The Navistar DT (Diesel Turbocharged or Diesel Turbo) engine family is a line of mid-range inline-6 diesel engines . With horsepower ratings ranging from 170 hp (130 kW) to 350 hp (260 kW), the Navistar DT engines are used primarily in medium-duty truck and bus applications such as school buses , although some versions have been developed for heavy-duty regional-haul and severe-service applications. Prior to 1986, Navistar International, then known as International Harvester Company , used the DT engine in farm and construction equipment.
82-500: From 1997 to 2004, the DT was also rebadged and sold by Detroit Diesel as the Series 40 . The Navistar DT diesel engines are of a wet-sleeve design. This means that the cylinder wall (sleeve) is a separately machined part that fits into the cylinder bores cast into the engine block. The cylinder sleeve is in contact with the engine coolant, hence the "wet"-sleeve. Navistar claims that
164-414: A carcinogen or "probable carcinogen" and is known to increase the risk of heart and respiratory diseases. In principle, a diesel engine does not require any sort of electrical system. However, most modern diesel engines are equipped with an electrical fuel pump, and an electronic engine control unit. However, there is no high-voltage electrical ignition system present in a diesel engine. This eliminates
246-546: A Bosch P style pump, and starting what was called New Generation Diesel engine design, which is still the same basic block design. Mechanical injection was still utilized in trucks up into the 1997 year, but this is rare. In 1994, due to tightening emissions regulations, the engines were redesigned to use electronically controlled unit direct fuel injection. From 1994 to 2004, the engines used HEUI (Hydraulically actuated Electronically controlled Unit Injection) injectors, co-developed by Navistar and Caterpillar Inc. From 2004 to 2009,
328-470: A Virtual Technician service. Detroit engines, transmissions, and axles are used in several models of truck manufactured by Daimler Truck North America. Detroit Diesel consists of manufacturing operations of axles, transmissions and diesel engines for on-highway only, which is owned by Daimler Truck AG . The former off-highway division was sold to MTU Friedrichshafen in 2006 and subsequently purchased by Rolls-Royce in 2014. The ancestor of Detroit Diesel
410-452: A diesel engine drops at lower loads, however, it does not drop quite as fast as the Otto (spark ignition) engine's. Diesel engines are combustion engines and, therefore, emit combustion products in their exhaust gas . Due to incomplete combustion, diesel engine exhaust gases include carbon monoxide , hydrocarbons , particulate matter , and nitrogen oxides pollutants. About 90 per cent of
492-516: A few degrees releasing the pressure and is controlled by a mechanical governor, consisting of weights rotating at engine speed constrained by springs and a lever. The injectors are held open by the fuel pressure. On high-speed engines the plunger pumps are together in one unit. The length of fuel lines from the pump to each injector is normally the same for each cylinder in order to obtain the same pressure delay. Direct injected diesel engines usually use orifice-type fuel injectors. Electronic control of
574-407: A finite area, and the net output of work during a cycle is positive. The fuel efficiency of diesel engines is better than most other types of combustion engines, due to their high compression ratio, high air–fuel equivalence ratio (λ) , and the lack of intake air restrictions (i.e. throttle valves). Theoretically, the highest possible efficiency for a diesel engine is 75%. However, in practice
656-452: A fuel consumption of 519 g·kW ·h . However, despite proving the concept, the engine caused problems, and Diesel could not achieve any substantial progress. Therefore, Krupp considered rescinding the contract they had made with Diesel. Diesel was forced to improve the design of his engine and rushed to construct a third prototype engine. Between 8 November and 20 December 1895, the second prototype had successfully covered over 111 hours on
738-409: A full set of valves, two-stroke diesel engines have simple intake ports, and exhaust ports (or exhaust valves). When the piston approaches bottom dead centre, both the intake and the exhaust ports are "open", which means that there is atmospheric pressure inside the cylinder. Therefore, some sort of pump is required to blow the air into the cylinder and the combustion gasses into the exhaust. This process
820-562: A heterogeneous air-fuel mixture. The torque a diesel engine produces is controlled by manipulating the air-fuel ratio (λ) ; instead of throttling the intake air, the diesel engine relies on altering the amount of fuel that is injected, and thus the air-fuel ratio is usually high. The diesel engine has the highest thermal efficiency (see engine efficiency ) of any practical internal or external combustion engine due to its very high expansion ratio and inherent lean burn, which enables heat dissipation by excess air. A small efficiency loss
902-403: A low-pressure loop at the bottom of the diagram. At 1 it is assumed that the exhaust and induction strokes have been completed, and the cylinder is again filled with air. The piston-cylinder system absorbs energy between 1 and 2 – this is the work needed to compress the air in the cylinder, and is provided by mechanical kinetic energy stored in the flywheel of the engine. Work output is done by
SECTION 10
#1732779780164984-532: A more efficient replacement for stationary steam engines . Since the 1910s, they have been used in submarines and ships. Use in locomotives , buses, trucks, heavy equipment , agricultural equipment and electricity generation plants followed later. In the 1930s, they slowly began to be used in some automobiles . Since the 1970s energy crisis , demand for higher fuel efficiency has resulted in most major automakers, at some point, offering diesel-powered models, even in very small cars. According to Konrad Reif (2012),
1066-681: A notable exception being the EMD 567 , 645 , and 710 engines, which are all two-stroke. The power output of medium-speed diesel engines can be as high as 21,870 kW, with the effective efficiency being around 47-48% (1982). Most larger medium-speed engines are started with compressed air direct on pistons, using an air distributor, as opposed to a pneumatic starting motor acting on the flywheel, which tends to be used for smaller engines. Medium-speed engines intended for marine applications are usually used to power ( ro-ro ) ferries, passenger ships or small freight ships. Using medium-speed engines reduces
1148-535: A petroleum engine with glow-tube ignition in the early 1890s; he claimed against his own better judgement that his glow-tube ignition engine worked the same way Diesel's engine did. His claims were unfounded and he lost a patent lawsuit against Diesel. Other engines, such as the Akroyd engine and the Brayton engine , also use an operating cycle that is different from the diesel engine cycle. Friedrich Sass says that
1230-415: A poorer power-to-mass ratio than an equivalent petrol engine. The lower engine speeds (RPM) of typical diesel engines results in a lower power output. Also, the mass of a diesel engine is typically higher, since the higher operating pressure inside the combustion chamber increases the internal forces, which requires stronger (and therefore heavier) parts to withstand these forces. The distinctive noise of
1312-408: A regular trunk-piston. Two-stroke engines have a limited rotational frequency and their charge exchange is more difficult, which means that they are usually bigger than four-stroke engines and used to directly power a ship's propeller. Four-stroke engines on ships are usually used to power an electric generator. An electric motor powers the propeller. Both types are usually very undersquare , meaning
1394-435: A simple mechanical injection system since exact injection timing is not as critical. Most modern automotive engines are DI which have the benefits of greater efficiency and easier starting; however, IDI engines can still be found in the many ATV and small diesel applications. Indirect injected diesel engines use pintle-type fuel injectors. Early diesel engines injected fuel with the assistance of compressed air, which atomised
1476-536: A single orifice injector. The pre-chamber has the disadvantage of lowering efficiency due to increased heat loss to the engine's cooling system, restricting the combustion burn, thus reducing the efficiency by 5–10%. IDI engines are also more difficult to start and usually require the use of glow plugs. IDI engines may be cheaper to build but generally require a higher compression ratio than the DI counterpart. IDI also makes it easier to produce smooth, quieter running engines with
1558-527: A single speed for long periods. Two-stroke engines use a combustion cycle which is completed in two strokes instead of four strokes. Filling the cylinder with air and compressing it takes place in one stroke, and the power and exhaust strokes are combined. The compression in a two-stroke diesel engine is similar to the compression that takes place in a four-stroke diesel engine: As the piston passes through bottom centre and starts upward, compression commences, culminating in fuel injection and ignition. Instead of
1640-426: A small chamber called a swirl chamber, precombustion chamber, pre chamber or ante-chamber, which is connected to the cylinder by a narrow air passage. Generally the goal of the pre chamber is to create increased turbulence for better air / fuel mixing. This system also allows for a smoother, quieter running engine, and because fuel mixing is assisted by turbulence, injector pressures can be lower. Most IDI systems use
1722-530: A source of radio frequency emissions (which can interfere with navigation and communication equipment), which is why only diesel-powered vehicles are allowed in some parts of the American National Radio Quiet Zone . To control the torque output at any given time (i.e. when the driver of a car adjusts the accelerator pedal ), a governor adjusts the amount of fuel injected into the engine. Mechanical governors have been used in
SECTION 20
#17327797801641804-400: A spark plug ( compression ignition rather than spark ignition ). In the diesel engine, only air is initially introduced into the combustion chamber. The air is then compressed with a compression ratio typically between 15:1 and 23:1. This high compression causes the temperature of the air to rise. At about the top of the compression stroke, fuel is injected directly into the compressed air in
1886-459: A subsidiary of Daimler Truck North America , which is itself a wholly owned subsidiary of the multinational Daimler Truck AG . The company manufactures heavy-duty engines and chassis components for the on-highway and vocational commercial truck markets. Detroit Diesel has built more than 5 million engines since 1938, more than 1 million of which are still in operation worldwide. Detroit Diesel's product line includes engines, axles, transmissions, and
1968-417: A swirl chamber or pre-chamber are called indirect injection (IDI) engines. Most direct injection diesel engines have a combustion cup in the top of the piston where the fuel is sprayed. Many different methods of injection can be used. Usually, an engine with helix-controlled mechanic direct injection has either an inline or a distributor injection pump. For each engine cylinder, the corresponding plunger in
2050-422: A two-stroke ship diesel engine has a single-stage turbocharger with a turbine that has an axial inflow and a radial outflow. In general, there are three types of scavenging possible: Crossflow scavenging is incomplete and limits the stroke, yet some manufacturers used it. Reverse flow scavenging is a very simple way of scavenging, and it was popular amongst manufacturers until the early 1980s. Uniflow scavenging
2132-461: Is a combustion engine that is more efficient than a diesel engine, but due to its mass and dimensions, is unsuitable for many vehicles, including watercraft and some aircraft . The world's largest diesel engines put in service are 14-cylinder, two-stroke marine diesel engines; they produce a peak power of almost 100 MW each. Diesel engines may be designed with either two-stroke or four-stroke combustion cycles . They were originally used as
2214-423: Is a simplified and idealised representation of the events involved in a diesel engine cycle, arranged to illustrate the similarity with a Carnot cycle . Starting at 1, the piston is at bottom dead centre and both valves are closed at the start of the compression stroke; the cylinder contains air at atmospheric pressure. Between 1 and 2 the air is compressed adiabatically – that is without heat transfer to or from
2296-431: Is also avoided compared with non-direct-injection gasoline engines, as unburned fuel is not present during valve overlap, and therefore no fuel goes directly from the intake/injection to the exhaust. Low-speed diesel engines (as used in ships and other applications where overall engine weight is relatively unimportant) can reach effective efficiencies of up to 55%. The combined cycle gas turbine (Brayton and Rankine cycle)
2378-403: Is approximately 5 MW. Medium-speed engines are used in large electrical generators, railway diesel locomotives , ship propulsion and mechanical drive applications such as large compressors or pumps. Medium speed diesel engines operate on either diesel fuel or heavy fuel oil by direct injection in the same manner as low-speed engines. Usually, they are four-stroke engines with trunk pistons;
2460-429: Is called scavenging . The pressure required is approximately 10-30 kPa. Due to the lack of discrete exhaust and intake strokes, all two-stroke diesel engines use a scavenge blower or some form of compressor to charge the cylinders with air and assist in scavenging. Roots-type superchargers were used for ship engines until the mid-1950s, however since 1955 they have been widely replaced by turbochargers. Usually,
2542-404: Is done on the system to which the engine is connected. During this expansion phase the volume of the gas rises, and its temperature and pressure both fall. At 4 the exhaust valve opens, and the pressure falls abruptly to atmospheric (approximately). This is unresisted expansion and no useful work is done by it. Ideally the adiabatic expansion should continue, extending the line 3–4 to the right until
Navistar DT engine - Misplaced Pages Continue
2624-464: Is more complicated to make but allows the highest fuel efficiency; since the early 1980s, manufacturers such as MAN and Sulzer have switched to this system. It is standard for modern marine two-stroke diesel engines. So-called dual-fuel diesel engines or gas diesel engines burn two different types of fuel simultaneously , for instance, a gaseous fuel and diesel engine fuel. The diesel engine fuel auto-ignites due to compression ignition, and then ignites
2706-507: The EU average for diesel cars at the time accounted for half of newly registered cars. However, air pollution and overall emissions are more difficult to control in diesel engines compared to gasoline engines, and the use of diesel auto engines in the U.S. is now largely relegated to larger on-road and off-road vehicles . Though aviation has traditionally avoided using diesel engines, aircraft diesel engines have become increasingly available in
2788-722: The United Kingdom , and the United States for "Method of and Apparatus for Converting Heat into Work". In 1894 and 1895, he filed patents and addenda in various countries for his engine; the first patents were issued in Spain (No. 16,654), France (No. 243,531) and Belgium (No. 113,139) in December 1894, and in Germany (No. 86,633) in 1895 and the United States (No. 608,845) in 1898. Diesel
2870-552: The United States Environmental Protection Agency . Changes to the engines included a new turbocharger (called EVRT , for "Electronic Variable Response Turbocharger") with movable turbo vanes to improve boost and reduce lag, a new, electronically controlled hydraulic unit fuel injection system, Exhaust Gas Recirculation with heat exchanger to compensate for improved thermal efficiency, and new four-valve cylinder heads. [1] In 2007,
2952-503: The fuel is caused by the elevated temperature of the air in the cylinder due to mechanical compression ; thus, the diesel engine is called a compression-ignition engine (CI engine). This contrasts with engines using spark plug -ignition of the air-fuel mixture, such as a petrol engine ( gasoline engine) or a gas engine (using a gaseous fuel like natural gas or liquefied petroleum gas ). Diesel engines work by compressing only air, or air combined with residual combustion gases from
3034-416: The 21st century. Since the late 1990s, for various reasons—including the diesel's inherent advantages over gasoline engines, but also for recent issues peculiar to aviation—development and production of diesel engines for aircraft has surged, with over 5,000 such engines delivered worldwide between 2002 and 2018, particularly for light airplanes and unmanned aerial vehicles . In 1878, Rudolf Diesel , who
3116-454: The Carnot cycle. Diesel was also introduced to a fire piston , a traditional fire starter using rapid adiabatic compression principles which Linde had acquired from Southeast Asia . After several years of working on his ideas, Diesel published them in 1893 in the essay Theory and Construction of a Rational Heat Motor . Diesel was heavily criticised for his essay, but only a few found
3198-520: The DT engines were updated once again for compliance with 2010 emissions standards. They all received new, twin turbochargers, with higher-rated versions of the MaxxForce DT and all MaxxForce 9 and 10 engines receiving intercooling and aftercooling. Upgrades to fuel injectors, the EGR system, and cooling were also part of the 2010 modifications. 2015 was the final production year for the MaxxForce DT. It
3280-413: The DT engines were updated once again to comply with stricter 2007 emissions standards. The DT 466, DT 570, and HT 570 engines were renamed MaxxForce DT, MaxxForce 9, and MaxxForce 10, respectively. Among the new features were closed-crankcase ventilation and new wiring harnesses. The MaxxForce engines were first available in model year 2008 International trucks and IC Corporation school buses. In 2010
3362-587: The MaxxForce D brand. The final generation MaxxForce DT was known as the MaxxForce D7.6I6, and the MaxxForce 10 was known as the MaxxForce D9.3I6. Modifications from the civilian versions included diamond-coated (metal nitride coating) injectors to enable the engines to run on JP-8 fuel. Other Variants: In 2004, the entire DT family of engines was updated to meet 2004 emissions standards set out by
Navistar DT engine - Misplaced Pages Continue
3444-400: The amount of fuel injected into the engine. Due to the amount of air being constant (for a given RPM) while the amount of fuel varies, very high ("lean") air-fuel ratios are used in situations where minimal torque output is required. This differs from a petrol engine, where a throttle is used to also reduce the amount of intake air as part of regulating the engine's torque output. Controlling
3526-470: The bore is smaller than the stroke. Low-speed diesel engines (as used in ships and other applications where overall engine weight is relatively unimportant) often have an effective efficiency of up to 55%. Like medium-speed engines, low-speed engines are started with compressed air, and they use heavy oil as their primary fuel. Four-stroke engines use the combustion cycle described earlier. Most smaller diesels, for vehicular use, for instance, typically use
3608-448: The combustion chamber, the droplets continue to vaporise from their surfaces and burn, getting smaller, until all the fuel in the droplets has been burnt. Combustion occurs at a substantially constant pressure during the initial part of the power stroke. The start of vaporisation causes a delay before ignition and the characteristic diesel knocking sound as the vapour reaches ignition temperature and causes an abrupt increase in pressure above
3690-418: The combustion chamber. This may be into a (typically toroidal ) void in the top of the piston or a pre-chamber depending upon the design of the engine. The fuel injector ensures that the fuel is broken down into small droplets, and that the fuel is distributed evenly. The heat of the compressed air vaporises fuel from the surface of the droplets. The vapour is then ignited by the heat from the compressed air in
3772-425: The compressed gas. Combustion and heating occur between 2 and 3. In this interval the pressure remains constant since the piston descends, and the volume increases; the temperature rises as a consequence of the energy of combustion. At 3 fuel injection and combustion are complete, and the cylinder contains gas at a higher temperature than at 2. Between 3 and 4 this hot gas expands, again approximately adiabatically. Work
3854-452: The compression ratio in a spark-ignition engine where fuel and air are mixed before entry to the cylinder is limited by the need to prevent pre-ignition , which would cause engine damage. Since only air is compressed in a diesel engine, and fuel is not introduced into the cylinder until shortly before top dead centre ( TDC ), premature detonation is not a problem and compression ratios are much higher. The pressure–volume diagram (pV) diagram
3936-473: The compression required for his cycle: By June 1893, Diesel had realised his original cycle would not work, and he adopted the constant pressure cycle. Diesel describes the cycle in his 1895 patent application. Notice that there is no longer a mention of compression temperatures exceeding the temperature of combustion. Now it is simply stated that the compression must be sufficient to trigger ignition. In 1892, Diesel received patents in Germany , Switzerland ,
4018-416: The concept of air-blast injection from George B. Brayton , albeit that Diesel substantially improved the system. On 17 February 1894, the redesigned engine ran for 88 revolutions – one minute; with this news, Maschinenfabrik Augsburg's stock rose by 30%, indicative of the tremendous anticipated demands for a more efficient engine. On 26 June 1895, the engine achieved an effective efficiency of 16.6% and had
4100-424: The cost of smaller ships and increases their transport capacity. In addition to that, a single ship can use two smaller engines instead of one big engine, which increases the ship's safety. Low-speed diesel engines are usually very large in size and mostly used to power ships . There are two different types of low-speed engines that are commonly used: Two-stroke engines with a crosshead, and four-stroke engines with
4182-493: The crankshaft, block, pistons, and connecting rods, the short block engines were stored temporarily and completed the remaining assembly in early 2010 for use in trucks and buses of in model year 2010. These engines were alleged not to comply with stricter 2010 emission standards. Diesel engine The diesel engine , named after the German engineer Rudolf Diesel , is an internal combustion engine in which ignition of
SECTION 50
#17327797801644264-424: The cylinder) and can easily be replaced, which Navistar claims enables simpler restoration to original specifications. The wet-sleeve design also allows the engine to be rebuilt easily to factory specifications, sometimes without even removing the engine from the vehicle. This design is opposed to parent bore engines, where the cylinder walls are machined out of the bores cast into the block. International states that
4346-616: The diesel engine is Diesel's "very own work" and that any "Diesel myth" is " falsification of history ". Diesel sought out firms and factories that would build his engine. With the help of Moritz Schröter and Max Gutermuth [ de ] , he succeeded in convincing both Krupp in Essen and the Maschinenfabrik Augsburg . Contracts were signed in April 1893, and in early summer 1893, Diesel's first prototype engine
4428-417: The efficiency is much lower, with efficiencies of up to 43% for passenger car engines, up to 45% for large truck and bus engines, and up to 55% for large two-stroke marine engines. The average efficiency over a motor vehicle driving cycle is lower than the diesel engine's peak efficiency (for example, a 37% average efficiency for an engine with a peak efficiency of 44%). That is because the fuel efficiency of
4510-553: The engines use International's Electro-Hydraulic Generation Two (G2) unit injectors. From the time the United States Environmental Protection Agency 's 2007 emissions regulations went into effect, the Navistar DT engines were available in three configurations in what turned out to be their final generation prior to discontinuation. These variants were renamed to conform to International's then-new MaxxForce engine brand. The engines were also available for defense applications under
4592-408: The environment – by the rising piston. (This is only approximately true since there will be some heat exchange with the cylinder walls .) During this compression, the volume is reduced, the pressure and temperature both rise. At or slightly before 2 (TDC) fuel is injected and burns in the compressed hot air. Chemical energy is released and this constitutes an injection of thermal energy (heat) into
4674-406: The exhaust (known as exhaust gas recirculation , "EGR"). Air is inducted into the chamber during the intake stroke, and compressed during the compression stroke. This increases air temperature inside the cylinder so that atomised diesel fuel injected into the combustion chamber ignites. With the fuel being injected into the air just before combustion, the dispersion of fuel is uneven; this is called
4756-463: The four-stroke cycle. This is due to several factors, such as the two-stroke design's narrow powerband which is not particularly suitable for automotive use and the necessity for complicated and expensive built-in lubrication systems and scavenging measures. The cost effectiveness (and proportion of added weight) of these technologies has less of an impact on larger, more expensive engines, while engines intended for shipping or stationary use can be run at
4838-616: The fuel and forced it into the engine through a nozzle (a similar principle to an aerosol spray). The nozzle opening was closed by a pin valve actuated by the camshaft . Although the engine was also required to drive an air compressor used for air-blast injection, the efficiency was nonetheless better than other combustion engines of the time. However the system was heavy and it was slow to react to changing torque demands, making it unsuitable for road vehicles. A unit injector system, also known as "Pumpe-Düse" ( pump-nozzle in German) combines
4920-700: The fuel injection transformed the direct injection engine by allowing much greater control over the combustion. Common rail (CR) direct injection systems do not have the fuel metering, pressure-raising and delivery functions in a single unit, as in the case of a Bosch distributor-type pump, for example. A high-pressure pump supplies the CR. The requirements of each cylinder injector are supplied from this common high pressure reservoir of fuel. An Electronic Diesel Control (EDC) controls both rail pressure and injections depending on engine operating conditions. The injectors of older CR systems have solenoid -driven plungers for lifting
5002-405: The fuel pump measures out the correct amount of fuel and determines the timing of each injection. These engines use injectors that are very precise spring-loaded valves that open and close at a specific fuel pressure. Separate high-pressure fuel lines connect the fuel pump with each cylinder. Fuel volume for each single combustion is controlled by a slanted groove in the plunger which rotates only
SECTION 60
#17327797801645084-461: The gaseous fuel. Such engines do not require any type of spark ignition and operate similar to regular diesel engines. The fuel is injected at high pressure into either the combustion chamber , "swirl chamber" or "pre-chamber," unlike petrol engines where the fuel is often added in the inlet manifold or carburetor . Engines where the fuel is injected into the main combustion chamber are called direct injection (DI) engines, while those which use
5166-419: The injection needle, whilst newer CR injectors use plungers driven by piezoelectric actuators that have less moving mass and therefore allow even more injections in a very short period of time. Early common rail system were controlled by mechanical means. The injection pressure of modern CR systems ranges from 140 MPa to 270 MPa. An indirect diesel injection system (IDI) engine delivers fuel into
5248-553: The injector and fuel pump into a single component, which is positioned above each cylinder. This eliminates the high-pressure fuel lines and achieves a more consistent injection. Under full load, the injection pressure can reach up to 220 MPa. Unit injectors are operated by a cam and the quantity of fuel injected is controlled either mechanically (by a rack or lever) or electronically. Due to increased performance requirements, unit injectors have been largely replaced by common rail injection systems. The average diesel engine has
5330-653: The late 1930s; a smaller engine using a similar two-stroke design was developed by engineers at GM Research, which led to the first 6-71 , manufactured in 1938. To know the series model one can find out by checking the layout of the overall engine. In 1998, the EPA announced fines totaling $ 83.4 million against Detroit Diesel and six other diesel engine manufacturers, the largest fine to date, which evaded testing by shutting down emissions controls during highway driving while appearing to comply with lab testing. The manufacturers also agreed to spend more than $ 1 billion to correct
5412-476: The mistake that he made; his rational heat motor was supposed to utilise a constant temperature cycle (with isothermal compression) that would require a much higher level of compression than that needed for compression ignition. Diesel's idea was to compress the air so tightly that the temperature of the air would exceed that of combustion. However, such an engine could never perform any usable work. In his 1892 US patent (granted in 1895) #542846, Diesel describes
5494-534: The past, however electronic governors are more common on modern engines. Mechanical governors are usually driven by the engine's accessory belt or a gear-drive system and use a combination of springs and weights to control fuel delivery relative to both load and speed. Electronically governed engines use an electronic control unit (ECU) or electronic control module (ECM) to control the fuel delivery. The ECM/ECU uses various sensors (such as engine speed signal, intake manifold pressure and fuel temperature) to determine
5576-480: The piston (not shown on the P-V indicator diagram). When combustion is complete the combustion gases expand as the piston descends further; the high pressure in the cylinder drives the piston downward, supplying power to the crankshaft. As well as the high level of compression allowing combustion to take place without a separate ignition system, a high compression ratio greatly increases the engine's efficiency. Increasing
5658-403: The piston-cylinder combination between 2 and 4. The difference between these two increments of work is the indicated work output per cycle, and is represented by the area enclosed by the pV loop. The adiabatic expansion is in a higher pressure range than that of the compression because the gas in the cylinder is hotter during expansion than during compression. It is for this reason that the loop has
5740-417: The pollutants can be removed from the exhaust gas using exhaust gas treatment technology. Road vehicle diesel engines have no sulfur dioxide emissions, because motor vehicle diesel fuel has been sulfur-free since 2003. Helmut Tschöke argues that particulate matter emitted from motor vehicles has negative impacts on human health. The particulate matter in diesel exhaust emissions is sometimes classified as
5822-408: The pressure falls to that of the surrounding air, but the loss of efficiency caused by this unresisted expansion is justified by the practical difficulties involved in recovering it (the engine would have to be much larger). After the opening of the exhaust valve, the exhaust stroke follows, but this (and the following induction stroke) are not shown on the diagram. If shown, they would be represented by
5904-584: The problem. The trucks used engine ECU software to engage pollution controls during the 20-minute lab tests to verify compliance with the Clean Air Act, but then disable the emissions controls during normal highway cruising, emitting up to three times the maximum allowed NOx pollution. In 2016, Detroit Diesel agreed to pay U.S.$ 28.5 million to resolve violations of the U.S. federal Clean Air Act. The company sold 7,786 heavy-duty diesel engines, which were assembled approximately 80% complete in 2009, including
5986-544: The test bench. In the January 1896 report, this was considered a success. In February 1896, Diesel considered supercharging the third prototype. Imanuel Lauster , who was ordered to draw the third prototype " Motor 250/400 ", had finished the drawings by 30 April 1896. During summer that year the engine was built, it was completed on 6 October 1896. Tests were conducted until early 1897. First public tests began on 1 February 1897. Moritz Schröter 's test on 17 February 1897
6068-890: The timing of the start of injection of fuel into the cylinder is similar to controlling the ignition timing in a petrol engine. It is therefore a key factor in controlling the power output, fuel consumption and exhaust emissions. There are several different ways of categorising diesel engines, as outlined in the following sections. Günter Mau categorises diesel engines by their rotational speeds into three groups: High-speed engines are used to power trucks (lorries), buses , tractors , cars , yachts , compressors , pumps and small electrical generators . As of 2018, most high-speed engines have direct injection . Many modern engines, particularly in on-highway applications, have common rail direct injection . On bigger ships, high-speed diesel engines are often used for powering electric generators. The highest power output of high-speed diesel engines
6150-404: The uneven thickness of the cylinder walls causes the cylinders to become out of round during thermal expansion, increasing wear. Also, damage to the cylinder wall requires more extensive work to repair. From 1984 until late 1995, the DT engines used a Bosch pump-line-nozzle (PLN) mechanical direct fuel injection system. 1984 through 1992 DTs used a Bosch MW style pump, while the 1993-1995s used
6232-424: The wet-sleeve design enhances durability because the consistent wall thickness of the sleeve allows for consistent heat transfer, ensuring the cylinders stay round during thermal expansion. Additionally, they state that the hardened cylinder sleeve is more durable and wear resistant than a softer, cast-in wall. Also, the replaceable cylinder sleeves protect the block from damage (e.g. in case of foreign objects entering
6314-532: Was a student at the "Polytechnikum" in Munich , attended the lectures of Carl von Linde . Linde explained that steam engines are capable of converting just 6–10% of the heat energy into work, but that the Carnot cycle allows conversion of much more of the heat energy into work by means of isothermal change in condition. According to Diesel, this ignited the idea of creating a highly efficient engine that could work on
6396-488: Was attacked and criticised over several years. Critics claimed that Diesel never invented a new motor and that the invention of the diesel engine is fraud. Otto Köhler and Emil Capitaine [ de ] were two of the most prominent critics of Diesel's time. Köhler had published an essay in 1887, in which he describes an engine similar to the engine Diesel describes in his 1893 essay. Köhler figured that such an engine could not perform any work. Emil Capitaine had built
6478-477: Was built in Augsburg . On 10 August 1893, the first ignition took place, the fuel used was petrol. In winter 1893/1894, Diesel redesigned the existing engine, and by 18 January 1894, his mechanics had converted it into the second prototype. During January that year, an air-blast injection system was added to the engine's cylinder head and tested. Friedrich Sass argues that, it can be presumed that Diesel copied
6560-562: Was discontinued for 2015, with some buses being built as 2016 models. It continued in the RE for the 2016 model. It was announced on July 22, 2016, that the RE will be produced with the Cummins ISL9 and the DT offering was going away completely. Detroit Diesel Detroit Diesel Corporation (DDC) is an American diesel engine manufacturer headquartered in Detroit, Michigan . It is
6642-487: Was the Winton Engine Company, founded by Alexander Winton in 1912; Winton Engine began producing diesel engines in fall 1913. After Charles F. Kettering purchased two Winton diesels for his yacht, General Motors acquired the company in 1930 along with Electro Motive Company , Winton's primary client. Research initiated by Kettering led to the development and release of the EMD 567 locomotive engine in
6724-424: Was the main test of Diesel's engine. The engine was rated 13.1 kW with a specific fuel consumption of 324 g·kW ·h , resulting in an effective efficiency of 26.2%. By 1898, Diesel had become a millionaire. The characteristics of a diesel engine are The diesel internal combustion engine differs from the gasoline powered Otto cycle by using highly compressed hot air to ignite the fuel rather than using
#163836