids

1566-477: The gas pressure. Humidity has a small but measurable effect on the speed of sound (causing it to increase by about 0.1%–0.6%), because oxygen and nitrogen molecules of the air are replaced by lighter molecules of water . This is a simple mixing effect. In the Earth's atmosphere , the chief factor affecting the speed of sound is the temperature . For a given ideal gas with constant heat capacity and composition,

1620-404: The gear mechanism and weight saved on turbine and compressor stages is partly offset by that of the gearbox. There are manufacturing cost and reliability implications as well. The lower fan speed allows higher bypass ratios, leading to reduced fuel consumption and much reduced noise. The BAe 146 is fitted with geared turbofans and is still one of the quietest commercial aircraft. A large part of

1674-479: The geared design. Rolls-Royce's latest engine design for large turbofans (25,000lb to 110,000lb thrust), the UltraFan includes a Powergear rated at a new high of 64MW (87,000hp) and has demonstrated this full power during testing in 2021. Geared turbofan technology is used in the following engines: Related lists Speed of sound The speed of sound is the distance travelled per unit of time by

Garrett TFE731 - Misplaced Pages Continue

1728-615: The greater stiffness of nickel at about the same density. Similarly, sound travels about 1.41 times faster in light hydrogen ( protium ) gas than in heavy hydrogen ( deuterium ) gas, since deuterium has similar properties but twice the density. At the same time, "compression-type" sound will travel faster in solids than in liquids, and faster in liquids than in gases, because the solids are more difficult to compress than liquids, while liquids, in turn, are more difficult to compress than gases. A practical example can be observed in Edinburgh when

1782-401: The ground, creating an acoustic shadow at some distance from the source. The decrease of the speed of sound with height is referred to as a negative sound speed gradient . However, there are variations in this trend above 11 km . In particular, in the stratosphere above about 20 km , the speed of sound increases with height, due to an increase in temperature from heating within

1836-413: The gunshot with a half-second pendulum. Measurements were made of gunshots from a number of local landmarks, including North Ockendon church. The distance was known by triangulation , and thus the speed that the sound had travelled was calculated. The transmission of sound can be illustrated by using a model consisting of an array of spherical objects interconnected by springs. In real material terms,

1890-466: The important factors, since fluids do not transmit shear stresses. In heterogeneous fluids, such as a liquid filled with gas bubbles, the density of the liquid and the compressibility of the gas affect the speed of sound in an additive manner, as demonstrated in the hot chocolate effect . In gases, adiabatic compressibility is directly related to pressure through the heat capacity ratio (adiabatic index), while pressure and density are inversely related to

1944-473: The material and decreases with an increase in density. For ideal gases, the bulk modulus K is simply the gas pressure multiplied by the dimensionless adiabatic index , which is about 1.4 for air under normal conditions of pressure and temperature. For general equations of state , if classical mechanics is used, the speed of sound c can be derived as follows: Consider the sound wave propagating at speed v {\displaystyle v} through

1998-563: The medium perpendicular to the direction of wave travel; the direction of shear-deformation is called the " polarization " of this type of wave. In general, transverse waves occur as a pair of orthogonal polarizations. These different waves (compression waves and the different polarizations of shear waves) may have different speeds at the same frequency. Therefore, they arrive at an observer at different times, an extreme example being an earthquake , where sharp compression waves arrive first and rocking transverse waves seconds later. The speed of

2052-422: The noise reduction is due to reduced fan tip speeds. In conventional turbofans the fan tips exceed the speed of sound causing a characteristic drone, requiring sound deadening. Geared turbofans operate the fan at sufficiently low rotational speed to avoid supersonic tip speeds. The first geared turbofan engine was created in 1970. However, economically scaling the idea from small engines to medium and large ones

2106-432: The properties of the substance through which the wave is travelling. In solids, the speed of transverse (or shear) waves depends on the shear deformation under shear stress (called the shear modulus ), and the density of the medium. Longitudinal (or compression) waves in solids depend on the same two factors with the addition of a dependence on compressibility . In fluids, only the medium's compressibility and density are

2160-1421: The same at the two ends of the tube, therefore the mass flux j = ρ v {\displaystyle j=\rho v} is constant and v d ρ = − ρ d v {\displaystyle v\,d\rho =-\rho \,dv} . Per Newton's second law , the pressure-gradient force provides the acceleration: d v d t = − 1 ρ d P d x → d P = ( − ρ d v ) d x d t = ( v d ρ ) v → v 2 ≡ c 2 = d P d ρ {\displaystyle {\begin{aligned}{\frac {dv}{dt}}&=-{\frac {1}{\rho }}{\frac {dP}{dx}}\\[1ex]\rightarrow dP&=(-\rho \,dv){\frac {dx}{dt}}=(v\,d\rho )v\\[1ex]\rightarrow v^{2}&\equiv c^{2}={\frac {dP}{d\rho }}\end{aligned}}} And therefore: c = ( ∂ P ∂ ρ ) s = K s ρ , {\displaystyle c={\sqrt {\left({\frac {\partial P}{\partial \rho }}\right)_{s}}}={\sqrt {\frac {K_{s}}{\rho }}},} If relativistic effects are important,

2214-466: The section on gases in specific heat capacity for a more complete discussion of this phenomenon. For air, we introduce the shorthand R ∗ = R / M a i r . {\displaystyle R_{*}=R/M_{\mathrm {air} }.} In addition, we switch to the Celsius temperature θ = T − 273.15 K , which is useful to calculate air speed in

Garrett TFE731 - Misplaced Pages Continue

2268-426: The sound wave is a small perturbation on the ambient condition, and the certain other noted conditions are fulfilled, as noted below. Calculated values for c air have been found to vary slightly from experimentally determined values. Newton famously considered the speed of sound before most of the development of thermodynamics and so incorrectly used isothermal calculations instead of adiabatic . His result

2322-404: The speed of sound increases with density. This notion is illustrated by presenting data for three materials, such as air, water, and steel and noting that the speed of sound is higher in the denser materials. But the example fails to take into account that the materials have vastly different compressibility, which more than makes up for the differences in density, which would slow wave speeds in

2376-423: The speed of sound is about 75% of the mean speed that the atoms move in that gas. For a given ideal gas the molecular composition is fixed, and thus the speed of sound depends only on its temperature . At a constant temperature, the gas pressure has no effect on the speed of sound, since the density will increase, and since pressure and density (also proportional to pressure) have equal but opposite effects on

2430-506: The speed of sound is calculated from the relativistic Euler equations . In a non-dispersive medium , the speed of sound is independent of sound frequency , so the speeds of energy transport and sound propagation are the same for all frequencies. Air, a mixture of oxygen and nitrogen, constitutes a non-dispersive medium. However, air does contain a small amount of CO 2 which is a dispersive medium, and causes dispersion to air at ultrasonic frequencies (greater than 28  kHz ). In

2484-404: The speed of sound is dependent solely upon temperature; see § Details below. In such an ideal case, the effects of decreased density and decreased pressure of altitude cancel each other out, save for the residual effect of temperature. Since temperature (and thus the speed of sound) decreases with increasing altitude up to 11 km , sound is refracted upward, away from listeners on

2538-539: The speed of sound waves in air . However, the speed of sound varies from substance to substance: typically, sound travels most slowly in gases , faster in liquids , and fastest in solids . For example, while sound travels at 343 m/s in air, it travels at 1481 m/s in water (almost 4.3 times as fast) and at 5120 m/s in iron (almost 15 times as fast). In an exceptionally stiff material such as diamond, sound travels at 12,000 m/s (39,370 ft/s),  – about 35 times its speed in air and about

2592-490: The speed of sound, and the two contributions cancel out exactly. In a similar way, compression waves in solids depend both on compressibility and density—just as in liquids—but in gases the density contributes to the compressibility in such a way that some part of each attribute factors out, leaving only a dependence on temperature, molecular weight, and heat capacity ratio which can be independently derived from temperature and molecular composition (see derivations below). Thus, for

2646-402: The spheres represent the material's molecules and the springs represent the bonds between them. Sound passes through the system by compressing and expanding the springs, transmitting the acoustic energy to neighboring spheres. This helps transmit the energy in-turn to the neighboring sphere's springs (bonds), and so on. The speed of sound through the model depends on the stiffness /rigidity of

2700-429: The temperature and molecular weight, thus making only the completely independent properties of temperature and molecular structure important (heat capacity ratio may be determined by temperature and molecular structure, but simple molecular weight is not sufficient to determine it). Sound propagates faster in low molecular weight gases such as helium than it does in heavier gases such as xenon . For monatomic gases,

2754-422: Was 325 mm . This is longer than the standard "international foot" in common use today, which was officially defined in 1959 as 304.8 mm , making the speed of sound at 20 °C (68 °F) 1,055 Parisian feet per second). Derham used a telescope from the tower of the church of St. Laurence, Upminster to observe the flash of a distant shotgun being fired, and then measured the time until he heard

SECTION 50

#1732783814339

2808-614: Was based on the core of the TSCP700 , which was specifically developed for use as the auxiliary power unit (APU) on the McDonnell Douglas DC-10 . The design featured two important factors: low fuel consumption, and low noise profiles that met the newly established U.S. noise abatement regulations. The first test run of the TFE731 occurred in 1970 at Garrett's plant in Torrance, California . The first production model,

2862-435: Was missing the factor of γ but was otherwise correct. Numerical substitution of the above values gives the ideal gas approximation of sound velocity for gases, which is accurate at relatively low gas pressures and densities (for air, this includes standard Earth sea-level conditions). Also, for diatomic gases the use of γ = 1.4000 requires that the gas exists in a temperature range high enough that rotational heat capacity

2916-489: Was not possible until the 21st century. After considering a geared design, General Electric and Safran decided against it for their CFM LEAP due to weight and reliability concerns, postponing its use for a future application, when Pratt & Whitney began development of the geared PW1000G . Since its inception in 2016, while the durability of the geared turbofan engine of Pratt & Whitney PW1000G family has been an ongoing issue, no reliability issues are connected to

#338661