Misplaced Pages

DONUT

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

DONUT ( Direct observation of the nu tau , E872) was an experiment at Fermilab dedicated to the search for tau neutrino interactions. The detector operated during a few months in the summer of 1997, and successfully detected the tau neutrino. It confirmed the existence of the last lepton predicted by the Standard Model . The data from the experiment was also used to put an upper limit on the tau neutrino magnetic moment and measure its interaction cross section .

#29970

91-509: In DONUT, protons accelerated by the Tevatron were used to produce tau neutrinos via decay of charmed mesons . After eliminating as many unwanted background particles as possible by a system of magnets and bulk matter (mostly iron and concrete), the beam passed through several sheets of nuclear emulsion . In very rare cases one of the neutrinos would interact in the detector, producing electrically charged particles which left visible tracks in

182-400: A {\displaystyle a} , and τ p {\displaystyle \tau _{\mathrm {p} }} decreases with increasing a {\displaystyle a} . Acceleration gives rise to a non-vanishing probability for the transition p → n + e + ν e . This was a matter of concern in

273-487: A Hilbert space , which is also treated in quantum field theory . Following the convention of particle physicists, the term elementary particles is applied to those particles that are, according to current understanding, presumed to be indivisible and not composed of other particles. Ordinary matter is made from first- generation quarks ( up , down ) and leptons ( electron , electron neutrino ). Collectively, quarks and leptons are called fermions , because they have

364-402: A microsecond . They occur after collisions between particles made of quarks, such as fast-moving protons and neutrons in cosmic rays . Mesons are also produced in cyclotrons or other particle accelerators . Particles have corresponding antiparticles with the same mass but with opposite electric charges . For example, the antiparticle of the electron is the positron . The electron has

455-502: A quantum spin of half-integers (−1/2, 1/2, 3/2, etc.). This causes the fermions to obey the Pauli exclusion principle , where no two particles may occupy the same quantum state . Quarks have fractional elementary electric charge (−1/3 or 2/3) and leptons have whole-numbered electric charge (0 or 1). Quarks also have color charge , which is labeled arbitrarily with no correlation to actual light color as red, green and blue. Because

546-427: A zinc sulfide screen produced at a distance well beyond the distance of alpha-particle range of travel but instead corresponding to the range of travel of hydrogen atoms (protons). After experimentation, Rutherford traced the reaction to the nitrogen in air and found that when alpha particles were introduced into pure nitrogen gas, the effect was larger. In 1919, Rutherford assumed that the alpha particle merely knocked

637-1058: A " Theory of Everything ", or "TOE". There are also other areas of work in theoretical particle physics ranging from particle cosmology to loop quantum gravity . In principle, all physics (and practical applications developed therefrom) can be derived from the study of fundamental particles. In practice, even if "particle physics" is taken to mean only "high-energy atom smashers", many technologies have been developed during these pioneering investigations that later find wide uses in society. Particle accelerators are used to produce medical isotopes for research and treatment (for example, isotopes used in PET imaging ), or used directly in external beam radiotherapy . The development of superconductors has been pushed forward by their use in particle physics. The World Wide Web and touchscreen technology were initially developed at CERN . Additional applications are found in medicine, national security, industry, computing, science, and workforce development, illustrating

728-449: A bare nucleus, consisting of a proton (and 0 neutrons for the most abundant isotope protium 1 H ). The proton is a "bare charge" with only about 1/64,000 of the radius of a hydrogen atom, and so is extremely reactive chemically. The free proton, thus, has an extremely short lifetime in chemical systems such as liquids and it reacts immediately with the electron cloud of any available molecule. In aqueous solution, it forms

819-613: A candidate to be a fundamental or elementary particle , and hence a building block of nitrogen and all other heavier atomic nuclei. Although protons were originally considered to be elementary particles, in the modern Standard Model of particle physics , protons are known to be composite particles, containing three valence quarks , and together with neutrons are now classified as hadrons . Protons are composed of two up quarks of charge + ⁠ 2 / 3 ⁠ e each, and one down quark of charge − ⁠ 1 / 3 ⁠ e . The rest masses of quarks contribute only about 1% of

910-416: A form-factor related to the two-dimensional parton diameter of the proton. A value from before 2010 is based on scattering electrons from protons followed by complex calculation involving scattering cross section based on Rosenbluth equation for momentum-transfer cross section ), and based on studies of the atomic energy levels of hydrogen and deuterium. In 2010 an international research team published

1001-452: A fourth generation of fermions does not exist. Bosons are the mediators or carriers of fundamental interactions, such as electromagnetism , the weak interaction , and the strong interaction . Electromagnetism is mediated by the photon , the quanta of light . The weak interaction is mediated by the W and Z bosons . The strong interaction is mediated by the gluon , which can link quarks together to form composite particles. Due to

SECTION 10

#1732771873030

1092-430: A negative electric charge, the positron has a positive charge. These antiparticles can theoretically form a corresponding form of matter called antimatter . Some particles, such as the photon , are their own antiparticle. These elementary particles are excitations of the quantum fields that also govern their interactions. The dominant theory explaining these fundamental particles and fields, along with their dynamics,

1183-484: A neutral hydrogen atom , which is chemically a free radical . Such "free hydrogen atoms" tend to react chemically with many other types of atoms at sufficiently low energies. When free hydrogen atoms react with each other, they form neutral hydrogen molecules (H 2 ), which are the most common molecular component of molecular clouds in interstellar space . Free protons are routinely used for accelerators for proton therapy or various particle physics experiments, with

1274-543: A number of situations in which energies or temperatures are high enough to separate them from electrons, for which they have some affinity. Free protons exist in plasmas in which temperatures are too high to allow them to combine with electrons . Free protons of high energy and velocity make up 90% of cosmic rays , which propagate through the interstellar medium . Free protons are emitted directly from atomic nuclei in some rare types of radioactive decay . Protons also result (along with electrons and antineutrinos ) from

1365-465: A proton charge radius measurement via the Lamb shift in muonic hydrogen (an exotic atom made of a proton and a negatively charged muon ). As a muon is 200 times heavier than an electron, resulting in a smaller atomic orbital , it is much more sensitive to the proton's charge radius and thus allows a more precise measurement. Subsequent improved scattering and electron-spectroscopy measurements agree with

1456-418: A proton out of nitrogen, turning it into carbon. After observing Blackett's cloud chamber images in 1925, Rutherford realized that the alpha particle was absorbed. If the alpha particle were not absorbed, then it would knock a proton off of nitrogen creating 3 charged particles (a negatively charged carbon, a proton, and an alpha particle). It can be shown that the 3 charged particles would create three tracks in

1547-697: A proton's mass. The remainder of a proton's mass is due to quantum chromodynamics binding energy , which includes the kinetic energy of the quarks and the energy of the gluon fields that bind the quarks together. The root mean square charge radius of a proton is about 0.84–0.87  fm ( 1 fm = 10  m ). In 2019, two different studies, using different techniques, found this radius to be 0.833 fm, with an uncertainty of ±0.010 fm. Free protons occur occasionally on Earth: thunderstorms can produce protons with energies of up to several tens of MeV . At sufficiently low temperatures and kinetic energies, free protons will bind to electrons . However,

1638-547: A result, they become so-called Brønsted acids . For example, a proton captured by a water molecule in water becomes hydronium , the aqueous cation H 3 O . In chemistry , the number of protons in the nucleus of an atom is known as the atomic number , which determines the chemical element to which the atom belongs. For example, the atomic number of chlorine is 17; this means that each chlorine atom has 17 protons and that all atoms with 17 protons are chlorine atoms. The chemical properties of each atom are determined by

1729-455: A simplistic interpretation of early values of atomic weights (see Prout's hypothesis ), which was disproved when more accurate values were measured. In 1886, Eugen Goldstein discovered canal rays (also known as anode rays) and showed that they were positively charged particles (ions) produced from gases. However, since particles from different gases had different values of charge-to-mass ratio ( q / m ), they could not be identified with

1820-431: A single particle, unlike the negative electrons discovered by J. J. Thomson . Wilhelm Wien in 1898 identified the hydrogen ion as the particle with the highest charge-to-mass ratio in ionized gases. Following the discovery of the atomic nucleus by Ernest Rutherford in 1911, Antonius van den Broek proposed that the place of each element in the periodic table (its atomic number) is equal to its nuclear charge. This

1911-666: A total sample of 578 neutrino events. Its significance lies in the fact that the tau neutrino had so far remained the only particle of the Standard Model that had not been directly observed except for the Higgs boson . Other than the result itself, DONUT also allowed validation of new techniques for high energy neutrino detection, notably the Emulsion Cloud Chamber , in which nuclear emulsion sheets are interspersed with layers of iron, leading to an increase in

SECTION 20

#1732771873030

2002-499: A wide range of exotic particles . All particles and their interactions observed to date can be described almost entirely by the Standard Model. Dynamics of particles are also governed by quantum mechanics ; they exhibit wave–particle duality , displaying particle-like behaviour under certain experimental conditions and wave -like behaviour in others. In more technical terms, they are described by quantum state vectors in

2093-487: Is a lone proton. The nuclei of the heavy hydrogen isotopes deuterium and tritium contain one proton bound to one and two neutrons, respectively. All other types of atomic nuclei are composed of two or more protons and various numbers of neutrons. The concept of a hydrogen-like particle as a constituent of other atoms was developed over a long period. As early as 1815, William Prout proposed that all atoms are composed of hydrogen atoms (which he called "protyles"), based on

2184-425: Is a particle physics theory suggesting that systems with higher energy have a smaller number of dimensions. A third major effort in theoretical particle physics is string theory . String theorists attempt to construct a unified description of quantum mechanics and general relativity by building a theory based on small strings, and branes rather than particles. If the theory is successful, it may be considered

2275-441: Is a unique chemical species, being a bare nucleus. As a consequence it has no independent existence in the condensed state and is invariably found bound by a pair of electrons to another atom. Ross Stewart, The Proton: Application to Organic Chemistry (1985, p. 1) In chemistry, the term proton refers to the hydrogen ion, H . Since the atomic number of hydrogen is 1, a hydrogen ion has no electrons and corresponds to

2366-491: Is called the Standard Model . The reconciliation of gravity to the current particle physics theory is not solved; many theories have addressed this problem, such as loop quantum gravity , string theory and supersymmetry theory . Practical particle physics is the study of these particles in radioactive processes and in particle accelerators such as the Large Hadron Collider . Theoretical particle physics

2457-532: Is explained by the Standard Model , which gained widespread acceptance in the mid-1970s after experimental confirmation of the existence of quarks . It describes the strong , weak , and electromagnetic fundamental interactions , using mediating gauge bosons . The species of gauge bosons are eight gluons , W , W and Z bosons , and the photon . The Standard Model also contains 24 fundamental fermions (12 particles and their associated anti-particles), which are

2548-445: Is found to be equal and opposite to that of a proton. Particle physics Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation . The field also studies combinations of elementary particles up to the scale of protons and neutrons , while the study of combination of protons and neutrons is called nuclear physics . The fundamental particles in

2639-544: Is in model building where model builders develop ideas for what physics may lie beyond the Standard Model (at higher energies or smaller distances). This work is often motivated by the hierarchy problem and is constrained by existing experimental data. It may involve work on supersymmetry , alternatives to the Higgs mechanism , extra spatial dimensions (such as the Randall–Sundrum models ), Preon theory, combinations of these, or other ideas. Vanishing-dimensions theory

2730-512: Is reversible; neutrons can convert back to protons through beta decay , a common form of radioactive decay . In fact, a free neutron decays this way, with a mean lifetime of about 15 minutes. A proton can also transform into a neutron through beta plus decay (β+ decay). According to quantum field theory , the mean proper lifetime of protons τ p {\displaystyle \tau _{\mathrm {p} }} becomes finite when they are accelerating with proper acceleration

2821-471: Is the study of these particles in the context of cosmology and quantum theory . The two are closely interrelated: the Higgs boson was postulated by theoretical particle physicists and its presence confirmed by practical experiments. The idea that all matter is fundamentally composed of elementary particles dates from at least the 6th century BC. In the 19th century, John Dalton , through his work on stoichiometry , concluded that each element of nature

DONUT - Misplaced Pages Continue

2912-600: Is used to extract the parameters of the Standard Model with less uncertainty. This work probes the limits of the Standard Model and therefore expands scientific understanding of nature's building blocks. Those efforts are made challenging by the difficulty of calculating high precision quantities in quantum chromodynamics . Some theorists working in this area use the tools of perturbative quantum field theory and effective field theory , referring to themselves as phenomenologists . Others make use of lattice field theory and call themselves lattice theorists . Another major effort

3003-587: The Morris water maze . Electrical charging of a spacecraft due to interplanetary proton bombardment has also been proposed for study. There are many more studies that pertain to space travel, including galactic cosmic rays and their possible health effects , and solar proton event exposure. The American Biostack and Soviet Biorack space travel experiments have demonstrated the severity of molecular damage induced by heavy ions on microorganisms including Artemia cysts. CPT-symmetry puts strong constraints on

3094-544: The atomic nuclei are baryons – the neutron is composed of two down quarks and one up quark, and the proton is composed of two up quarks and one down quark. A baryon is composed of three quarks, and a meson is composed of two quarks (one normal, one anti). Baryons and mesons are collectively called hadrons . Quarks inside hadrons are governed by the strong interaction, thus are subjected to quantum chromodynamics (color charges). The bounded quarks must have their color charge to be neutral, or "white" for analogy with mixing

3185-594: The constituent quark model, which were popular in the 1980s, and the SVZ sum rules , which allow for rough approximate mass calculations. These methods do not have the same accuracy as the more brute-force lattice QCD methods, at least not yet. The CODATA recommended value of a proton's charge radius is 8.4075(64) × 10  m . The radius of the proton is defined by a formula that can be calculated by quantum electrodynamics and be derived from either atomic spectroscopy or by electron–proton scattering. The formula involves

3276-462: The electron cloud in a normal atom. However, in such an association with an electron, the character of the bound proton is not changed, and it remains a proton. The attraction of low-energy free protons to any electrons present in normal matter (such as the electrons in normal atoms) causes free protons to stop and to form a new chemical bond with an atom. Such a bond happens at any sufficiently "cold" temperature (that is, comparable to temperatures at

3367-414: The hydronium ion , H 3 O , which in turn is further solvated by water molecules in clusters such as [H 5 O 2 ] and [H 9 O 4 ] . The transfer of H in an acid–base reaction is usually referred to as "proton transfer". The acid is referred to as a proton donor and the base as a proton acceptor. Likewise, biochemical terms such as proton pump and proton channel refer to

3458-714: The mean lifetime of a proton for various assumed decay products. Experiments at the Super-Kamiokande detector in Japan gave lower limits for proton mean lifetime of 6.6 × 10  years for decay to an antimuon and a neutral pion , and 8.2 × 10  years for decay to a positron and a neutral pion. Another experiment at the Sudbury Neutrino Observatory in Canada searched for gamma rays resulting from residual nuclei resulting from

3549-405: The nucleus of every atom . They provide the attractive electrostatic central force which binds the atomic electrons. The number of protons in the nucleus is the defining property of an element, and is referred to as the atomic number (represented by the symbol Z ). Since each element is identified by the number of protons in its nucleus, each element has its own atomic number, which determines

3640-423: The radioactive decay of free neutrons , which are unstable. The spontaneous decay of free protons has never been observed, and protons are therefore considered stable particles according to the Standard Model. However, some grand unified theories (GUTs) of particle physics predict that proton decay should take place with lifetimes between 10 and 10 years. Experimental searches have established lower bounds on

3731-468: The universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons , and electrons and electron neutrinos . The three fundamental interactions known to be mediated by bosons are electromagnetism ,

DONUT - Misplaced Pages Continue

3822-401: The weak interaction , and the strong interaction . Quarks cannot exist on their own but form hadrons . Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons . Two baryons, the proton and the neutron , make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths of

3913-526: The Moon is inside the Earth's geomagnetic tail, and typically no solar wind particles were detectable. For the remainder of each lunar orbit, the Moon is in a transitional region known as the magnetosheath , where the Earth's magnetic field affects the solar wind, but does not completely exclude it. In this region, the particle flux is reduced, with typical proton velocities of 250 to 450 kilometers per second. During

4004-408: The Standard Model during the 1970s, physicists clarified the origin of the particle zoo. The large number of particles was explained as combinations of a (relatively) small number of more fundamental particles and framed in the context of quantum field theories . This reclassification marked the beginning of modern particle physics. The current state of the classification of all elementary particles

4095-571: The aforementioned color confinement, gluons are never observed independently. The Higgs boson gives mass to the W and Z bosons via the Higgs mechanism – the gluon and photon are expected to be massless . All bosons have an integer quantum spin (0 and 1) and can have the same quantum state . Most aforementioned particles have corresponding antiparticles , which compose antimatter . Normal particles have positive lepton or baryon number , and antiparticles have these numbers negative. Most properties of corresponding antiparticles and particles are

4186-407: The character of such bound protons does not change, and they remain protons. A fast proton moving through matter will slow by interactions with electrons and nuclei, until it is captured by the electron cloud of an atom. The result is a diatomic or polyatomic ion containing hydrogen. In a vacuum, when free electrons are present, a sufficiently slow proton may pick up a single free electron, becoming

4277-399: The cloud chamber, but instead only 2 tracks in the cloud chamber were observed. The alpha particle is absorbed by the nitrogen atom. After capture of the alpha particle, a hydrogen nucleus is ejected, creating a net result of 2 charged particles (a proton and a positively charged oxygen) which make 2 tracks in the cloud chamber. Heavy oxygen ( O), not carbon or fluorine, is the product. This was

4368-480: The coaccelerated frame there is a thermal bath due to Fulling–Davies–Unruh effect , an intrinsic effect of quantum field theory. In this thermal bath, experienced by the proton, there are electrons and antineutrinos with which the proton may interact according to the processes: Adding the contributions of each of these processes, one should obtain τ p {\displaystyle \tau _{\mathrm {p} }} . In quantum chromodynamics ,

4459-597: The constituents of all matter . Finally, the Standard Model also predicted the existence of a type of boson known as the Higgs boson . On 4 July 2012, physicists with the Large Hadron Collider at CERN announced they had found a new particle that behaves similarly to what is expected from the Higgs boson. The Standard Model, as currently formulated, has 61 elementary particles. Those elementary particles can combine to form composite particles, accounting for

4550-438: The decay of a proton from oxygen-16. This experiment was designed to detect decay to any product, and established a lower limit to a proton lifetime of 2.1 × 10  years . However, protons are known to transform into neutrons through the process of electron capture (also called inverse beta decay ). For free protons, this process does not occur spontaneously but only when energy is supplied. The equation is: The process

4641-450: The development of nuclear weapons . Throughout the 1950s and 1960s, a bewildering variety of particles was found in collisions of particles from beams of increasingly high energy. It was referred to informally as the " particle zoo ". Important discoveries such as the CP violation by James Cronin and Val Fitch brought new questions to matter-antimatter imbalance . After the formulation of

SECTION 50

#1732771873030

4732-421: The emulsion and could be electronically registered by a system of scintillators and drift chambers . Using the electronic information, possible neutrino interactions were identified and selected for further analysis. This meant photographically developing the emulsion sheets so any traces left by particles passing through them would show up as a small black dot. By connecting these dots across subsequent sheets,

4823-478: The first experimental deviations from the Standard Model, since neutrinos do not have mass in the Standard Model. Modern particle physics research is focused on subatomic particles , including atomic constituents, such as electrons , protons , and neutrons (protons and neutrons are composite particles called baryons , made of quarks ), that are produced by radioactive and scattering processes; such particles are photons , neutrinos , and muons , as well as

4914-420: The first observation of tau neutrino interactions. This result was based on only four events, but the signal was far in excess of the expected background (0.34±0.05 events), and has a p -value of 4×10, around 3.5 sigma. This falls below the normal standard of proof, but was generally accepted because the particle was expected to be there. The final report of 2008 identifies 9 tau neutrino events from

5005-441: The first reported nuclear reaction , N + α → O + p . Rutherford at first thought of our modern "p" in this equation as a hydrogen ion, H . Depending on one's perspective, either 1919 (when it was seen experimentally as derived from another source than hydrogen) or 1920 (when it was recognized and proposed as an elementary particle) may be regarded as the moment when the proton was 'discovered'. Rutherford knew hydrogen to be

5096-418: The gluons, and transitory pairs of sea quarks . Protons have a positive charge distribution, which decays approximately exponentially, with a root mean square charge radius of about 0.8 fm. Protons and neutrons are both nucleons , which may be bound together by the nuclear force to form atomic nuclei . The nucleus of the most common isotope of the hydrogen atom (with the chemical symbol "H")

5187-538: The gravitational interaction, but it has not been detected or completely reconciled with current theories. Many other hypothetical particles have been proposed to address the limitations of the Standard Model. Notably, supersymmetric particles aim to solve the hierarchy problem , axions address the strong CP problem , and various other particles are proposed to explain the origins of dark matter and dark energy . The world's major particle physics laboratories are: Theoretical particle physics attempts to develop

5278-424: The hundreds of other species of particles that have been discovered since the 1960s. The Standard Model has been found to agree with almost all the experimental tests conducted to date. However, most particle physicists believe that it is an incomplete description of nature and that a more fundamental theory awaits discovery (See Theory of Everything ). In recent years, measurements of neutrino mass have provided

5369-433: The interactions between the quarks store energy which can convert to other particles when the quarks are far apart enough, quarks cannot be observed independently. This is called color confinement . There are three known generations of quarks (up and down, strange and charm , top and bottom ) and leptons (electron and its neutrino, muon and its neutrino , tau and its neutrino ), with strong indirect evidence that

5460-429: The later 1990s because τ p {\displaystyle \tau _{\mathrm {p} }} is a scalar that can be measured by the inertial and coaccelerated observers . In the inertial frame , the accelerating proton should decay according to the formula above. However, according to the coaccelerated observer the proton is at rest and hence should not decay. This puzzle is solved by realizing that in

5551-450: The lunar night, the spectrometer was shielded from the solar wind by the Moon and no solar wind particles were measured. Protons also have extrasolar origin from galactic cosmic rays , where they make up about 90% of the total particle flux. These protons often have higher energy than solar wind protons, and their intensity is far more uniform and less variable than protons coming from the Sun,

SECTION 60

#1732771873030

5642-402: The mass of a quark by itself, while constituent quark mass refers to the current quark mass plus the mass of the gluon particle field surrounding the quark. These masses typically have very different values. The kinetic energy of the quarks that is a consequence of confinement is a contribution (see Mass in special relativity ). Using lattice QCD calculations, the contributions to

5733-2129: The mass of the proton are the quark condensate (~9%, comprising the up and down quarks and a sea of virtual strange quarks), the quark kinetic energy (~32%), the gluon kinetic energy (~37%), and the anomalous gluonic contribution (~23%, comprising contributions from condensates of all quark flavors). The constituent quark model wavefunction for the proton is | p ↑ ⟩ = 1 18 ( 2 | u ↑ d ↓ u ↑ ⟩ + 2 | u ↑ u ↑ d ↓ ⟩ + 2 | d ↓ u ↑ u ↑ ⟩ − | u ↑ u ↓ d ↑ ⟩ − | u ↑ d ↑ u ↓ ⟩ − | u ↓ d ↑ u ↑ ⟩ − | d ↑ u ↓ u ↑ ⟩ − | d ↑ u ↑ u ↓ ⟩ − | u ↓ u ↑ d ↑ ⟩ ) . {\displaystyle \mathrm {|p_{\uparrow }\rangle ={\tfrac {1}{\sqrt {18}}}\left(2|u_{\uparrow }d_{\downarrow }u_{\uparrow }\rangle +2|u_{\uparrow }u_{\uparrow }d_{\downarrow }\rangle +2|d_{\downarrow }u_{\uparrow }u_{\uparrow }\rangle -|u_{\uparrow }u_{\downarrow }d_{\uparrow }\rangle -|u_{\uparrow }d_{\uparrow }u_{\downarrow }\rangle -|u_{\downarrow }d_{\uparrow }u_{\uparrow }\rangle -|d_{\uparrow }u_{\downarrow }u_{\uparrow }\rangle -|d_{\uparrow }u_{\uparrow }u_{\downarrow }\rangle -|u_{\downarrow }u_{\uparrow }d_{\uparrow }\rangle \right)} .} The internal dynamics of protons are complicated, because they are determined by

5824-497: The models, theoretical framework, and mathematical tools to understand current experiments and make predictions for future experiments (see also theoretical physics ). There are several major interrelated efforts being made in theoretical particle physics today. One important branch attempts to better understand the Standard Model and its tests. Theorists make quantitative predictions of observables at collider and astronomical experiments, which along with experimental measurements

5915-480: The modern theory of the nuclear force, most of the mass of protons and neutrons is explained by special relativity . The mass of a proton is about 80–100 times greater than the sum of the rest masses of its three valence quarks , while the gluons have zero rest mass. The extra energy of the quarks and gluons in a proton, as compared to the rest energy of the quarks alone in the QCD vacuum , accounts for almost 99% of

6006-412: The most powerful example being the Large Hadron Collider . Protons are spin- ⁠ 1 / 2 ⁠ fermions and are composed of three valence quarks, making them baryons (a sub-type of hadrons ). The two up quarks and one down quark of a proton are held together by the strong force , mediated by gluons . A modern perspective has a proton composed of the valence quarks (up, up, down),

6097-440: The movement of hydrated H ions. The ion produced by removing the electron from a deuterium atom is known as a deuteron , not a proton. Likewise, removing an electron from a tritium atom produces a triton . Also in chemistry, the term proton NMR refers to the observation of hydrogen-1 nuclei in (mostly organic ) molecules by nuclear magnetic resonance . This method uses the quantized spin magnetic moment of

6188-438: The neutral hydrogen atom. He initially suggested both proton and prouton (after Prout). Rutherford later reported that the meeting had accepted his suggestion that the hydrogen nucleus be named the "proton", following Prout's word "protyle". The first use of the word "proton" in the scientific literature appeared in 1920. One or more bound protons are present in the nucleus of every atom. Free protons are found naturally in

6279-403: The new small radius. Work continues to refine and check this new value. Since the proton is composed of quarks confined by gluons, an equivalent pressure that acts on the quarks can be defined. The size of that pressure and other details about it are controversial. In 2018 this pressure was reported to be on the order 10  Pa, which is greater than the pressure inside a neutron star . It

6370-416: The nucleon structure is still missing because ... long-distance behavior requires a nonperturbative and/or numerical treatment ..." More conceptual approaches to the structure of protons are: the topological soliton approach originally due to Tony Skyrme and the more accurate AdS/QCD approach that extends it to include a string theory of gluons, various QCD-inspired models like the bag model and

6461-598: The nucleus the proton , after the neuter singular of the Greek word for "first", πρῶτον . However, Rutherford also had in mind the word protyle as used by Prout. Rutherford spoke at the British Association for the Advancement of Science at its Cardiff meeting beginning 24 August 1920. At the meeting, he was asked by Oliver Lodge for a new name for the positive hydrogen nucleus to avoid confusion with

6552-681: The number of (negatively charged) electrons , which for neutral atoms is equal to the number of (positive) protons so that the total charge is zero. For example, a neutral chlorine atom has 17 protons and 17 electrons, whereas a Cl anion has 17 protons and 18 electrons for a total charge of −1. All atoms of a given element are not necessarily identical, however. The number of neutrons may vary to form different isotopes , and energy levels may differ, resulting in different nuclear isomers . For example, there are two stable isotopes of chlorine : 17 Cl with 35 − 17 = 18 neutrons and 17 Cl with 37 − 17 = 20 neutrons. The proton

6643-418: The number of atomic electrons and consequently the chemical characteristics of the element. The word proton is Greek for "first", and the name was given to the hydrogen nucleus by Ernest Rutherford in 1920. In previous years, Rutherford had discovered that the hydrogen nucleus (known to be the lightest nucleus) could be extracted from the nuclei of nitrogen by atomic collisions. Protons were therefore

6734-550: The number of interactions. Protons A proton is a stable subatomic particle , symbol p , H , or H with a positive electric charge of +1  e ( elementary charge ). Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio ). Protons and neutrons, each with a mass of approximately one atomic mass unit , are jointly referred to as nucleons (particles present in atomic nuclei). One or more protons are present in

6825-719: The particles in the solar wind are electrons and protons, in approximately equal numbers. Because the Solar Wind Spectrometer made continuous measurements, it was possible to measure how the Earth's magnetic field affects arriving solar wind particles. For about two-thirds of each orbit, the Moon is outside of the Earth's magnetic field. At these times, a typical proton density was 10 to 20 per cubic centimeter, with most protons having velocities between 400 and 650 kilometers per second. For about five days of each month,

6916-470: The path that each particle had taken was reconstructed and likely neutrino interactions identified. The characteristic properties of neutrino interactions were that several tracks suddenly appeared without any leading up to them. The tau neutrino was identified by one of those tracks showing a "kink" after a few millimeters, indicating decay of a tau lepton . In July 2000, the DONUT collaboration announced

7007-483: The photon or gluon, have no antiparticles. Quarks and gluons additionally have color charges, which influences the strong interaction. Quark's color charges are called red, green and blue (though the particle itself have no physical color), and in antiquarks are called antired, antigreen and antiblue. The gluon can have eight color charges , which are the result of quarks' interactions to form composite particles (gauge symmetry SU(3) ). The neutrons and protons in

7098-675: The pressure profile shape by selection of the model. The radius of the hydrated proton appears in the Born equation for calculating the hydration enthalpy of hydronium . Although protons have affinity for oppositely charged electrons, this is a relatively low-energy interaction and so free protons must lose sufficient velocity (and kinetic energy ) in order to become closely associated and bound to electrons. High energy protons, in traversing ordinary matter, lose energy by collisions with atomic nuclei , and by ionization of atoms (removing electrons) until they are slowed sufficiently to be captured by

7189-426: The primary colors . More exotic hadrons can have other types, arrangement or number of quarks ( tetraquark , pentaquark ). An atom is made from protons, neutrons and electrons. By modifying the particles inside a normal atom, exotic atoms can be formed. A simple example would be the hydrogen-4.1 , which has one of its electrons replaced with a muon. The graviton is a hypothetical particle that can mediate

7280-662: The production of which is heavily affected by solar proton events such as coronal mass ejections . Research has been performed on the dose-rate effects of protons, as typically found in space travel , on human health. To be more specific, there are hopes to identify what specific chromosomes are damaged, and to define the damage, during cancer development from proton exposure. Another study looks into determining "the effects of exposure to proton irradiation on neurochemical and behavioral endpoints, including dopaminergic functioning, amphetamine -induced conditioned taste aversion learning, and spatial learning and memory as measured by

7371-400: The proton's mass. The rest mass of a proton is, thus, the invariant mass of the system of moving quarks and gluons that make up the particle, and, in such systems, even the energy of massless particles confined to a system is still measured as part of the rest mass of the system. Two terms are used in referring to the mass of the quarks that make up protons: current quark mass refers to

7462-479: The proton, which is due to its angular momentum (or spin ), which in turn has a magnitude of one-half the reduced Planck constant . ( ℏ / 2 {\displaystyle \hbar /2} ). The name refers to examination of protons as they occur in protium (hydrogen-1 atoms) in compounds, and does not imply that free protons exist in the compound being studied. The Apollo Lunar Surface Experiments Packages (ALSEP) determined that more than 95% of

7553-517: The quarks' exchanging gluons, and interacting with various vacuum condensates. Lattice QCD provides a way of calculating the mass of a proton directly from the theory to any accuracy, in principle. The most recent calculations claim that the mass is determined to better than 4% accuracy, even to 1% accuracy (see Figure S5 in Dürr et al. ). These claims are still controversial, because the calculations cannot yet be done with quarks as light as they are in

7644-444: The real world. This means that the predictions are found by a process of extrapolation , which can introduce systematic errors. It is hard to tell whether these errors are controlled properly, because the quantities that are compared to experiment are the masses of the hadrons , which are known in advance. These recent calculations are performed by massive supercomputers, and, as noted by Boffi and Pasquini: "a detailed description of

7735-581: The relative properties of particles and antiparticles and, therefore, is open to stringent tests. For example, the charges of a proton and antiproton must sum to exactly zero. This equality has been tested to one part in 10 . The equality of their masses has also been tested to better than one part in 10 . By holding antiprotons in a Penning trap , the equality of the charge-to-mass ratio of protons and antiprotons has been tested to one part in 6 × 10 . The magnetic moment of antiprotons has been measured with an error of 8 × 10 nuclear Bohr magnetons , and

7826-444: The same, with a few gets reversed; the electron's antiparticle, positron, has an opposite charge. To differentiate between antiparticles and particles, a plus or negative sign is added in superscript . For example, the electron and the positron are denoted e and e . When a particle and an antiparticle interact with each other, they are annihilated and convert to other particles. Some particles, such as

7917-443: The simplest and lightest element and was influenced by Prout's hypothesis that hydrogen was the building block of all elements. Discovery that the hydrogen nucleus is present in other nuclei as an elementary particle led Rutherford to give the hydrogen nucleus H a special name as a particle, since he suspected that hydrogen, the lightest element, contained only one of these particles. He named this new fundamental building block of

8008-485: The surface of the Sun) and with any type of atom. Thus, in interaction with any type of normal (non-plasma) matter, low-velocity free protons do not remain free but are attracted to electrons in any atom or molecule with which they come into contact, causing the proton and molecule to combine. Such molecules are then said to be " protonated ", and chemically they are simply compounds of hydrogen, often positively charged. Often, as

8099-630: Was composed of a single, unique type of particle. The word atom , after the Greek word atomos meaning "indivisible", has since then denoted the smallest particle of a chemical element , but physicists later discovered that atoms are not, in fact, the fundamental particles of nature, but are conglomerates of even smaller particles, such as the electron . The early 20th century explorations of nuclear physics and quantum physics led to proofs of nuclear fission in 1939 by Lise Meitner (based on experiments by Otto Hahn ), and nuclear fusion by Hans Bethe in that same year; both discoveries also led to

8190-529: Was confirmed experimentally by Henry Moseley in 1913 using X-ray spectra (More details in Atomic number under Moseley's 1913 experiment). In 1917, Rutherford performed experiments (reported in 1919 and 1925) which proved that the hydrogen nucleus is present in other nuclei, a result usually described as the discovery of protons. These experiments began after Rutherford observed that when alpha particles would strike air, Rutherford could detect scintillation on

8281-436: Was said to be maximum at the centre, positive (repulsive) to a radial distance of about 0.6 fm, negative (attractive) at greater distances, and very weak beyond about 2 fm. These numbers were derived by a combination of a theoretical model and experimental Compton scattering of high-energy electrons. However, these results have been challenged as also being consistent with zero pressure and as effectively providing

#29970