Delta Pavonis , Latinized from δ Pavonis, is a single star in the southern constellation of Pavo . It has an apparent visual magnitude of 3.56, making it a fourth-magnitude star that is visible to the naked eye from the southern hemisphere. Parallax measurements yield an estimated distance of 19.89 light-years (6.10 parsecs ) from Earth . This makes it one of the nearest bright stars to the Solar System. It is approaching the Sun with a radial velocity of −23.5 km/s, and is predicted to come as close as 17.8 light-years in around 49,200 years.
113-505: This object is a subgiant of spectral type G8 IV; it will stop fusing hydrogen at its core relatively soon, starting the process of becoming a red giant . Hence, Delta Pavonis is 24% brighter than the Sun, but the effective temperature of its outer atmosphere is less: 5,571 K. Its mass is 105% of Sol's mass , with a mean radius 120% of Sol's radius . Delta Pavonis's surface convection zone extends downward to about 43.1% of
226-423: A degenerate helium core before this point and that will cause the star to enter the red giant branch as for lower mass stars. The core contraction and envelope expansion is very rapid, taking only a few million years. In this time the temperature of the star will cool from its main sequence value of 6,000–30,000 K to around 5,000 K. Relatively few stars are seen in this stage of their evolution and there
339-515: A distance of one astronomical unit (AU) from the Sun (that is, at or near Earth's orbit). Sunlight on the surface of Earth is attenuated by Earth's atmosphere , so that less power arrives at the surface (closer to 1,000 W/m ) in clear conditions when the Sun is near the zenith . Sunlight at the top of Earth's atmosphere is composed (by total energy) of about 50% infrared light, 40% visible light, and 10% ultraviolet light. The atmosphere filters out over 70% of solar ultraviolet, especially at
452-403: A fairly small amount of power being generated per cubic metre . Theoretical models of the Sun's interior indicate a maximum power density, or energy production, of approximately 276.5 watts per cubic metre at the center of the core, which, according to Karl Kruszelnicki , is about the same power density inside a compost pile . The fusion rate in the core is in a self-correcting equilibrium:
565-414: A few millimeters. Re-emission happens in a random direction and usually at slightly lower energy. With this sequence of emissions and absorptions, it takes a long time for radiation to reach the Sun's surface. Estimates of the photon travel time range between 10,000 and 170,000 years. In contrast, it takes only 2.3 seconds for neutrinos , which account for about 2% of the total energy production of
678-401: A granular appearance called the solar granulation at the smallest scale and supergranulation at larger scales. Turbulent convection in this outer part of the solar interior sustains "small-scale" dynamo action over the near-surface volume of the Sun. The Sun's thermal columns are Bénard cells and take the shape of roughly hexagonal prisms. The visible surface of the Sun, the photosphere,
791-403: A larger helium core before leaving the main sequence, hence lower mass stars show a hook at the start of the subgiant branch. The helium core mass of a Z=0.001 (extreme population II ) 1 M ☉ star at the end of the main sequence is nearly double that of a Z=0.02 ( population I ) star. The low metallicity star is also over 1,000 K hotter and over twice as luminous at the start of
904-512: A long-period orbit around Delta Pavonis is suspected, as of 2021, based on astrometric data. A study in 2023 detected a trend in the star's radial velocity, which may indicate the presence of a planetary companion, supporting the previous astrometric result. Such a planet would, at minimum, orbit with a period of 37 years at a distance of 11.1 AU , and have a mass at least 69 M 🜨 ( 0.22 M J ). Delta Pavonis has been identified by Maggie Turnbull and Jill Tarter of
1017-520: A period known as the Maunder minimum . This coincided in time with the era of the Little Ice Age , when Europe experienced unusually cold temperatures. Earlier extended minima have been discovered through analysis of tree rings and appear to have coincided with lower-than-average global temperatures. The temperature of the photosphere is approximately 6,000 K, whereas the temperature of
1130-485: A phenomenon described by Hale's law . During the solar cycle's declining phase, energy shifts from the internal toroidal magnetic field to the external poloidal field, and sunspots diminish in number and size. At solar-cycle minimum, the toroidal field is, correspondingly, at minimum strength, sunspots are relatively rare, and the poloidal field is at its maximum strength. With the rise of the next 11-year sunspot cycle, differential rotation shifts magnetic energy back from
1243-453: A pronounced subgiant branch in their color–magnitude diagrams . ω Centauri actually shows several separate subgiant branches for reasons that are still not fully understood, but appear to represent stellar populations of different ages within the cluster. Several types of variable star include subgiants: Subgiants more massive than the sun cross the Cepheid instability strip , called
SECTION 10
#17327803749311356-418: A region above (i.e. more luminous than) the main sequence stars and below the giant stars. There are relatively few on most H–R diagrams because the time spent as a subgiant is much less than the time spent on the main sequence or as a giant star. Hot, class B, subgiants are barely distinguishable from the main sequence stars, while cooler subgiants fill a relatively large gap between cool main sequence stars and
1469-473: A result, the outward-flowing solar wind stretches the interplanetary magnetic field outward, forcing it into a roughly radial structure. For a simple dipolar solar magnetic field, with opposite hemispherical polarities on either side of the solar magnetic equator, a thin current sheet is formed in the solar wind. At great distances, the rotation of the Sun twists the dipolar magnetic field and corresponding current sheet into an Archimedean spiral structure called
1582-410: A slightly higher rate of fusion would cause the core to heat up more and expand slightly against the weight of the outer layers, reducing the density and hence the fusion rate and correcting the perturbation ; and a slightly lower rate would cause the core to cool and shrink slightly, increasing the density and increasing the fusion rate and again reverting it to its present rate. The radiative zone
1695-458: A stage known as the red-giant branch . The transition from the main sequence to the red giant branch is known as the subgiant branch. The shape and duration of the subgiant branch varies for stars of different masses, due to differences in the internal configuration of the star. Stars less massive than about 0.4 M ☉ are convective throughout most of the star. These stars continue to fuse hydrogen in their cores until essentially
1808-501: A subgiant on its first crossing but was subsequently determined to be on its second crossing Planets in orbit around subgiant stars include Kappa Andromedae b , Kepler-36 b and c, TOI-4603 b and HD 224693 b . Sun The Sun is the star at the center of the Solar System . It is a massive, nearly perfect sphere of hot plasma , heated to incandescence by nuclear fusion reactions in its core, radiating
1921-406: A transition layer, the tachocline . This is a region where the sharp regime change between the uniform rotation of the radiative zone and the differential rotation of the convection zone results in a large shear between the two—a condition where successive horizontal layers slide past one another. Presently, it is hypothesized that a magnetic dynamo, or solar dynamo , within this layer generates
2034-570: Is 1 astronomical unit ( 1.496 × 10 km ) or about 8 light-minutes away. Its diameter is about 1,391,400 km ( 864,600 mi ), 109 times that of Earth. Its mass is about 330,000 times that of Earth, making up about 99.86% of the total mass of the Solar System. Roughly three-quarters of the Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%), with much smaller quantities of heavier elements, including oxygen , carbon , neon , and iron . The Sun
2147-494: Is a G-type main-sequence star (G2V), informally called a yellow dwarf , though its light is actually white. It formed approximately 4.6 billion years ago from the gravitational collapse of matter within a region of a large molecular cloud . Most of this matter gathered in the center, whereas the rest flattened into an orbiting disk that became the Solar System . The central mass became so hot and dense that it eventually initiated nuclear fusion in its core . Every second,
2260-401: Is a scatter plot of stars with temperature or spectral type on the x-axis and absolute magnitude or luminosity on the y-axis. H–R diagrams of all stars, show a clear diagonal main sequence band containing the majority of stars, a significant number of red giants (and white dwarfs if sufficiently faint stars are observed), with relatively few stars in other parts of the diagram. Subgiants occupy
2373-532: Is a stage in the evolution of low to intermediate mass stars. Stars with a subgiant spectral type are not always on the evolutionary subgiant branch, and vice versa. For example, the stars FK Com and 31 Com both lie in the Hertzsprung Gap and are likely evolutionary subgiants, but both are often assigned giant luminosity classes. The spectral classification can be influenced by metallicity, rotation, unusual chemical peculiarities, etc. The initial stages of
SECTION 20
#17327803749312486-534: Is an apparent lack in the H–R diagram known as the Hertzsprung gap . It is most obvious in clusters from a few hundred million to a few billion years old. Beyond about 8–12 M ☉ , depending on metallicity, stars have hot massive convective cores on the main sequence due to CNO cycle fusion. Hydrogen shell fusion and subsequent core helium fusion begin quickly following core hydrogen exhaustion, before
2599-643: Is by far the brightest object in the Earth's sky , with an apparent magnitude of −26.74. This is about 13 billion times brighter than the next brightest star, Sirius , which has an apparent magnitude of −1.46. One astronomical unit (about 150 million kilometres; 93 million miles) is defined as the mean distance between the centres of the Sun and the Earth. The instantaneous distance varies by about ± 2.5 million km or 1.55 million miles as Earth moves from perihelion on ~ January 3rd to aphelion on ~ July 4th. At its average distance, light travels from
2712-436: Is defined to begin at the distance where the flow of the solar wind becomes superalfvénic —that is, where the flow becomes faster than the speed of Alfvén waves, at approximately 20 solar radii ( 0.1 AU ). Turbulence and dynamic forces in the heliosphere cannot affect the shape of the solar corona within, because the information can only travel at the speed of Alfvén waves. The solar wind travels outward continuously through
2825-402: Is facilitated by the full ionization of helium in the transition region, which significantly reduces radiative cooling of the plasma. The transition region does not occur at a well-defined altitude, but forms a kind of nimbus around chromospheric features such as spicules and filaments , and is in constant, chaotic motion. The transition region is not easily visible from Earth's surface, but
2938-409: Is only 84% of what it was in the protostellar phase (before nuclear fusion in the core started). In the future, helium will continue to accumulate in the core, and in about 5 billion years this gradual build-up will eventually cause the Sun to exit the main sequence and become a red giant . The chemical composition of the photosphere is normally considered representative of the composition of
3051-505: Is plotted for a group of stars which all have the same age, such as a cluster, the subgiant branch may be visible as a band of stars between the main sequence turnoff point and the red giant branch. The subgiant branch is only visible if the cluster is sufficiently old that 1–8 M ☉ stars have evolved away from the main sequence, which requires several billion years. Globular clusters such as ω Centauri and old open clusters such as M67 are sufficiently old that they show
3164-441: Is readily observable from space by instruments sensitive to extreme ultraviolet . The corona is the next layer of the Sun. The low corona, near the surface of the Sun, has a particle density around 10 m to 10 m . The average temperature of the corona and solar wind is about 1,000,000–2,000,000 K; however, in the hottest regions it is 8,000,000–20,000,000 K. Although no complete theory yet exists to account for
3277-541: Is still below the Schönberg–Chandrasekhar limit , but hydrogen shell fusion quickly increases the mass of the core beyond that limit. More-massive stars already have cores above the Schönberg–Chandrasekhar mass when they leave the main sequence. The exact initial mass at which stars will show a hook and at which they will leave the main sequence with cores above the Schönberg–Chandrasekhar limit depend on
3390-410: Is strongly attenuated by Earth's ozone layer , so that the amount of UV varies greatly with latitude and has been partially responsible for many biological adaptations, including variations in human skin color . High-energy gamma ray photons initially released with fusion reactions in the core are almost immediately absorbed by the solar plasma of the radiative zone, usually after traveling only
3503-422: Is suggested by a high abundance of heavy elements in the Solar System, such as gold and uranium , relative to the abundances of these elements in so-called Population II , heavy-element-poor, stars. The heavy elements could most plausibly have been produced by endothermic nuclear reactions during a supernova, or by transmutation through neutron absorption within a massive second-generation star. The Sun
Delta Pavonis - Misplaced Pages Continue
3616-470: Is tens to hundreds of kilometers thick, and is slightly less opaque than air on Earth. Because the upper part of the photosphere is cooler than the lower part, an image of the Sun appears brighter in the center than on the edge or limb of the solar disk, in a phenomenon known as limb darkening . The spectrum of sunlight has approximately the spectrum of a black-body radiating at 5,772 K (9,930 °F), interspersed with atomic absorption lines from
3729-437: Is the layer below which the Sun becomes opaque to visible light. Photons produced in this layer escape the Sun through the transparent solar atmosphere above it and become solar radiation, sunlight. The change in opacity is due to the decreasing amount of H ions , which absorb visible light easily. Conversely, the visible light perceived is produced as electrons react with hydrogen atoms to produce H ions. The photosphere
3842-424: Is the most prominent variation in which the number and size of sunspots waxes and wanes. The solar magnetic field extends well beyond the Sun itself. The electrically conducting solar wind plasma carries the Sun's magnetic field into space, forming what is called the interplanetary magnetic field . In an approximation known as ideal magnetohydrodynamics , plasma particles only move along magnetic field lines. As
3955-531: Is the only region of the Sun that produces an appreciable amount of thermal energy through fusion; 99% of the Sun's power is generated in the innermost 24% of its radius, and almost no fusion occurs beyond 30% of the radius. The rest of the Sun is heated by this energy as it is transferred outward through many successive layers, finally to the solar photosphere where it escapes into space through radiation (photons) or advection (massive particles). The proton–proton chain occurs around 9.2 × 10 times each second in
4068-420: Is the thickest layer of the Sun, at 0.45 solar radii. From the core out to about 0.7 solar radii , thermal radiation is the primary means of energy transfer. The temperature drops from approximately 7 million to 2 million kelvins with increasing distance from the core. This temperature gradient is less than the value of the adiabatic lapse rate and hence cannot drive convection, which explains why
4181-444: Is theorized to become a super dense black dwarf , giving off negligible energy. The English word sun developed from Old English sunne . Cognates appear in other Germanic languages , including West Frisian sinne , Dutch zon , Low German Sünn , Standard German Sonne , Bavarian Sunna , Old Norse sunna , and Gothic sunnō . All these words stem from Proto-Germanic * sunnōn . This
4294-538: Is ultimately related to the word for sun in other branches of the Indo-European language family, though in most cases a nominative stem with an l is found, rather than the genitive stem in n , as for example in Latin sōl , ancient Greek ἥλιος ( hēlios ), Welsh haul and Czech slunce , as well as (with *l > r ) Sanskrit स्वर् ( svár ) and Persian خور ( xvar ). Indeed,
4407-402: Is wave heating, in which sound, gravitational or magnetohydrodynamic waves are produced by turbulence in the convection zone. These waves travel upward and dissipate in the corona, depositing their energy in the ambient matter in the form of heat. The other is magnetic heating, in which magnetic energy is continuously built up by photospheric motion and released through magnetic reconnection in
4520-547: The Alfvén surface , the boundary separating the corona from the solar wind, defined as where the coronal plasma's Alfvén speed and the large-scale solar wind speed are equal. During the flyby, Parker Solar Probe passed into and out of the corona several times. This proved the predictions that the Alfvén critical surface is not shaped like a smooth ball, but has spikes and valleys that wrinkle its surface. The Sun emits light across
4633-524: The Parker spiral . Sunspots are visible as dark patches on the Sun's photosphere and correspond to concentrations of magnetic field where convective transport of heat is inhibited from the solar interior to the surface. As a result, sunspots are slightly cooler than the surrounding photosphere, so they appear dark. At a typical solar minimum , few sunspots are visible, and occasionally none can be seen at all. Those that do appear are at high solar latitudes. As
Delta Pavonis - Misplaced Pages Continue
4746-523: The SETI Institute as the "Best SETI target" among the 100 closest G-type stars . Properties in its favor include a high metallicity, minimal level of magnetic activity , low rotation rate, and kinematic membership in the thin disk population of the Milky Way . Gas giants orbiting in, near, or through a star's habitable zone may destabilize the orbits of terrestrial planets in that zone;
4859-478: The Sun and obvious giant stars such as Aldebaran , although less numerous than either the main sequence or the giant stars. The Yerkes spectral classification system is a two-dimensional scheme that uses a letter and number combination to denote that temperature of a star (e.g. A5 or M1) and a Roman numeral to indicate the luminosity relative to other stars of the same temperature. Luminosity class IV stars are
4972-410: The corona , and the heliosphere . The coolest layer of the Sun is a temperature minimum region extending to about 500 km above the photosphere, and has a temperature of about 4,100 K . This part of the Sun is cool enough to allow for the existence of simple molecules such as carbon monoxide and water. The chromosphere, transition region, and corona are much hotter than the surface of
5085-413: The first crossing since they may cross the strip again later on a blue loop . In the 2 – 3 M ☉ range, this includes Delta Scuti variables such as β Cas . At higher masses the stars would pulsate as Classical Cepheid variables while crossing the instability strip, but massive subgiant evolution is very rapid and it is difficult to detect examples. SV Vulpeculae has been proposed as
5198-614: The l -stem survived in Proto-Germanic as well, as * sōwelan , which gave rise to Gothic sauil (alongside sunnō ) and Old Norse prosaic sól (alongside poetic sunna ), and through it the words for sun in the modern Scandinavian languages: Swedish and Danish sol , Icelandic sól , etc. The principal adjectives for the Sun in English are sunny for sunlight and, in technical contexts, solar ( / ˈ s oʊ l ər / ), from Latin sol . From
5311-428: The photosphere . For the purpose of measurement, the Sun's radius is considered to be the distance from its center to the edge of the photosphere, the apparent visible surface of the Sun. By this measure, the Sun is a near-perfect sphere with an oblateness estimated at 9 millionths, which means that its polar diameter differs from its equatorial diameter by only 10 kilometers (6.2 mi). The tidal effect of
5424-444: The visible spectrum , so its color is white , with a CIE color-space index near (0.3, 0.3), when viewed from space or when the Sun is high in the sky. The Solar radiance per wavelength peaks in the green portion of the spectrum when viewed from space. When the Sun is very low in the sky, atmospheric scattering renders the Sun yellow, red, orange, or magenta, and in rare occasions even green or blue . Some cultures mentally picture
5537-465: The Greek helios comes the rare adjective heliac ( / ˈ h iː l i æ k / ). In English, the Greek and Latin words occur in poetry as personifications of the Sun, Helios ( / ˈ h iː l i ə s / ) and Sol ( / ˈ s ɒ l / ), while in science fiction Sol may be used to distinguish the Sun from other stars. The term sol with a lowercase s is used by planetary astronomers for
5650-446: The Solar System . Long-term secular change in sunspot number is thought, by some scientists, to be correlated with long-term change in solar irradiance, which, in turn, might influence Earth's long-term climate. The solar cycle influences space weather conditions, including those surrounding Earth. For example, in the 17th century, the solar cycle appeared to have stopped entirely for several decades; few sunspots were observed during
5763-443: The Sun as yellow and some even red; the cultural reasons for this are debated. The Sun is classed as a G2 star, meaning it is a G-type star , with 2 indicating its surface temperature is in the second range of the G class. The solar constant is the amount of power that the Sun deposits per unit area that is directly exposed to sunlight. The solar constant is equal to approximately 1,368 W/m (watts per square meter) at
SECTION 50
#17327803749315876-424: The Sun extends from the center to about 20–25% of the solar radius. It has a density of up to 150 g/cm (about 150 times the density of water) and a temperature of close to 15.7 million kelvin (K). By contrast, the Sun's surface temperature is about 5800 K . Recent analysis of SOHO mission data favors the idea that the core is rotating faster than the radiative zone outside it. Through most of
5989-438: The Sun into a red giant . This process will make the Sun large enough to render Earth uninhabitable approximately five billion years from the present. After the red giant phase, models suggest the Sun will shed its outer layers and become a dense type of cooling star (a white dwarf ), and no longer produce energy by fusion, but will still glow and give off heat from its previous fusion for perhaps trillions of years. After that, it
6102-413: The Sun's magnetic field . The Sun's convection zone extends from 0.7 solar radii (500,000 km) to near the surface. In this layer, the solar plasma is not dense or hot enough to transfer the heat energy of the interior outward via radiation. Instead, the density of the plasma is low enough to allow convective currents to develop and move the Sun's energy outward towards its surface. Material heated at
6215-398: The Sun's core by radiation rather than by convection (see Radiative zone below), so the fusion products are not lifted outward by heat; they remain in the core, and gradually an inner core of helium has begun to form that cannot be fused because presently the Sun's core is not hot or dense enough to fuse helium. In the current photosphere, the helium fraction is reduced, and the metallicity
6328-437: The Sun's core fuses about 600 billion kilograms (kg) of hydrogen into helium and converts 4 billion kg of matter into energy . About 4 to 7 billion years from now, when hydrogen fusion in the Sun's core diminishes to the point where the Sun is no longer in hydrostatic equilibrium , its core will undergo a marked increase in density and temperature which will cause its outer layers to expand, eventually transforming
6441-403: The Sun's horizon to Earth's horizon in about 8 minutes and 20 seconds, while light from the closest points of the Sun and Earth takes about two seconds less. The energy of this sunlight supports almost all life on Earth by photosynthesis , and drives Earth's climate and weather. The Sun does not have a definite boundary, but its density decreases exponentially with increasing height above
6554-499: The Sun's life, energy has been produced by nuclear fusion in the core region through the proton–proton chain ; this process converts hydrogen into helium. Currently, 0.8% of the energy generated in the Sun comes from another sequence of fusion reactions called the CNO cycle ; the proportion coming from the CNO cycle is expected to increase as the Sun becomes older and more luminous. The core
6667-551: The Sun's life, they account for 74.9% and 23.8%, respectively, of the mass of the Sun in the photosphere. All heavier elements, called metals in astronomy, account for less than 2% of the mass, with oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%) being the most abundant. The Sun's original chemical composition was inherited from the interstellar medium out of which it formed. Originally it would have been about 71.1% hydrogen, 27.4% helium, and 1.5% heavier elements. The hydrogen and most of
6780-438: The Sun, to reach the surface. Because energy transport in the Sun is a process that involves photons in thermodynamic equilibrium with matter , the time scale of energy transport in the Sun is longer, on the order of 30,000,000 years. This is the time it would take the Sun to return to a stable state if the rate of energy generation in its core were suddenly changed. Electron neutrinos are released by fusion reactions in
6893-402: The Sun. The reason is not well understood, but evidence suggests that Alfvén waves may have enough energy to heat the corona. Above the temperature minimum layer is a layer about 2,000 km thick, dominated by a spectrum of emission and absorption lines. It is called the chromosphere from the Greek root chroma , meaning color, because the chromosphere is visible as a colored flash at
SECTION 60
#17327803749317006-486: The beginning and end of total solar eclipses. The temperature of the chromosphere increases gradually with altitude, ranging up to around 20,000 K near the top. In the upper part of the chromosphere helium becomes partially ionized . Above the chromosphere, in a thin (about 200 km ) transition region, the temperature rises rapidly from around 20,000 K in the upper chromosphere to coronal temperatures closer to 1,000,000 K . The temperature increase
7119-404: The central core continues to fuse without interruption. The star is considered to be a subgiant at this point although there is little change visible from the exterior. As the fusing hydrogen shell converts its mass into helium the convective effect separates the helium towards the core where it very slowly increases the mass of the non-fusing core of nearly pure helium plasma. As this takes place
7232-460: The core, but, unlike photons, they rarely interact with matter, so almost all are able to escape the Sun immediately. However, measurements of the number of these neutrinos produced in the Sun are lower than theories predict by a factor of 3. In 2001, the discovery of neutrino oscillation resolved the discrepancy: the Sun emits the number of electron neutrinos predicted by the theory, but neutrino detectors were missing 2 ⁄ 3 of them because
7345-501: The core, converting about 3.7 × 10 protons into alpha particles (helium nuclei) every second (out of a total of ~8.9 × 10 free protons in the Sun), or about 6.2 × 10 kg/s . However, each proton (on average) takes around 9 billion years to fuse with another using the PP chain. Fusing four free protons (hydrogen nuclei) into a single alpha particle (helium nucleus) releases around 0.7% of
7458-401: The corona reaches 1,000,000–2,000,000 K . The high temperature of the corona shows that it is heated by something other than direct heat conduction from the photosphere. It is thought that the energy necessary to heat the corona is provided by turbulent motion in the convection zone below the photosphere, and two main mechanisms have been proposed to explain coronal heating. The first
7571-400: The duration of a solar day on another planet such as Mars . The astronomical symbol for the Sun is a circle with a center dot, [REDACTED] . It is used for such units as M ☉ ( Solar mass ), R ☉ ( Solar radius ) and L ☉ ( Solar luminosity ). The scientific study of the Sun is called heliology . The Sun is a G-type main-sequence star that makes up about 99.86% of
7684-491: The energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies. It is by far the most important source of energy for life on Earth . The Sun has been an object of veneration in many cultures. It has been a central subject for astronomical research since antiquity . The Sun orbits the Galactic Center at a distance of 24,000 to 28,000 light-years . From Earth, it
7797-474: The entire star has been converted to helium, and they do not develop into subgiants. Stars of this mass have main-sequence lifetimes many times longer than the current age of the Universe. Stars with 40 percent the mass of the Sun and larger have non-convective cores with a strong temperature gradient from the centre outwards. When they exhaust hydrogen at the core of the star, the shell of hydrogen surrounding
7910-440: The envelope of the star and the luminosity stays approximately constant. The subgiant branch for these stars is short, horizontal, and heavily populated, as visible in very old clusters. After one to eight billion years, the helium core becomes too massive to support its own weight and becomes degenerate. Its temperature increases, the rate of fusion in the hydrogen shell increases, the outer layers become strongly convective, and
8023-563: The external poloidal dipolar magnetic field is near its dynamo-cycle minimum strength; but an internal toroidal quadrupolar field, generated through differential rotation within the tachocline, is near its maximum strength. At this point in the dynamo cycle, buoyant upwelling within the convective zone forces emergence of the toroidal magnetic field through the photosphere, giving rise to pairs of sunspots, roughly aligned east–west and having footprints with opposite magnetic polarities. The magnetic polarity of sunspot pairs alternates every solar cycle,
8136-404: The fused mass as energy, so the Sun releases energy at the mass–energy conversion rate of 4.26 billion kg/s (which requires 600 billion kg of hydrogen ), for 384.6 yottawatts ( 3.846 × 10 W ), or 9.192 × 10 megatons of TNT per second. The large power output of the Sun is mainly due to the huge size and density of its core (compared to Earth and objects on Earth), with only
8249-436: The fusing hydrogen shell gradually expands outward which increases the size of the outer shell of the star up to the subgiant size from two to ten times the original radius of the star when it was on the main sequence. The expansion of the outer layers of the star into the subgiant size nearly balances the increase energy generated by the hydrogen shell fusion causing the star to nearly maintain its surface temperature. This causes
8362-482: The heliosphere, forming the solar magnetic field into a spiral shape, until it impacts the heliopause more than 50 AU from the Sun. In December 2004, the Voyager 1 probe passed through a shock front that is thought to be part of the heliopause. In late 2012, Voyager 1 recorded a marked increase in cosmic ray collisions and a sharp drop in lower energy particles from the solar wind, which suggested that
8475-432: The helium in the Sun would have been produced by Big Bang nucleosynthesis in the first 20 minutes of the universe, and the heavier elements were produced by previous generations of stars before the Sun was formed, and spread into the interstellar medium during the final stages of stellar life and by events such as supernovae . Since the Sun formed, the main fusion process has involved fusing hydrogen into helium. Over
8588-429: The lack of detected radial velocity variation suggests that there are no such gas giants orbiting Delta Pavonis. However, observation has detected no artificial radio sources. Delta Pavonis, a close photometric match to the Sun, is the nearest solar analog that is not a member of a binary or multiple star system . Subgiant A subgiant is a star that is brighter than a normal main-sequence star of
8701-570: The luminosity increases at approximately the same effective temperature. The star is now on the Red-giant branch . Stars as massive and larger than the Sun have a convective core on the main sequence. They develop a more massive helium core, taking up a larger fraction of the star, before they exhaust the hydrogen in the entire convective region. Fusion in the star ceases entirely and the core begins to contract and increase in temperature. The entire star contracts and increases in temperature, with
8814-449: The mass of the Solar System. It has an absolute magnitude of +4.83, estimated to be brighter than about 85% of the stars in the Milky Way , most of which are red dwarfs . It is more massive than 95% of the stars within 7 pc (23 ly). The Sun is a Population I , or heavy-element-rich, star. Its formation approximately 4.6 billion years ago may have been triggered by shockwaves from one or more nearby supernovae . This
8927-488: The metallicity and the degree of overshooting in the convective core. Low metallicity causes the central part of even low mass cores to be convectively unstable, and overshooting causes the core to be larger when hydrogen becomes exhausted. Once the core exceeds the C–R limit, it can no longer remain in thermal equilibrium with the hydrogen shell. It contracts and the outer layers of the star expand and cool. The energy to expand
9040-444: The neutrinos had changed flavor by the time they were detected. The Sun has a stellar magnetic field that varies across its surface. Its polar field is 1–2 gauss (0.0001–0.0002 T ), whereas the field is typically 3,000 gauss (0.3 T) in features on the Sun called sunspots and 10–100 gauss (0.001–0.01 T) in solar prominences . The magnetic field varies in time and location. The quasi-periodic 11-year solar cycle
9153-400: The outer envelope causes the radiated luminosity to decrease. When the outer layers cool sufficiently, they become opaque and force convection to begin outside the fusing shell. The expansion stops and the radiated luminosity begins to increase, which is defined as the start of the red giant branch for these stars. Stars with an initial mass approximately 1–2 M ☉ can develop
9266-419: The past 4.6 billion years, the amount of helium and its location within the Sun has gradually changed. The proportion of helium within the core has increased from about 24% to about 60% due to fusion, and some of the helium and heavy elements have settled from the photosphere toward the center of the Sun because of gravity . The proportions of heavier elements are unchanged. Heat is transferred outward from
9379-414: The photospheric surface. Both coronal mass ejections and high-speed streams of solar wind carry plasma and the interplanetary magnetic field outward into the Solar System. The effects of solar activity on Earth include auroras at moderate to high latitudes and the disruption of radio communications and electric power . Solar activity is thought to have played a large role in the formation and evolution of
9492-455: The planets is weak and does not significantly affect the shape of the Sun. The Sun rotates faster at its equator than at its poles . This differential rotation is caused by convective motion due to heat transport and the Coriolis force due to the Sun's rotation. In a frame of reference defined by the stars, the rotational period is approximately 25.6 days at the equator and 33.5 days at
9605-473: The poles. Viewed from Earth as it orbits the Sun, the apparent rotational period of the Sun at its equator is about 28 days. Viewed from a vantage point above its north pole, the Sun rotates counterclockwise around its axis of spin. A survey of solar analogs suggest the early Sun was rotating up to ten times faster than it does today. This would have made the surface much more active, with greater X-ray and UV emission. Sun spots would have covered 5–30% of
9718-557: The poloidal to the toroidal field, but with a polarity that is opposite to the previous cycle. The process carries on continuously, and in an idealized, simplified scenario, each 11-year sunspot cycle corresponds to a change, then, in the overall polarity of the Sun's large-scale magnetic field. The Sun's magnetic field leads to many effects that are collectively called solar activity . Solar flares and coronal mass ejections tend to occur at sunspot groups. Slowly changing high-speed streams of solar wind are emitted from coronal holes at
9831-402: The presence of a planetary system, so Delta Pavonis has a greater than average probability of harboring planets. The age of Delta Pavonis is approximately 6.6 to 6.9 billion years, and is certainly in the 5 to 7 billion year range. It appears to be rotating slowly, with a projected rotational velocity of 0.32 kilometers per second. The existence of a Jupiter-mass gas giant on
9944-421: The presence of other heavy elements). The metallicity of Delta Pavonis is approximately This notation gives the logarithm of the iron-to-hydrogen ratio, relative to that of the Sun, meaning that Delta Pavonis's iron abundance is 214% of that of Sol. It is considered super metal-rich, and the high metallicity has slowed its evolution . Studies have shown a correlation between abundant heavy elements in stars, and
10057-469: The primary star of the δ Circini system , both class O stars with masses of over 20 M ☉ . This table shows the typical lifetimes on the main sequence (MS) and subgiant branch (SB), as well as any hook duration between core hydrogen exhaustion and the onset of shell burning, for stars with different initial masses, all at solar metallicity (Z = 0.02). Also shown are the helium core mass, surface effective temperature, radius, and luminosity at
10170-448: The primordial Solar System. Typically, the solar heavy-element abundances described above are measured both by using spectroscopy of the Sun's photosphere and by measuring abundances in meteorites that have never been heated to melting temperatures. These meteorites are thought to retain the composition of the protostellar Sun and are thus not affected by the settling of heavy elements. The two methods generally agree well. The core of
10283-470: The probe had passed through the heliopause and entered the interstellar medium , and indeed did so on August 25, 2012, at approximately 122 astronomical units (18 Tm) from the Sun. The heliosphere has a heliotail which stretches out behind it due to the Sun's peculiar motion through the galaxy. On April 28, 2021, NASA's Parker Solar Probe encountered the specific magnetic and particle conditions at 18.8 solar radii that indicated that it penetrated
10396-449: The radiated luminosity actually increasing despite the lack of fusion. This continues for several million years before the core becomes hot enough to ignite hydrogen in a shell, which reverses the temperature and luminosity increase and the star starts to expand and cool. This hook is generally defined as the end of the main sequence and the start of the subgiant branch in these stars. The core of stars below about 2 M ☉
10509-607: The rate of fusion increases. This causes stars to evolve slowly to higher luminosities as they age and broadens the main sequence band in the Hertzsprung–Russell diagram . Once a main sequence star ceases to fuse hydrogen in its core, the core begins to collapse under its own weight. This causes it to increase in temperature and hydrogen fuses in a shell outside the core, which provides more energy than core hydrogen burning. Low- and intermediate-mass stars expand and cool until at about 5,000 K they begin to increase in luminosity in
10622-415: The red giants. Below approximately spectral type K3 the region between the main sequence and red giants is entirely empty, with no subgiants. Stellar evolutionary tracks can be plotted on an H–R diagram. For a particular mass, these trace the position of a star throughout its life, and show a track from the initial main sequence position, along the subgiant branch, to the giant branch. When an H–R diagram
10735-406: The same spectral class , but not as bright as giant stars . The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution of a star . The term subgiant was first used in 1930 for class G and early K stars with absolute magnitudes between +2.5 and +4. These were noted as being part of a continuum of stars between obvious main-sequence stars such as
10848-437: The shorter wavelengths. Solar ultraviolet radiation ionizes Earth's dayside upper atmosphere, creating the electrically conducting ionosphere . Ultraviolet light from the Sun has antiseptic properties and can be used to sanitize tools and water. This radiation causes sunburn , and has other biological effects such as the production of vitamin D and sun tanning . It is the main cause of skin cancer . Ultraviolet light
10961-425: The solar cycle progresses toward its maximum , sunspots tend to form closer to the solar equator, a phenomenon known as Spörer's law . The largest sunspots can be tens of thousands of kilometers across. An 11-year sunspot cycle is half of a 22-year Babcock –Leighton dynamo cycle, which corresponds to an oscillatory exchange of energy between toroidal and poloidal solar magnetic fields. At solar-cycle maximum,
11074-463: The spectral class of the star to change very little in the lower end of this range of star mass. The subgiant surface area radiating the energy is so much larger the potential circumstellar habitable zone where planetary orbits will be in the range to form liquid water is shifted much further out into any planetary system. The surface area of a sphere is found as 4πr so a sphere with a radius of 2 R ☉ will release 400% as much energy at
11187-487: The star could reach the red giant branch. Such stars, for example early B main sequence stars, experience a brief and shortened subgiant branch before becoming supergiants . They may also be assigned a giant spectral luminosity class during this transition. In very massive O-class main sequence stars, the transition from main sequence to giant to supergiant occurs over a very narrow range of temperature and luminosity, sometimes even before core hydrogen fusion has ended, and
11300-450: The star's radius, but only contains 4.8% of the star's mass. Spectroscopic examination of Delta Pavonis shows that it has a higher abundance of elements heavier than helium ( metallicity ) than does the Sun. This value is typically given in terms of the ratio of iron (chemical symbol Fe) to hydrogen (H) in a star's atmosphere, relative to that in Sol's atmosphere (iron being a good proxy for
11413-416: The start and end of the subgiant branch for each star. The end of the subgiant branch is defined to be when the core becomes degenerate or when the luminosity starts to increase. In general, stars with lower metallicity are smaller and hotter than stars with higher metallicity. For subgiants, this is complicated by different ages and core masses at the main sequence turnoff . Low metallicity stars develop
11526-400: The subgiant branch in a star like the sun are prolonged with little external indication of the internal changes. One approach to identifying evolutionary subgiants include chemical abundances such as Lithium which is depleted in subgiants, and coronal emission strength. As the fraction of hydrogen remaining in the core of a main sequence star decreases, the core temperature increases and so
11639-433: The subgiant branch. The difference in temperature is less pronounced at the end of the subgiant branch, but the low metallicity star is larger and nearly four times as luminous. Similar differences exist in the evolution of stars with other masses, and key values such as the mass of a star that will become a supergiant instead of reaching the red giant branch are lower at low metallicity. A Hertzsprung–Russell (H–R) diagram
11752-399: The subgiant class is rarely used. Values for the surface gravity, log(g), of O-class stars are around 3.6 cgs for giants and 3.9 for dwarfs. For comparison, typical log(g) values for K class stars are 1.59 ( Aldebaran ) and 4.37 ( α Centauri B ), leaving plenty of scope to classify subgiants such as η Cephei with log(g) of 3.47. Examples of massive subgiant stars include θ Orionis A and
11865-552: The subgiants, located between main-sequence stars (luminosity class V) and red giants (luminosity class III). Rather than defining absolute features, a typical approach to determining a spectral luminosity class is to compare similar spectra against standard stars. Many line ratios and profiles are sensitive to gravity, and therefore make useful luminosity indicators, but some of the most useful spectral features for each spectral class are: Morgan and Keenan listed examples of stars in luminosity class IV when they established
11978-404: The surface and a sphere with a 10 R ☉ will release 10000% as much energy. The helium core mass is below the Schönberg–Chandrasekhar limit and it remains in thermal equilibrium with the fusing hydrogen shell. Its mass continues to increase and the star very slowly expands as the hydrogen shell migrates outwards. Any increase in energy output from the shell goes into expanding
12091-417: The surface. The rotation rate was gradually slowed by magnetic braking , as the Sun's magnetic field interacted with the outflowing solar wind. A vestige of this rapid primordial rotation still survives at the Sun's core, which has been found to be rotating at a rate of once per week; four times the mean surface rotation rate. The Sun consists mainly of the elements hydrogen and helium . At this time in
12204-431: The tachocline picks up heat and expands, thereby reducing its density and allowing it to rise. As a result, an orderly motion of the mass develops into thermal cells that carry most of the heat outward to the Sun's photosphere above. Once the material diffusively and radiatively cools just beneath the photospheric surface, its density increases, and it sinks to the base of the convection zone, where it again picks up heat from
12317-424: The temperature of the corona, at least some of its heat is known to be from magnetic reconnection . The corona is the extended atmosphere of the Sun, which has a volume much larger than the volume enclosed by the Sun's photosphere. A flow of plasma outward from the Sun into interplanetary space is the solar wind . The heliosphere, the tenuous outermost atmosphere of the Sun, is filled with solar wind plasma and
12430-422: The tenuous layers above the photosphere. The photosphere has a particle density of ~10 m (about 0.37% of the particle number per volume of Earth's atmosphere at sea level). The photosphere is not fully ionized—the extent of ionization is about 3%, leaving almost all of the hydrogen in atomic form. The Sun's atmosphere is composed of five layers: the photosphere, the chromosphere , the transition region ,
12543-404: The top of the radiative zone and the convective cycle continues. At the photosphere, the temperature has dropped 350-fold to 5,700 K (9,800 °F) and the density to only 0.2 g/m (about 1/10,000 the density of air at sea level, and 1 millionth that of the inner layer of the convective zone). The thermal columns of the convection zone form an imprint on the surface of the Sun giving it
12656-418: The transfer of energy through this zone is by radiation instead of thermal convection. Ions of hydrogen and helium emit photons, which travel only a brief distance before being reabsorbed by other ions. The density drops a hundredfold (from 20 000 kg/m to 200 kg/m ) between 0.25 solar radii and 0.7 radii, the top of the radiative zone. The radiative zone and the convective zone are separated by
12769-410: The two-dimensional classification scheme: Later analysis showed that some of these were blended spectra from double stars and some were variable, and the standards have been expanded to many more stars, but many of the original stars are still considered standards of the subgiant luminosity class. O-class stars and stars cooler than K1 are rarely given subgiant luminosity classes. The subgiant branch
#930069