Misplaced Pages

Giardino Botanico Alpinia

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Giardino Botanico Alpinia (4 hectares) is a botanical garden specializing in alpine plants , located at 800 m altitude above Stresa on Lake Maggiore , Province of Verbano-Cusio-Ossola , Piedmont , Italy . It can be reached via the Lido di Carciano - Alpino - Mottarone cable car, and is open daily in the warmer months.

#303696

93-680: The garden was established in 1934 with the name Duxia . Today it contains about 1,000 species , focusing mainly on the Alps and foothills, with additional specimens from the Caucasus , China , and Japan . Its collections include: Additional species are displayed on nearby walks. The garden's nature walk displays The trail from Stresa to the Mottarone passes by: 45°53′00″N 8°31′00″E  /  45.8833°N 8.5167°E  / 45.8833; 8.5167 This Italian location article

186-423: A mutation–selection balance . It is predicted that a viral quasispecies at a low but evolutionarily neutral and highly connected (that is, flat) region in the fitness landscape will outcompete a quasispecies located at a higher but narrower fitness peak in which the surrounding mutants are unfit, "the quasispecies effect" or the "survival of the flattest". There is no suggestion that a viral quasispecies resembles

279-515: A taxonomic rank of an organism, as well as a unit of biodiversity . Other ways of defining species include their karyotype , DNA sequence, morphology , behaviour, or ecological niche . In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined. The most recent rigorous estimate for the total number of species of eukaryotes is between 8 and 8.7 million. About 14% of these had been described by 2011. All species (except viruses ) are given

372-542: A two-part name , called a "binomial". The first part of a binomial is the genus to which the species belongs. The second part is called the specific name or the specific epithet (in botanical nomenclature , also sometimes in zoological nomenclature ). For example, Boa constrictor is one of the species of the genus Boa , with constrictor being the species' epithet. While the definitions given above may seem adequate at first glance, when looked at more closely they represent problematic species concepts. For example,

465-400: A "classical" method of determining species, such as with Linnaeus, early in evolutionary theory. However, different phenotypes are not necessarily different species (e.g. a four-winged Drosophila born to a two-winged mother is not a different species). Species named in this manner are called morphospecies . In the 1970s, Robert R. Sokal , Theodore J. Crovello and Peter Sneath proposed

558-417: A ' grade ', which are fruitless to precisely delineate, especially when including extinct species. Radiation results in the generation of new subclades by bifurcation, but in practice sexual hybridization may blur very closely related groupings. As a hypothesis, a clade can be rejected only if some groupings were explicitly excluded. It may then be found that the excluded group did actually descend from

651-424: A 'smallest clade' idea" (a phylogenetic species concept). Mishler and Wilkins and others concur with this approach, even though this would raise difficulties in biological nomenclature. Wilkins cited the ichthyologist Charles Tate Regan 's early 20th century remark that "a species is whatever a suitably qualified biologist chooses to call a species". Wilkins noted that the philosopher Philip Kitcher called this

744-471: A cladistic hypothesis of relationships of taxa whose character states can be observed. Theoretically, a last common ancestor and all its descendants constitute a (minimal) clade. Importantly, all descendants stay in their overarching ancestral clade. For example, if the terms worms or fishes were used within a strict cladistic framework, these terms would include humans. Many of these terms are normally used paraphyletically , outside of cladistics, e.g. as

837-422: A coarse impression of the complexity. A more detailed account will give details about fractions of introgressions between groupings, and even geographic variations thereof. This has been used as an argument for the use of paraphyletic groupings, but typically other reasons are quoted. Horizontal gene transfer is the mobility of genetic info between different organisms that can have immediate or delayed effects for

930-428: A connected series of neighbouring populations, each of which can sexually interbreed with adjacent related populations, but for which there exist at least two "end" populations in the series, which are too distantly related to interbreed, though there is a potential gene flow between each "linked" population. Such non-breeding, though genetically connected, "end" populations may co-exist in the same region thus closing

1023-432: A different species from its ancestors. Viruses have enormous populations, are doubtfully living since they consist of little more than a string of DNA or RNA in a protein coat, and mutate rapidly. All of these factors make conventional species concepts largely inapplicable. A viral quasispecies is a group of genotypes related by similar mutations, competing within a highly mutagenic environment, and hence governed by

SECTION 10

#1732776520304

1116-479: A difficulty for taxonomy , where the rank and (genus-)naming of established groupings may turn out to be inconsistent. Cladistics is now the most commonly used method to classify organisms. The original methods used in cladistic analysis and the school of taxonomy derived from the work of the German entomologist Willi Hennig , who referred to it as phylogenetic systematics (also the title of his 1966 book); but

1209-508: A genetic boundary suitable for defining a species concept is present. DNA barcoding has been proposed as a way to distinguish species suitable even for non-specialists to use. One of the barcodes is a region of mitochondrial DNA within the gene for cytochrome c oxidase . A database, Barcode of Life Data System , contains DNA barcode sequences from over 190,000 species. However, scientists such as Rob DeSalle have expressed concern that classical taxonomy and DNA barcoding, which they consider

1302-489: A large number and variety of different kinds of characters are viewed as more robust than those based on more limited evidence. Mono-, para- and polyphyletic taxa can be understood based on the shape of the tree (as done above), as well as based on their character states. These are compared in the table below. Cladistics, either generally or in specific applications, has been criticized from its beginnings. Decisions as to whether particular character states are homologous ,

1395-465: A lineage should be divided into multiple chronospecies , or when populations have diverged to have enough distinct character states to be described as cladistic species. Species and higher taxa were seen from the time of Aristotle until the 18th century as categories that could be arranged in a hierarchy, the great chain of being . In the 19th century, biologists grasped that species could evolve given sufficient time. Charles Darwin 's 1859 book On

1488-473: A lot of possible trees. Assigning names to each possible clade may not be prudent. Furthermore, established names are discarded in cladistics, or alternatively carry connotations which may no longer hold, such as when additional groups are found to have emerged in them. Naming changes are the direct result of changes in the recognition of mutual relationships, which often is still in flux, especially for extinct species. Hanging on to older naming and/or connotations

1581-492: A misnomer, need to be reconciled, as they delimit species differently. Genetic introgression mediated by endosymbionts and other vectors can further make barcodes ineffective in the identification of species. A phylogenetic or cladistic species is "the smallest aggregation of populations (sexual) or lineages (asexual) diagnosable by a unique combination of character states in comparable individuals (semaphoronts)". The empirical basis – observed character states – provides

1674-449: A particular species, including which genus (and higher taxa) it is placed in, is a hypothesis about the evolutionary relationships and distinguishability of that group of organisms. As further information comes to hand, the hypothesis may be corroborated or refuted. Sometimes, especially in the past when communication was more difficult, taxonomists working in isolation have given two distinct names to individual organisms later identified as

1767-400: A perfect model of life, it is still a useful tool to scientists and conservationists for studying life on Earth, regardless of the theoretical difficulties. If species were fixed and clearly distinct from one another, there would be no problem, but evolutionary processes cause species to change. This obliges taxonomists to decide, for example, when enough change has occurred to declare that

1860-457: A period, many branches may have radiated, and it may take hundreds of millions of years for them to have whittled down to just two. Only then one can theoretically assign proper last common ancestors of groupings which do not inadvertently include earlier branches. The process of true cladistic bifurcation can thus take a much more extended time than one is usually aware of. In practice, for recent radiations, cladistically guided findings only give

1953-444: A phylogenetic tree are used to justify decisions about character states, which are then used as evidence for the shape of the tree. Phylogenetics uses various forms of parsimony to decide such questions; the conclusions reached often depend on the dataset and the methods. Such is the nature of empirical science, and for this reason, most cladists refer to their cladograms as hypotheses of relationship. Cladograms that are supported by

SECTION 20

#1732776520304

2046-447: A potential piece of evidence for grouping. Synapomorphies (shared, derived character states) are viewed as evidence of grouping, while symplesiomorphies (shared ancestral character states) are not. The outcome of a cladistic analysis is a cladogram – a tree -shaped diagram ( dendrogram ) that is interpreted to represent the best hypothesis of phylogenetic relationships. Although traditionally such cladograms were generated largely on

2139-553: A powerful way to test hypotheses about cross-cultural relationships among folktales. Literature : Cladistic methods have been used in the classification of the surviving manuscripts of the Canterbury Tales , and the manuscripts of the Sanskrit Charaka Samhita . Historical linguistics : Cladistic methods have been used to reconstruct the phylogeny of languages using linguistic features. This

2232-400: A precondition of their being synapomorphies, have been challenged as involving circular reasoning and subjective judgements. Of course, the potential unreliability of evidence is a problem for any systematic method, or for that matter, for any empirical scientific endeavor at all. Transformed cladistics arose in the late 1970s in an attempt to resolve some of these problems by removing

2325-406: A priori assumptions about phylogeny from cladistic analysis, but it has remained unpopular. The cladistic method does not identify fossil species as actual ancestors of a clade. Instead, fossil taxa are identified as belonging to separate extinct branches. While a fossil species could be the actual ancestor of a clade, there is no way to know that. Therefore, a more conservative hypothesis is that

2418-400: A short way of saying that something applies to many species within a genus, but not to all. If scientists mean that something applies to all species within a genus, they use the genus name without the specific name or epithet. The names of genera and species are usually printed in italics . However, abbreviations such as "sp." should not be italicised. When a species' identity is not clear,

2511-404: A specialist may use "cf." before the epithet to indicate that confirmation is required. The abbreviations "nr." (near) or "aff." (affine) may be used when the identity is unclear but when the species appears to be similar to the species mentioned after. With the rise of online databases, codes have been devised to provide identifiers for species that are already defined, including: The naming of

2604-523: A species as groups of actually or potentially interbreeding natural populations, which are reproductively isolated from other such groups. It has been argued that this definition is a natural consequence of the effect of sexual reproduction on the dynamics of natural selection. Mayr's use of the adjective "potentially" has been a point of debate; some interpretations exclude unusual or artificial matings that occur only in captivity, or that involve animals capable of mating but that do not normally do so in

2697-400: A species as determined by a taxonomist. A typological species is a group of organisms in which individuals conform to certain fixed properties (a type), so that even pre-literate people often recognise the same taxon as do modern taxonomists. The clusters of variations or phenotypes within specimens (such as longer or shorter tails) would differentiate the species. This method was used as

2790-491: A species. All species definitions assume that an organism acquires its genes from one or two parents very like the "daughter" organism, but that is not what happens in HGT. There is strong evidence of HGT between very dissimilar groups of prokaryotes , and at least occasionally between dissimilar groups of eukaryotes , including some crustaceans and echinoderms . The evolutionary biologist James Mallet concludes that there

2883-685: A species. Generally the term includes the unknown element of a distinct act of creation. Many authors have argued that a simple textbook definition, following Mayr's concept, works well for most multi-celled organisms , but breaks down in several situations: Species identification is made difficult by discordance between molecular and morphological investigations; these can be categorised as two types: (i) one morphology, multiple lineages (e.g. morphological convergence , cryptic species ) and (ii) one lineage, multiple morphologies (e.g. phenotypic plasticity , multiple life-cycle stages). In addition, horizontal gene transfer (HGT) makes it difficult to define

Giardino Botanico Alpinia - Misplaced Pages Continue

2976-528: A taxonomic decision at the discretion of cognizant specialists, is not governed by the Codes of Zoological or Botanical Nomenclature, in contrast to the PhyloCode , and contrary to what is done in several other fields, in which the definitions of technical terms, like geochronological units and geopolitical entities, are explicitly delimited. The nomenclatural codes that guide the naming of species, including

3069-517: A traditional biological species. The International Committee on Taxonomy of Viruses has since 1962 developed a universal taxonomic scheme for viruses; this has stabilised viral taxonomy. Most modern textbooks make use of Ernst Mayr 's 1942 definition, known as the Biological Species Concept as a basis for further discussion on the definition of species. It is also called a reproductive or isolation concept. This defines

3162-447: A variation on the morphological species concept, a phenetic species, defined as a set of organisms with a similar phenotype to each other, but a different phenotype from other sets of organisms. It differs from the morphological species concept in including a numerical measure of distance or similarity to cluster entities based on multivariate comparisons of a reasonably large number of phenotypic traits. A mate-recognition species

3255-515: A variety of reasons. Viruses are a special case, driven by a balance of mutation and selection , and can be treated as quasispecies . Biologists and taxonomists have made many attempts to define species, beginning from morphology and moving towards genetics . Early taxonomists such as Linnaeus had no option but to describe what they saw: this was later formalised as the typological or morphological species concept. Ernst Mayr emphasised reproductive isolation, but this, like other species concepts,

3348-438: Is "an entity composed of organisms which maintains its identity from other such entities through time and over space, and which has its own independent evolutionary fate and historical tendencies". This differs from the biological species concept in embodying persistence over time. Wiley and Mayden stated that they see the evolutionary species concept as "identical" to Willi Hennig 's species-as-lineages concept, and asserted that

3441-483: Is a stub . You can help Misplaced Pages by expanding it . This article related to a garden in Italy is a stub . You can help Misplaced Pages by expanding it . Species A species ( pl. : species) is a population of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring , typically by sexual reproduction . It is the basic unit of classification and

3534-400: Is a group of sexually reproducing organisms that recognise one another as potential mates. Expanding on this to allow for post-mating isolation, a cohesion species is the most inclusive population of individuals having the potential for phenotypic cohesion through intrinsic cohesion mechanisms; no matter whether populations can hybridise successfully, they are still distinct cohesion species if

3627-458: Is a set of organisms adapted to a particular set of resources, called a niche, in the environment. According to this concept, populations form the discrete phenetic clusters that we recognise as species because the ecological and evolutionary processes controlling how resources are divided up tend to produce those clusters. A genetic species as defined by Robert Baker and Robert Bradley is a set of genetically isolated interbreeding populations. This

3720-565: Is a synapomorphy of the earliest taxa to be included within Tetrapoda: did all the earliest members of the Tetrapoda inherit four limbs from a common ancestor, whereas all other vertebrates did not, or at least not homologously? By contrast, for a group within the tetrapods, such as birds, having four limbs is a plesiomorphy. Using these two terms allows a greater precision in the discussion of homology, in particular allowing clear expression of

3813-408: Is an approach to biological classification in which organisms are categorized in groups (" clades ") based on hypotheses of most recent common ancestry . The evidence for hypothesized relationships is typically shared derived characteristics ( synapomorphies ) that are not present in more distant groups and ancestors. However, from an empirical perspective, common ancestors are inferences based on

Giardino Botanico Alpinia - Misplaced Pages Continue

3906-414: Is called speciation . Charles Darwin was the first to describe the role of natural selection in speciation in his 1859 book The Origin of Species . Speciation depends on a measure of reproductive isolation , a reduced gene flow. This occurs most easily in allopatric speciation, where populations are separated geographically and can diverge gradually as mutations accumulate. Reproductive isolation

3999-440: Is correct, then the last common ancestor of turtles and birds, at the branch near the ▼ lived earlier than the last common ancestor of lizards and birds, near the ♦ . Most molecular evidence , however, produces cladograms more like this: lizards turtles crocodilians birds If this is accurate, then the last common ancestor of turtles and birds lived later than the last common ancestor of lizards and birds. Since

4092-578: Is counter-productive, as they typically do not reflect actual mutual relationships precisely at all. E.g. Archaea, Asgard archaea, protists, slime molds, worms, invertebrata, fishes, reptilia, monkeys, Ardipithecus , Australopithecus , Homo erectus all contain Homo sapiens cladistically, in their sensu lato meaning. For originally extinct stem groups, sensu lato generally means generously keeping previously included groups, which then may come to include even living species. A pruned sensu stricto meaning

4185-403: Is described formally, in a publication that assigns it a unique scientific name. The description typically provides means for identifying the new species, which may not be based solely on morphology (see cryptic species ), differentiating it from other previously described and related or confusable species and provides a validly published name (in botany) or an available name (in zoology) when

4278-671: Is further weakened by the existence of microspecies , groups of organisms, including many plants, with very little genetic variability, usually forming species aggregates . For example, the dandelion Taraxacum officinale and the blackberry Rubus fruticosus are aggregates with many microspecies—perhaps 400 in the case of the blackberry and over 200 in the dandelion, complicated by hybridisation , apomixis and polyploidy , making gene flow between populations difficult to determine, and their taxonomy debatable. Species complexes occur in insects such as Heliconius butterflies, vertebrates such as Hypsiboas treefrogs, and fungi such as

4371-726: Is hard or even impossible to test. Later biologists have tried to refine Mayr's definition with the recognition and cohesion concepts, among others. Many of the concepts are quite similar or overlap, so they are not easy to count: the biologist R. L. Mayden recorded about 24 concepts, and the philosopher of science John Wilkins counted 26. Wilkins further grouped the species concepts into seven basic kinds of concepts: (1) agamospecies for asexual organisms (2) biospecies for reproductively isolated sexual organisms (3) ecospecies based on ecological niches (4) evolutionary species based on lineage (5) genetic species based on gene pool (6) morphospecies based on form or phenotype and (7) taxonomic species,

4464-403: Is no easy way to tell whether related geographic or temporal forms belong to the same or different species. Species gaps can be verified only locally and at a point of time. One is forced to admit that Darwin's insight is correct: any local reality or integrity of species is greatly reduced over large geographic ranges and time periods. The botanist Brent Mishler argued that the species concept

4557-528: Is no evidence that they recover more "true" or "correct" results from actual empirical data sets Every cladogram is based on a particular dataset analyzed with a particular method. Datasets are tables consisting of molecular , morphological, ethological and/or other characters and a list of operational taxonomic units (OTUs), which may be genes, individuals, populations, species, or larger taxa that are presumed to be monophyletic and therefore to form, all together, one large clade; phylogenetic analysis infers

4650-478: Is not valid, notably because gene flux decreases gradually rather than in discrete steps, which hampers objective delimitation of species. Indeed, complex and unstable patterns of gene flux have been observed in cichlid teleosts of the East African Great Lakes . Wilkins argued that "if we were being true to evolution and the consequent phylogenetic approach to taxa, we should replace it with

4743-500: Is often adopted instead, but the group would need to be restricted to a single branch on the stem. Other branches then get their own name and level. This is commensurate to the fact that more senior stem branches are in fact closer related to the resulting group than the more basal stem branches; that those stem branches only may have lived for a short time does not affect that assessment in cladistics. The comparisons used to acquire data on which cladograms can be based are not limited to

SECTION 50

#1732776520304

4836-586: Is similar to Mayr's Biological Species Concept, but stresses genetic rather than reproductive isolation. In the 21st century, a genetic species could be established by comparing DNA sequences. Earlier, other methods were available, such as comparing karyotypes (sets of chromosomes ) and allozymes ( enzyme variants). An evolutionarily significant unit (ESU) or "wildlife species" is a population of organisms considered distinct for purposes of conservation. In palaeontology , with only comparative anatomy (morphology) and histology from fossils as evidence,

4929-504: Is similar to the traditional comparative method of historical linguistics, but is more explicit in its use of parsimony and allows much faster analysis of large datasets ( computational phylogenetics ). Textual criticism or stemmatics : Cladistic methods have been used to reconstruct the phylogeny of manuscripts of the same work (and reconstruct the lost original) using distinctive copying errors as apomorphies. This differs from traditional historical-comparative linguistics in enabling

5022-508: Is sometimes an important source of genetic variation. Viruses can transfer genes between species. Bacteria can exchange plasmids with bacteria of other species, including some apparently distantly related ones in different phylogenetic domains , making analysis of their relationships difficult, and weakening the concept of a bacterial species. Cladistic Cladistics ( / k l ə ˈ d ɪ s t ɪ k s / klə- DIST -iks ; from Ancient Greek κλάδος kládos 'branch')

5115-594: Is threatened by hybridisation, but this can be selected against once a pair of populations have incompatible alleles of the same gene, as described in the Bateson–Dobzhansky–Muller model . A different mechanism, phyletic speciation, involves one lineage gradually changing over time into a new and distinct form (a chronospecies ), without increasing the number of resultant species. Horizontal gene transfer between organisms of different species, either through hybridisation , antigenic shift , or reassortment ,

5208-530: The ICZN for animals and the ICN for plants, do not make rules for defining the boundaries of the species. Research can change the boundaries, also known as circumscription, based on new evidence. Species may then need to be distinguished by the boundary definitions used, and in such cases the names may be qualified with sensu stricto ("in the narrow sense") to denote usage in the exact meaning given by an author such as

5301-399: The fly agaric . Natural hybridisation presents a challenge to the concept of a reproductively isolated species, as fertile hybrids permit gene flow between two populations. For example, the carrion crow Corvus corone and the hooded crow Corvus cornix appear and are classified as separate species, yet they can hybridise where their geographical ranges overlap. A ring species is

5394-507: The jaguar ( Panthera onca ) of Latin America or the leopard ( Panthera pardus ) of Africa and Asia. In contrast, the scientific names of species are chosen to be unique and universal (except for some inter-code homonyms ); they are in two parts used together : the genus as in Puma , and the specific epithet as in concolor . A species is given a taxonomic name when a type specimen

5487-406: The "cynical species concept", and arguing that far from being cynical, it usefully leads to an empirical taxonomy for any given group, based on taxonomists' experience. Other biologists have gone further and argued that we should abandon species entirely, and refer to the "Least Inclusive Taxonomic Units" (LITUs), a view that would be coherent with current evolutionary theory. The species concept

5580-523: The 1990s, the development of effective polymerase chain reaction techniques allowed the application of cladistic methods to biochemical and molecular genetic traits of organisms, vastly expanding the amount of data available for phylogenetics. At the same time, cladistics rapidly became popular in evolutionary biology, because computers made it possible to process large quantities of data about organisms and their characteristics. The cladistic method interprets each shared character state transformation as

5673-626: The Origin of Species explained how species could arise by natural selection . That understanding was greatly extended in the 20th century through genetics and population ecology . Genetic variability arises from mutations and recombination , while organisms themselves are mobile, leading to geographical isolation and genetic drift with varying selection pressures . Genes can sometimes be exchanged between species by horizontal gene transfer ; new species can arise rapidly through hybridisation and polyploidy ; and species may become extinct for

SECTION 60

#1732776520304

5766-405: The abbreviation "sp." in the singular or "spp." (standing for species pluralis , Latin for "multiple species") in the plural in place of the specific name or epithet (e.g. Canis sp.). This commonly occurs when authors are confident that some individuals belong to a particular genus but are not sure to which exact species they belong, as is common in paleontology . Authors may also use "spp." as

5859-570: The amount of hybridisation is insufficient to completely mix their respective gene pools . A further development of the recognition concept is provided by the biosemiotic concept of species. In microbiology , genes can move freely even between distantly related bacteria, possibly extending to the whole bacterial domain. As a rule of thumb, microbiologists have assumed that members of Bacteria or Archaea with 16S ribosomal RNA gene sequences more similar than 97% to each other need to be checked by DNA–DNA hybridisation to decide if they belong to

5952-429: The basis of morphological characters and originally calculated by hand, genetic sequencing data and computational phylogenetics are now commonly used in phylogenetic analyses, and the parsimony criterion has been abandoned by many phylogeneticists in favor of more "sophisticated" but less parsimonious evolutionary models of character state transformation. Cladists contend that these models are unjustified because there

6045-474: The biological species concept, "the several versions" of the phylogenetic species concept, and the idea that species are of the same kind as higher taxa are not suitable for biodiversity studies (with the intention of estimating the number of species accurately). They further suggested that the concept works for both asexual and sexually-reproducing species. A version of the concept is Kevin de Queiroz 's "General Lineage Concept of Species". An ecological species

6138-505: The biological species concept, a cladistic species does not rely on reproductive isolation – its criteria are independent of processes that are integral in other concepts. Therefore, it applies to asexual lineages. However, it does not always provide clear cut and intuitively satisfying boundaries between taxa, and may require multiple sources of evidence, such as more than one polymorphic locus, to give plausible results. An evolutionary species, suggested by George Gaylord Simpson in 1951,

6231-428: The boundaries between closely related species become unclear with hybridisation , in a species complex of hundreds of similar microspecies , and in a ring species . Also, among organisms that reproduce only asexually , the concept of a reproductive species breaks down, and each clone is potentially a microspecies. Although none of these are entirely satisfactory definitions, and while the concept of species may not be

6324-531: The branching pattern within that clade. Different datasets and different methods, not to mention violations of the mentioned assumptions, often result in different cladograms. Only scientific investigation can show which is more likely to be correct. Until recently, for example, cladograms like the following have generally been accepted as accurate representations of the ancestral relations among turtles, lizards, crocodilians, and birds: turtles lizards crocodilians birds If this phylogenetic hypothesis

6417-525: The clade, but in principle each level stands on its own, to be assigned a unique name. For a fully bifurcated tree, adding a group to a tree also adds an additional (named) clade, and a new level on that branch. Specifically, also extinct groups are always put on a side-branch, not distinguishing whether an actual ancestor of other groupings was found. The techniques and nomenclature of cladistics have been applied to disciplines other than biology. (See phylogenetic nomenclature .) Cladistics findings are posing

6510-443: The cladograms show two mutually exclusive hypotheses to describe the evolutionary history, at most one of them is correct. The cladogram to the right represents the current universally accepted hypothesis that all primates , including strepsirrhines like the lemurs and lorises , had a common ancestor all of whose descendants are or were primates, and so form a clade; the name Primates is therefore recognized for this clade. Within

6603-433: The concept of a chronospecies can be applied. During anagenesis (evolution, not necessarily involving branching), some palaeontologists seek to identify a sequence of species, each one derived from the phyletically extinct one before through continuous, slow and more or less uniform change. In such a time sequence, some palaeontologists assess how much change is required for a morphologically distinct form to be considered

6696-402: The development of cultures or artifacts using groups of cultural traits or artifact features. Comparative mythology and folktale use cladistic methods to reconstruct the protoversion of many myths. Mythological phylogenies constructed with mythemes clearly support low horizontal transmissions (borrowings), historical (sometimes Palaeolithic) diffusions and punctuated evolution. They also are

6789-435: The evidence to support hypotheses about evolutionarily divergent lineages that have maintained their hereditary integrity through time and space. Molecular markers may be used to determine diagnostic genetic differences in the nuclear or mitochondrial DNA of various species. For example, in a study done on fungi , studying the nucleotide characters using cladistic species produced the most accurate results in recognising

6882-410: The exact historic relationships between the groups. The following terms, coined by Hennig, are used to identify shared or distinct character states among groups: The terms plesiomorphy and apomorphy are relative; their application depends on the position of a group within a tree. For example, when trying to decide whether the tetrapods form a clade, an important question is whether having four limbs

6975-512: The field of biology. Any group of individuals or classes that are hypothesized to have a common ancestor, and to which a set of common characteristics may or may not apply, can be compared pairwise. Cladograms can be used to depict the hypothetical descent relationships within groups of items in many different academic realms. The only requirement is that the items have characteristics that can be identified and measured. Anthropology and archaeology : Cladistic methods have been used to reconstruct

7068-481: The fossil taxon is related to other fossil and extant taxa, as implied by the pattern of shared apomorphic features. An otherwise extinct group with any extant descendants, is not considered (literally) extinct, and for instance does not have a date of extinction. Anything having to do with biology and sex is complicated and messy, and cladistics is no exception. Many species reproduce sexually, and are capable of interbreeding for millions of years. Worse, during such

7161-407: The hierarchical relationships among different homologous features. It can be difficult to decide whether a character state is in fact the same and thus can be classified as a synapomorphy, which may identify a monophyletic group, or whether it only appears to be the same and is thus a homoplasy, which cannot identify such a group. There is a danger of circular reasoning: assumptions about the shape of

7254-460: The last common ancestor of the group, and thus emerged within the group. ("Evolved from" is misleading, because in cladistics all descendants stay in the ancestral group). To keep only valid clades, upon finding that the group is paraphyletic this way, either such excluded groups should be granted to the clade, or the group should be abolished. Branches down to the divergence to the next significant (e.g. extant) sister are considered stem-groupings of

7347-487: The latter contains Tarsiiformes and Anthropoidea. Lemurs and tarsiers may have looked closely related to humans, in the sense of being close on the evolutionary tree to humans. However, from the perspective of a tarsier, humans and lemurs would have looked close, in the exact same sense. Cladistics forces a neutral perspective, treating all branches (extant or extinct) in the same manner. It also forces one to try to make statements, and honestly take into account findings, about

7440-483: The numerous fungi species of all the concepts studied. Versions of the phylogenetic species concept that emphasise monophyly or diagnosability may lead to splitting of existing species, for example in Bovidae , by recognising old subspecies as species, despite the fact that there are no reproductive barriers, and populations may intergrade morphologically. Others have called this approach taxonomic inflation , diluting

7533-593: The paper is accepted for publication. The type material is usually held in a permanent repository, often the research collection of a major museum or university, that allows independent verification and the means to compare specimens. Describers of new species are asked to choose names that, in the words of the International Code of Zoological Nomenclature , are "appropriate, compact, euphonious, memorable, and do not cause offence". Books and articles sometimes intentionally do not identify species fully, using

7626-674: The person who named the species, while the antonym sensu lato ("in the broad sense") denotes a wider usage, for instance including other subspecies. Other abbreviations such as "auct." ("author"), and qualifiers such as "non" ("not") may be used to further clarify the sense in which the specified authors delineated or described the species. Species are subject to change, whether by evolving into new species, exchanging genes with other species, merging with other species or by becoming extinct. The evolutionary process by which biological populations of sexually-reproducing organisms evolve to become distinct or reproductively isolated as species

7719-444: The primates, all anthropoids (monkeys, apes, and humans) are hypothesized to have had a common ancestor all of whose descendants are or were anthropoids, so they form the clade called Anthropoidea. The "prosimians", on the other hand, form a paraphyletic taxon. The name Prosimii is not used in phylogenetic nomenclature , which names only clades; the "prosimians" are instead divided between the clades Strepsirhini and Haplorhini , where

7812-432: The reciprocal host. There are several processes in nature which can cause horizontal gene transfer . This does typically not directly interfere with ancestry of the organism, but can complicate the determination of that ancestry. On another level, one can map the horizontal gene transfer processes, by determining the phylogeny of the individual genes using cladistics. If there is unclarity in mutual relationships, there are

7905-487: The result of misclassification leading to questions on whether there really are any ring species. The commonly used names for kinds of organisms are often ambiguous: "cat" could mean the domestic cat, Felis catus , or the cat family, Felidae . Another problem with common names is that they often vary from place to place, so that puma, cougar, catamount, panther, painter and mountain lion all mean Puma concolor in various parts of America, while "panther" may also mean

7998-586: The ring. Ring species thus present a difficulty for any species concept that relies on reproductive isolation. However, ring species are at best rare. Proposed examples include the herring gull – lesser black-backed gull complex around the North pole, the Ensatina eschscholtzii group of 19 populations of salamanders in America, and the greenish warbler in Asia, but many so-called ring species have turned out to be

8091-508: The same species. This concept was narrowed in 2006 to a similarity of 98.7%. The average nucleotide identity (ANI) method quantifies genetic distance between entire genomes , using regions of about 10,000 base pairs . With enough data from genomes of one genus, algorithms can be used to categorize species, as for Pseudomonas avellanae in 2013, and for all sequenced bacteria and archaea since 2020. Observed ANI values among sequences appear to have an "ANI gap" at 85–95%, suggesting that

8184-529: The same species. When two species names are discovered to apply to the same species, the older species name is given priority and usually retained, and the newer name considered as a junior synonym, a process called synonymy . Dividing a taxon into multiple, often new, taxa is called splitting . Taxonomists are often referred to as "lumpers" or "splitters" by their colleagues, depending on their personal approach to recognising differences or commonalities between organisms. The circumscription of taxa, considered

8277-506: The species concept and making taxonomy unstable. Yet others defend this approach, considering "taxonomic inflation" pejorative and labelling the opposing view as "taxonomic conservatism"; claiming it is politically expedient to split species and recognise smaller populations at the species level, because this means they can more easily be included as endangered in the IUCN red list and can attract conservation legislation and funding. Unlike

8370-492: The terms "cladistics" and "clade" were popularized by other researchers. Cladistics in the original sense refers to a particular set of methods used in phylogenetic analysis, although it is now sometimes used to refer to the whole field. What is now called the cladistic method appeared as early as 1901 with a work by Peter Chalmers Mitchell for birds and subsequently by Robert John Tillyard (for insects) in 1921, and W. Zimmermann (for plants) in 1943. The term " clade "

8463-540: The wild. It is difficult to define a species in a way that applies to all organisms. The debate about species concepts is called the species problem. The problem was recognised even in 1859, when Darwin wrote in On the Origin of Species : I was much struck how entirely vague and arbitrary is the distinction between species and varieties. He went on to write: No one definition has satisfied all naturalists; yet every naturalist knows vaguely what he means when he speaks of

8556-419: Was championed at this time by the numerical taxonomists Peter Sneath and Robert Sokal , and evolutionary taxonomy by Ernst Mayr . Originally conceived, if only in essence, by Willi Hennig in a book published in 1950, cladistics did not flourish until its translation into English in 1966 (Lewin 1997). Today, cladistics is the most popular method for inferring phylogenetic trees from morphological data. In

8649-554: Was introduced in 1958 by Julian Huxley after having been coined by Lucien Cuénot in 1940, "cladogenesis" in 1958, "cladistic" by Arthur Cain and Harrison in 1960, "cladist" (for an adherent of Hennig's school) by Ernst Mayr in 1965, and "cladistics" in 1966. Hennig referred to his own approach as "phylogenetic systematics". From the time of his original formulation until the end of the 1970s, cladistics competed as an analytical and philosophical approach to systematics with phenetics and so-called evolutionary taxonomy . Phenetics

#303696