Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete ( haploid reproductive cells, such as a sperm or egg cell ) with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes ( diploid ). This is typical in animals, though the number of chromosome sets and how that number changes in sexual reproduction varies, especially among plants, fungi, and other eukaryotes .
93-407: Ascomycota Basidiomycota Entorrhizomycota Carpomycetaceae Bessey (1907) Neomycota Caval.-Sm. (1998) Dikaryomycota W. B. Kendr. 1985 Dikarya is a subkingdom of Fungi that includes the divisions Ascomycota and Basidiomycota , both of which in general produce dikaryons , may be filamentous or unicellular , but are always without flagella . The Dikarya are most of
186-472: A positive feedback known as a Fisherian runaway . Thus sexual reproduction, as a form of natural selection , has an effect on evolution . Sexual dimorphism is where the basic phenotypic traits vary between males and females of the same species . Dimorphism is found in both sex organs and in secondary sex characteristics , body size, physical strength and morphology, biological ornamentation , behavior and other bodily traits. However, sexual selection
279-1196: A thallus usually referred to as the mycelium , which—when visible to the naked eye (macroscopic)—is commonly called mold . During sexual reproduction, many Ascomycota typically produce large numbers of asci . The ascus is often contained in a multicellular, occasionally readily visible fruiting structure, the ascocarp (also called an ascoma ). Ascocarps come in a very large variety of shapes: cup-shaped, club-shaped, potato-like, spongy, seed-like, oozing and pimple-like, coral-like, nit-like, golf-ball-shaped, perforated tennis ball-like, cushion-shaped, plated and feathered in miniature ( Laboulbeniales ), microscopic classic Greek shield-shaped, stalked or sessile. They can appear solitary or clustered. Their texture can likewise be very variable, including fleshy, like charcoal (carbonaceous), leathery, rubbery, gelatinous, slimy, powdery, or cob-web-like. Ascocarps come in multiple colors such as red, orange, yellow, brown, black, or, more rarely, green or blue. Some ascomyceous fungi, such as Saccharomyces cerevisiae , grow as single-celled yeasts, which—during sexual reproduction—develop into an ascus, and do not form fruiting bodies. In lichenized species,
372-472: A bacterium to bind, take up, and recombine exogenous DNA into its chromosome, it must enter a special physiological state referred to as competence (see Natural competence ). Sexual reproduction in early single-celled eukaryotes may have evolved from bacterial transformation, or from a similar process in archaea (see below). On the other hand, bacterial conjugation is a type of direct transfer of DNA between two bacteria mediated by an external appendage called
465-472: A bottle shaped cell called a phialide , from which the spores are produced. Not all of these asexual structures are a single hypha. In some groups, the conidiophores (the structures that bear the conidia) are aggregated to form a thick structure. E.g. In the order Moniliales, all of them are single hyphae with the exception of the aggregations, termed as coremia or synnema. These produce structures rather like corn-stokes, with many conidia being produced in
558-506: A double-dividing wall with a central lamella (layer) forms between the cells; the central layer then breaks down thereby releasing the spores. In rhexolytic dehiscence, the cell wall that joins the spores on the outside degenerates and releases the conidia. Several Ascomycota species are not known to have a sexual cycle. Such asexual species may be able to undergo genetic recombination between individuals by processes involving heterokaryosis and parasexual events. Parasexuality refers to
651-433: A form of pneumonia . Asci of Ascosphaera fill honey bee larvae and pupae causing mummification with a chalk-like appearance, hence the name "chalkbrood". Yeasts for small colonies in vitro and in vivo , and excessive growth of Candida species in the mouth or vagina causes "thrush", a form of candidiasis . The cell walls of the ascomycetes almost always contain chitin and β-glucans , and divisions within
744-476: A further mitotic division that results in eight nuclei in each ascus. The nuclei along with some cytoplasma become enclosed within membranes and a cell wall to give rise to ascospores that are aligned inside the ascus like peas in a pod. Upon opening of the ascus, ascospores may be dispersed by the wind, while in some cases the spores are forcibly ejected form the ascus; certain species have evolved spore cannons, which can eject ascospores up to 30 cm. away. When
837-403: A haploid spore that grows into the dominant gametophyte form, which is a multicellular haploid body with leaf-like structures that photosynthesize . Haploid gametes are produced in antheridia (male) and archegonia (female) by mitosis. The sperm released from the antheridia respond to chemicals released by ripe archegonia and swim to them in a film of water and fertilize the egg cells thus producing
930-743: A hypha. Vegetative hyphae of most ascomycetes contain only one nucleus per cell ( uninucleate hyphae), but multinucleate cells—especially in the apical regions of growing hyphae—can also be present. In common with other fungal phyla, the Ascomycota are heterotrophic organisms that require organic compounds as energy sources. These are obtained by feeding on a variety of organic substrates including dead matter, foodstuffs, or as symbionts in or on other living organisms. To obtain these nutrients from their surroundings, ascomycetous fungi secrete powerful digestive enzymes that break down organic substances into smaller molecules, which are then taken up into
1023-529: A large-scale specialized structure that helps to spread them. These two basic types can be further classified as follows: Sometimes the conidia are produced in structures visible to the naked eye, which help to distribute the spores. These structures are called "conidiomata" (singular: conidioma ), and may take the form of pycnidia (which are flask-shaped and arise in the fungal tissue) or acervuli (which are cushion-shaped and arise in host tissue). Dehiscence happens in two ways. In schizolytic dehiscence,
SECTION 10
#17327827774281116-433: A mass from the aggregated conidiophores. The diverse conidia and conidiophores sometimes develop in asexual sporocarps with different characteristics (e.g. acervulus, pycnidium, sporodochium). Some species of ascomycetes form their structures within plant tissue, either as parasite or saprophytes. These fungi have evolved more complex asexual sporing structures, probably influenced by the cultural conditions of plant tissue as
1209-440: A multicellular gametophyte phase that produces gametes at maturity. The gametophytes of different groups of plants vary in size. Mosses and other pteridophytic plants may have gametophytes consisting of several million cells, while angiosperms have as few as three cells in each pollen grain. Flowering plants are the dominant plant form on land and they reproduce either sexually or asexually. Often their most distinctive feature
1302-531: A population because they are better at securing mates for sexual reproduction. It has been described as "a powerful evolutionary force that does not exist in asexual populations". The first fossilized evidence of sexual reproduction in eukaryotes is from the Stenian period, about 1.05 billion years old. Biologists studying evolution propose several explanations for the development of sexual reproduction and its maintenance. These reasons include reducing
1395-552: A separate artificial phylum , the Deuteromycota (or "Fungi Imperfecti"). Where recent molecular analyses have identified close relationships with ascus-bearing taxa, anamorphic species have been grouped into the Ascomycota, despite the absence of the defining ascus. Sexual and asexual isolates of the same species commonly carry different binomial species names, as, for example, Aspergillus nidulans and Emericella nidulans , for asexual and sexual isolates, respectively, of
1488-408: A substrate. These structures are called the sporodochium . This is a cushion of conidiophores created from a pseudoparenchymatous stroma in plant tissue. The pycnidium is a globose to flask-shaped parenchymatous structure, lined on its inner wall with conidiophores. The acervulus is a flat saucer shaped bed of conidiophores produced under a plant cuticle, which eventually erupt through
1581-551: A tetraploid nucleus which divided into four diploid nuclei by meiosis and then into eight haploid nuclei by a supposed process called brachymeiosis , but this hypothesis was disproven in the 1950s. From the fertilized ascogonium, dinucleate hyphae emerge in which each cell contains two nuclei. These hyphae are called ascogenous or fertile hyphae. They are supported by the vegetative mycelium containing uni– (or mono–) nucleate hyphae, which are sterile. The mycelium containing both sterile and fertile hyphae may grow into fruiting body,
1674-423: A variety of stresses such as nutrient limitation. The sexual part of the life cycle commences when two hyphal structures mate . In the case of homothallic species, mating is enabled between hyphae of the same fungal clone , whereas in heterothallic species, the two hyphae must originate from fungal clones that differ genetically, i.e., those that are of a different mating type . Mating types are typical of
1767-407: A zygote. The zygote divides by mitotic division and grows into a multicellular, diploid sporophyte. The sporophyte produces spore capsules ( sporangia ), which are connected by stalks ( setae ) to the archegonia. The spore capsules produce spores by meiosis and when ripe the capsules burst open to release the spores. Bryophytes show considerable variation in their reproductive structures and the above
1860-417: Is a dictyospore . In staurospores ray-like arms radiate from a central body; in others ( helicospores ) the entire spore is wound up in a spiral like a spring. Very long worm-like spores with a length-to-diameter ratio of more than 15:1, are called scolecospores . Important characteristics of the anamorphs of the Ascomycota are conidiogenesis , which includes spore formation and dehiscence (separation from
1953-444: Is a fitness disadvantage of sexual reproduction. The two-fold cost of sex includes this cost and the fact that any organism can only pass on 50% of its own genes to its offspring. However, one definite advantage of sexual reproduction is that it increases genetic diversity and impedes the accumulation of harmful genetic mutations . Sexual selection is a mode of natural selection in which some individuals out-reproduce others of
SECTION 20
#17327827774282046-786: Is a phylum of the kingdom Fungi that, together with the Basidiomycota , forms the subkingdom Dikarya . Its members are commonly known as the sac fungi or ascomycetes . It is the largest phylum of Fungi, with over 64,000 species . The defining feature of this fungal group is the " ascus " (from Ancient Greek ἀσκός ( askós ) 'sac, wineskin'), a microscopic sexual structure in which nonmotile spores , called ascospores , are formed. However, some species of Ascomycota are asexual and thus do not form asci or ascospores. Familiar examples of sac fungi include morels , truffles , brewers' and bakers' yeast , dead man's fingers , and cup fungi . The fungal symbionts in
2139-400: Is a basic outline. Also in some species each plant is one sex ( dioicous ) while other species produce both sexes on the same plant ( monoicous ). Fungi are classified by the methods of sexual reproduction they employ. The outcome of sexual reproduction most often is the production of resting spores that are used to survive inclement times and to spread. There are typically three phases in
2232-508: Is a transfer of plasmid DNA between bacteria, but the plasmids are rarely incorporated into the bacterial chromosome; and gene transfer and genetic exchange in archaea . Bacterial transformation involves the recombination of genetic material and its function is mainly associated with DNA repair . Bacterial transformation is a complex process encoded by numerous bacterial genes, and is a bacterial adaptation for DNA transfer. This process occurs naturally in at least 40 bacterial species. For
2325-484: Is a tube-shaped vessel, a meiosporangium , which contains the sexual spores produced by meiosis and which are called ascospores . Apart from a few exceptions, such as Candida albicans , most ascomycetes are haploid , i.e., they contain one set of chromosomes per nucleus. During sexual reproduction there is a diploid phase, which commonly is very short, and meiosis restores the haploid state. The sexual cycle of one well-studied representative species of Ascomycota
2418-574: Is a unisex species that uses a form of parthenogenesis called gynogenesis , where unfertilized eggs develop into embryos that produce female offspring. Poecilia formosa mate with males of other fish species that use internal fertilization, the sperm does not fertilize the eggs but stimulates the growth of the eggs which develops into embryos. Animals have life cycles with a single diploid multicellular phase that produces haploid gametes directly by meiosis. Male gametes are called sperm, and female gametes are called eggs or ova. In animals, fertilization of
2511-568: Is believed to have developed in an ancient eukaryotic ancestor. In eukaryotes, diploid precursor cells divide to produce haploid cells in a process called meiosis . In meiosis, DNA is replicated to produce a total of four copies of each chromosome. This is followed by two cell divisions to generate haploid gametes. After the DNA is replicated in meiosis, the homologous chromosomes pair up so that their DNA sequences are aligned with each other. During this period before cell divisions, genetic information
2604-457: Is described in greater detail in Neurospora crassa . Also, the adaptive basis for the maintenance of sexual reproduction in the Ascomycota fungi was reviewed by Wallen and Perlin. They concluded that the most plausible reason for the maintenance of this capability is the benefit of repairing DNA damage by using recombination that occurs during meiosis . DNA damage can be caused by
2697-399: Is entirely beneficial. Larger populations appear to respond more quickly to some of the benefits obtained through sexual reproduction than do smaller population sizes. However, newer models presented in recent years suggest a basic advantage for sexual reproduction in slowly reproducing complex organisms . Sexual reproduction allows these species to exhibit characteristics that depend on
2790-431: Is exchanged between homologous chromosomes in genetic recombination . Homologous chromosomes contain highly similar but not identical information, and by exchanging similar but not identical regions, genetic recombination increases genetic diversity among future generations. During sexual reproduction, two haploid gametes combine into one diploid cell known as a zygote in a process called fertilization . The nuclei from
2883-531: Is only found on Nothofagus (Southern Beech) in the Southern Hemisphere . Asexual reproduction is the dominant form of propagation in the Ascomycota, and is responsible for the rapid spread of these fungi into new areas. It occurs through vegetative reproductive spores, the conidia . The conidiospores commonly contain one nucleus and are products of mitotic cell divisions and thus are sometimes called mitospores, which are genetically identical to
Dikarya - Misplaced Pages Continue
2976-595: Is only implied over an extended period of time leading to sexual dimorphism. A few arthropods, such as barnacles , are hermaphroditic , that is, each can have the organs of both sexes . However, individuals of most species remain of one sex their entire lives. A few species of insects and crustaceans can reproduce by parthenogenesis , especially if conditions favor a "population explosion". However, most arthropods rely on sexual reproduction, and parthenogenetic species often revert to sexual reproduction when conditions become less favorable. The ability to undergo meiosis
3069-546: Is the result of a large-scale collaborative research effort involving dozens of mycologists and other scientists working on fungal taxonomy . It recognizes seven divisions within the Fungi, two of which—the Ascomycota and the Basidiomycota—are contained within a branch representing subkingdom Dikarya. The cladogram depicts the major fungal taxa and their relationship to opisthokont and unikont organisms. The lengths of
3162-412: Is their reproductive organs, commonly called flowers. The anther produces pollen grains which contain the male gametophytes that produce sperm nuclei. For pollination to occur, pollen grains must attach to the stigma of the female reproductive structure ( carpel ), where the female gametophytes are located within ovules enclose within the ovary . After the pollen tube grows through the carpel's style,
3255-463: Is usually inconspicuous because it is commonly embedded in the substrate, such as soil, or grows on or inside a living host, and only the ascoma may be seen when fruiting. Pigmentation , such as melanin in hyphal walls, along with prolific growth on surfaces can result in visible mold colonies; examples include Cladosporium species, which form black spots on bathroom caulking and other moist areas. Many ascomycetes cause food spoilage, and, therefore,
3348-459: Is widespread among arthropods including both those that reproduce sexually and those that reproduce parthenogenetically . Although meiosis is a major characteristic of arthropods, understanding of its fundamental adaptive benefit has long been regarded as an unresolved problem, that appears to have remained unsettled. Aquatic arthropods may breed by external fertilization, as for example horseshoe crabs do, or by internal fertilization , where
3441-416: The ascocarp , which may contain millions of fertile hyphae. An ascocarp is the fruiting body of the sexual phase in Ascomycota. There are five morphologically different types of ascocarp, namely: The sexual structures are formed in the fruiting layer of the ascocarp, the hymenium . At one end of ascogenous hyphae, characteristic U-shaped hooks develop, which curve back opposite to the growth direction of
3534-402: The ascogonium , and merges with a gametangium (the antheridium ) of the other fungal isolate. The nuclei in the antheridium then migrate into the ascogonium, and plasmogamy —the mixing of the cytoplasm —occurs. Unlike in animals and plants, plasmogamy is not immediately followed by the merging of the nuclei (called karyogamy ). Instead, the nuclei from the two hyphae form pairs, initiating
3627-456: The conidia . The asexual, non-motile haploid spores of a fungus, which are named after the Greek word for dust (conia), are hence also known as conidiospores . The conidiospores commonly contain one nucleus and are products of mitotic cell divisions and thus are sometimes called mitospores , which are genetically identical to the mycelium from which they originate. They are typically formed at
3720-627: The detritivores (animals that feed on decomposing material) to obtain their nutrients. Ascomycetes, along with other fungi, can break down large molecules such as cellulose or lignin , and thus have important roles in nutrient cycling such as the carbon cycle . The fruiting bodies of the Ascomycota provide food for many animals ranging from insects and slugs and snails ( Gastropoda ) to rodents and larger mammals such as deer and wild boars . Many ascomycetes also form symbiotic relationships with other organisms, including plants and animals. Probably since early in their evolutionary history,
3813-401: The dikaryophase of the sexual cycle, during which time the pairs of nuclei synchronously divide. Fusion of the paired nuclei leads to mixing of the genetic material and recombination and is followed by meiosis . A similar sexual cycle is present in the red algae (Rhodophyta). A discarded hypothesis held that a second karyogamy event occurred in the ascogonium prior to ascogeny, resulting in
Dikarya - Misplaced Pages Continue
3906-685: The ergot fungi, black knot , and the powdery mildews . The members of the genus Cordyceps are entomopathogenic fungi , meaning that they parasitise and kill insects. Other entomopathogenic ascomycetes have been used successfully in biological pest control , such as Beauveria . Several species of ascomycetes are biological model organisms in laboratory research. Most famously, Neurospora crassa , several species of yeasts , and Aspergillus species are used in many genetics and cell biology studies. Ascomycetes are 'spore shooters'. They are fungi which produce microscopic spores inside special, elongated cells or sacs, known as 'asci', which give
3999-560: The gametophyte , which produces gametes directly by mitosis. This type of life cycle, involving alternation between two multicellular phases, the sexual haploid gametophyte and asexual diploid sporophyte, is known as alternation of generations . The evolution of sexual reproduction is considered paradoxical, because asexual reproduction should be able to outperform it as every young organism created can bear its own young. This implies that an asexual population has an intrinsic capacity to grow more rapidly with each generation. This 50% cost
4092-410: The ova remain in the female's body and the sperm must somehow be inserted. All known terrestrial arthropods use internal fertilization. Opiliones (harvestmen), millipedes , and some crustaceans use modified appendages such as gonopods or penises to transfer the sperm directly to the female. However, most male terrestrial arthropods produce spermatophores , waterproof packets of sperm , which
4185-414: The photoautotrophic algal partner generates metabolic energy through photosynthesis, the fungus offers a stable, supportive matrix and protects cells from radiation and dehydration. Around 42% of the Ascomycota (about 18,000 species) form lichens, and almost all the fungal partners of lichens belong to the Ascomycota. Sexual reproduction In placental mammals , sperm cells exit the penis through
4278-420: The sex cell nuclei from the pollen grain migrate into the ovule to fertilize the egg cell and endosperm nuclei within the female gametophyte in a process termed double fertilization . The resulting zygote develops into an embryo, while the triploid endosperm (one sperm cell plus two female cells) and female tissues of the ovule give rise to the surrounding tissues in the developing seed. The ovary, which produced
4371-507: The sex organs present although not reproductively functional. After several months or years, depending on the species, the sex organs develop further to maturity and the animal becomes sexually mature . Most female mammals are only fertile during certain periods during their estrous cycle, at which point they are ready to mate. For most mammals, males and females exchange sexual partners throughout their adult lives . The vast majority of fish species lay eggs that are then fertilized by
4464-542: The Ascomycota have formed symbiotic associations with green algae ( Chlorophyta ), and other types of algae and cyanobacteria . These mutualistic associations are commonly known as lichens , and can grow and persist in terrestrial regions of the earth that are inhospitable to other organisms and characterized by extremes in temperature and humidity, including the Arctic , the Antarctic , deserts , and mountaintops. While
4557-410: The Ascomycota. The most frequent types are the single-celled spores, which are designated amerospores . If the spore is divided into two by a cross-wall ( septum ), it is called a didymospore . When there are two or more cross-walls, the classification depends on spore shape. If the septae are transversal , like the rungs of a ladder, it is a phragmospore , and if they possess a net-like structure it
4650-649: The Ascomycota. These include the following sexual ( teleomorphic ) groups, defined by the structures of their sexual fruiting bodies : the Discomycetes , which included all species forming apothecia ; the Pyrenomycetes , which included all sac fungi that formed perithecia or pseudothecia , or any structure resembling these morphological structures; and the Plectomycetes, which included those species that form cleistothecia . Hemiascomycetes included
4743-453: The atmosphere and freshwater environments, as well as ocean beaches and tidal zones. The distribution of species is variable; while some are found on all continents, others, as for example the white truffle Tuber magnatum , only occur in isolated locations in Italy and Eastern Europe. The distribution of plant-parasitic species is often restricted by host distributions; for example, Cyttaria
SECTION 50
#17327827774284836-499: The basidia, club-shaped end cells. Shortly after formation of the diploid cell, meiosis occurs and the resulting four haploid nuclei migrate into four, usually external cells called basidiospores . Sexual reproduction has been proposed to have evolved in both the Ascomycota and Basidiomycota as an adaptation for repair of DNA damage via homologous recombination under stressful conditions. Ascomycota Ascomycota
4929-495: The branches in this tree are not proportional to evolutionary distances. The phylum Ascomycota , or sac fungus , is characterized by formation of meiotic spores called ascospores enclosed in a special sac called an ascus . The genetic components for sexual reproduction appear to be produced by all members of this group. The phylum Basidiomycota can be divided into three major lineages: mushrooms , rusts and smuts . Fusion of haploid nuclei ( karyogamy ) occurs in
5022-755: The cell. Many species live on dead plant material such as leaves, twigs, or logs. Several species colonize plants, animals, or other fungi as parasites or mutualistic symbionts and derive all their metabolic energy in form of nutrients from the tissues of their hosts. Owing to their long evolutionary history, the Ascomycota have evolved the capacity to break down almost every organic substance. Unlike most organisms, they are able to use their own enzymes to digest plant biopolymers such as cellulose or lignin . Collagen , an abundant structural protein in animals, and keratin —a protein that forms hair and nails—, can also serve as food sources. Unusual examples include Aureobasidium pullulans , which feeds on wall paint, and
5115-783: The conjugation pilus. Bacterial conjugation is controlled by plasmid genes that are adapted for spreading copies of the plasmid between bacteria. The infrequent integration of a plasmid into a host bacterial chromosome, and the subsequent transfer of a part of the host chromosome to another cell do not appear to be bacterial adaptations. Exposure of hyperthermophilic archaeal Sulfolobus species to DNA damaging conditions induces cellular aggregation accompanied by high frequency genetic marker exchange Ajon et al. hypothesized that this cellular aggregation enhances species-specific DNA repair by homologous recombination. DNA transfer in Sulfolobus may be an early form of sexual interaction similar to
5208-417: The cuticle for dispersal. Asexual reproduction process in ascomycetes also involves the budding which we clearly observe in yeast. This is termed a "blastic process". It involves the blowing out or blebbing of the hyphal tip wall. The blastic process can involve all wall layers, or there can be a new cell wall synthesized which is extruded from within the old wall. The initial events of budding can be seen as
5301-605: The development of a ring of chitin around the point where the bud is about to appear. This reinforces and stabilizes the cell wall. Enzymatic activity and turgor pressure act to weaken and extrude the cell wall. New cell wall material is incorporated during this phase. Cell contents are forced into the progeny cell, and as the final phase of mitosis ends a cell plate, the point at which a new cell wall will grow inwards from, forms. There are three subphyla that are described and accepted: Several outdated taxon names—based on morphological features—are still occasionally used for species of
5394-464: The eggs are fertilized within the female and the eggs simply hatch within the female body, or in seahorses , the male carries the developing young within a pouch, and gives birth to live young. Fishes can also be viviparous , where the female supplies nourishment to the internally growing offspring. Some fish are hermaphrodites , where a single fish is both male and female and can produce eggs and sperm. In hermaphroditic fish, some are male and female at
5487-407: The ends of specialized hyphae, the conidiophores. Depending on the species they may be dispersed by wind or water, or by animals. Conidiophores may simply branch off from the mycelia or they may be formed in fruiting bodies. The hypha that creates the sporing (conidiating) tip can be very similar to the normal hyphal tip, or it can be differentiated. The most common differentiation is the formation of
5580-481: The female gametophyte(s), then grows into a fruit , which surrounds the seed(s). Plants may either self-pollinate or cross-pollinate . In 2013, flowers dating from the Cretaceous (100 million years before present) were found encased in amber, the oldest evidence of sexual reproduction in a flowering plant. Microscopic images showed tubes growing out of pollen and penetrating the flower's stigma. The pollen
5673-494: The females take into their bodies. A few such species rely on females to find spermatophores that have already been deposited on the ground, but in most cases males only deposit spermatophores when complex courtship rituals look likely to be successful. Insect species make up more than two-thirds of all extant animal species. Most insect species reproduce sexually, though some species are facultatively parthenogenetic . Many insect species have sexual dimorphism , while in others
SECTION 60
#17327827774285766-405: The formation of a zygote, and varying degrees of development, in many species the eggs are deposited outside the female; while in others, they develop further within the female and the young are born live. There are three extant kinds of mammals: monotremes , placentals and marsupials , all with internal fertilization. In placental mammals, offspring are born as juveniles: complete animals with
5859-663: The fungal symbiont directly obtains products of photosynthesis . In common with many basidiomycetes and Glomeromycota , some ascomycetes form symbioses with plants by colonizing the roots to form mycorrhizal associations. The Ascomycota also represents several carnivorous fungi , which have developed hyphal traps to capture small protists such as amoebae , as well as roundworms ( Nematoda ), rotifers , tardigrades , and small arthropods such as springtails ( Collembola ). The Ascomycota are represented in all land ecosystems worldwide, occurring on all continents including Antarctica . Spores and hyphal fragments are dispersed through
5952-428: The fungi and correspond roughly to the sexes in plants and animals; however one species may have more than two mating types, resulting in sometimes complex vegetative incompatibility systems. The adaptive function of mating type is discussed in Neurospora crassa . Gametangia are sexual structures formed from hyphae, and are the generative cells. A very fine hypha, called trichogyne emerges from one gametangium,
6045-409: The gametes fuse, and each gamete contributes half of the genetic material of the zygote. Multiple cell divisions by mitosis (without change in the number of chromosomes) then develop into a multicellular diploid phase or generation. In plants, the diploid phase, known as the sporophyte , produces spores by meiosis. These spores then germinate and divide by mitosis to form a haploid multicellular phase,
6138-517: The group its name. Asexual reproduction is the dominant form of propagation in the Ascomycota, and is responsible for the rapid spread of these fungi into new areas. Asexual reproduction of ascomycetes is very diverse from both structural and functional points of view. The most important and general is production of conidia, but chlamydospores are also frequently produced. Furthermore, Ascomycota also reproduce asexually through budding. Asexual reproduction may occur through vegetative reproductive spores,
6231-523: The hook with one nucleus, one at the basal of the original hypha that contains one nucleus, and one that separates the U-shaped part, which contains the other two nuclei. Fusion of the nuclei (karyogamy) takes place in the U-shaped cells in the hymenium, and results in the formation of a diploid zygote . The zygote grows into the ascus , an elongated tube-shaped or cylinder-shaped capsule. Meiosis then gives rise to four haploid nuclei, usually followed by
6324-446: The hyphae, called " septa ", are the internal boundaries of individual cells (or compartments). The cell wall and septa give stability and rigidity to the hyphae and may prevent loss of cytoplasm in case of local damage to cell wall and cell membrane . The septa commonly have a small opening in the center, which functions as a cytoplasmic connection between adjacent cells, also sometimes allowing cell-to-cell movement of nuclei within
6417-416: The hyphae. The two nuclei contained in the apical part of each hypha divide in such a way that the threads of their mitotic spindles run parallel, creating two pairs of genetically different nuclei. One daughter nucleus migrates close to the hook, while the other daughter nucleus locates to the basal part of the hypha. The formation of two parallel cross-walls then divides the hypha into three sections: one at
6510-612: The kerosene fungus Amorphotheca resinae , which feeds on aircraft fuel (causing occasional problems for the airline industry), and may sometimes block fuel pipes. Other species can resist high osmotic stress and grow, for example, on salted fish, and a few ascomycetes are aquatic. The Ascomycota is characterized by a high degree of specialization; for instance, certain species of Laboulbeniales attack only one particular leg of one particular insect species. Many Ascomycota engage in symbiotic relationships such as in lichens—symbiotic associations with green algae or cyanobacteria —in which
6603-421: The likelihood of the accumulation of deleterious mutations, increasing rate of adaptation to changing environments , dealing with competition , DNA repair , masking deleterious mutations, and reducing genetic variation on the genomic level. All of these ideas about why sexual reproduction has been maintained are generally supported, but ultimately the size of the population determines if sexual reproduction
6696-1159: The majority of lichens (loosely termed "ascolichens") such as Cladonia belong to the Ascomycota. Ascomycota is a monophyletic group (containing all of the descendants of a common ancestor). Previously placed in the Basidiomycota along with asexual species from other fungal taxa, asexual (or anamorphic ) ascomycetes are now identified and classified based on morphological or physiological similarities to ascus-bearing taxa , and by phylogenetic analyses of DNA sequences. Ascomycetes are of particular use to humans as sources of medicinally important compounds such as antibiotics , as well as for fermenting bread, alcoholic beverages, and cheese. Examples of ascomycetes include Penicillium species on cheeses and those producing antibiotics for treating bacterial infectious diseases . Many ascomycetes are pathogens , both of animals, including humans, and of plants. Examples of ascomycetes that can cause infections in humans include Candida albicans , Aspergillus niger and several tens of species that cause skin infections . The many plant-pathogenic ascomycetes include apple scab , rice blast ,
6789-876: The male urethra and enter the vagina during copulation , while egg cells enter the uterus through the oviduct . Other vertebrates of both sexes possess a cloaca for the release of sperm or egg cells. Sexual reproduction is the most common life cycle in multicellular eukaryotes, such as animals , fungi and plants . Sexual reproduction also occurs in some unicellular eukaryotes. Sexual reproduction does not occur in prokaryotes , unicellular organisms without cell nuclei , such as bacteria and archaea . However, some processes in bacteria, including bacterial conjugation , transformation and transduction , may be considered analogous to sexual reproduction in that they incorporate new genetic information. Some proteins and other features that are key for sexual reproduction may have arisen in bacteria, but sexual reproduction
6882-454: The male. Some species lay their eggs on a substrate like a rock or on plants, while others scatter their eggs and the eggs are fertilized as they drift or sink in the water column. Some fish species use internal fertilization and then disperse the developing eggs or give birth to live offspring. Fish that have live-bearing offspring include the guppy and mollies or Poecilia . Fishes that give birth to live young can be ovoviviparous , where
6975-414: The most plausible reason for maintaining this capability is the benefit of repairing DNA damage , caused by a variety of stresses, through recombination that occurs during meiosis . Three distinct processes in prokaryotes are regarded as similar to eukaryotic sex : bacterial transformation , which involves the incorporation of foreign DNA into the bacterial chromosome; bacterial conjugation , which
7068-402: The mycelium from which they originate. They are typically formed at the ends of specialized hyphae , the conidiophores . Depending on the species they may be dispersed by wind or water, or by animals. Different types of asexual spores can be identified by colour, shape, and how they are released as individual spores. Spore types can be used as taxonomic characters in the classification within
7161-436: The original parent nuclei. Alternatively, nuclei may lose some chromosomes, resulting in aneuploid cells. Candida albicans (class Saccharomycetes) is an example of a fungus that has a parasexual cycle (see Candida albicans and Parasexual cycle ). Sexual reproduction in the Ascomycota leads to the formation of the ascus , the structure that defines this fungal group and distinguishes it from other fungal phyla. The ascus
7254-453: The ovum by a sperm results in the formation of a diploid zygote that develops by repeated mitotic divisions into a diploid adult. Plants have two multicellular life-cycle phases, resulting in an alternation of generations . Plant zygotes germinate and divide repeatedly by mitosis to produce a diploid multicellular organism known as the sporophyte. The mature sporophyte produces haploid spores by meiosis that germinate and divide by mitosis to form
7347-413: The parent structure). Conidiogenesis corresponds to Embryology in animals and plants and can be divided into two fundamental forms of development: blastic conidiogenesis, where the spore is already evident before it separates from the conidiogenic hypha, and thallic conidiogenesis, during which a cross-wall forms and the newly created cell develops into a spore. The spores may or may not be generated in
7440-472: The pellicles or moldy layers that develop on jams, juices, and other foods are the mycelia of these species or occasionally Mucoromycotina and almost never Basidiomycota . Sooty molds that develop on plants, especially in the tropics are the thalli of many species. Large masses of yeast cells, asci or ascus-like cells, or conidia can also form macroscopic structures. For example. Pneumocystis species can colonize lung cavities (visible in x-rays), causing
7533-656: The process of heterokaryosis, caused by merging of two hyphae belonging to different individuals, by a process called anastomosis , followed by a series of events resulting in genetically different cell nuclei in the mycelium . The merging of nuclei is not followed by meiotic events , such as gamete formation and results in an increased number of chromosomes per nuclei. Mitotic crossover may enable recombination , i.e., an exchange of genetic material between homologous chromosomes . The chromosome number may then be restored to its haploid state by nuclear division , with each daughter nuclei being genetically different from
7626-415: The same or different plants. After rains or when dew deposits a film of water, the motile sperm are splashed away from the antheridia, which are normally produced on the top side of the thallus, and swim in the film of water to the archegonia where they fertilize the egg. To promote out crossing or cross fertilization the sperm are released before the eggs are receptive of the sperm, making it more likely that
7719-766: The same species. Species of the Deuteromycota were classified as Coelomycetes if they produced their conidia in minute flask- or saucer-shaped conidiomata, known technically as pycnidia and acervuli . The Hyphomycetes were those species where the conidiophores ( i.e. , the hyphal structures that carry conidia-forming cells at the end) are free or loosely organized. They are mostly isolated but sometimes also appear as bundles of cells aligned in parallel (described as synnematal ) or as cushion-shaped masses (described as sporodochial ). Most species grow as filamentous, microscopic structures called hyphae or as budding single cells (yeasts). Many interconnected hyphae form
7812-402: The same time while in other fish they are serially hermaphroditic; starting as one sex and changing to the other. In at least one hermaphroditic species, self-fertilization occurs when the eggs and sperm are released together. Internal self-fertilization may occur in some other species. One fish species does not reproduce by sexual reproduction but uses sex to produce offspring; Poecilia formosa
7905-450: The sexes look nearly identical. Typically they have two sexes with males producing spermatozoa and females ova. The ova develop into eggs that have a covering called the chorion , which forms before internal fertilization. Insects have very diverse mating and reproductive strategies most often resulting in the male depositing a spermatophore within the female, which she stores until she is ready for egg fertilization. After fertilization, and
7998-419: The sexual reproduction of fungi: plasmogamy , karyogamy and meiosis . The cytoplasm of two parent cells fuse during plasmogamy and the nuclei fuse during karyogamy. New haploid gametes are formed during meiosis and develop into spores. The adaptive basis for the maintenance of sexual reproduction in the Ascomycota and Basidiomycota ( dikaryon ) fungi was reviewed by Wallen and Perlin. They concluded that
8091-670: The so-called "higher fungi", but also include many anamorphic species that would have been classified as molds in historical literature. Phylogenetically the two divisions regularly group together. In a 1998 publication, Thomas Cavalier-Smith referred to this group as the Neomycota. Amoebozoa Animalia Nucleariids Microsporidia Chytridiomycota Neocallimastigomycota Blastocladiomycota Zoopagomycotina Kickxellomycotina Entomophthoromycotina Mucoromycotina Glomeromycota Ascomycota Basidiomycota The 2007 classification of Kingdom Fungi
8184-405: The specific environment that they inhabit, and the particular survival strategies that they employ. In order to reproduce sexually, both males and females need to find a mate . Generally in animals mate choice is made by females while males compete to be chosen. This can lead organisms to extreme efforts in order to reproduce, such as combat and display, or produce extreme features caused by
8277-541: The sperm will fertilize the eggs of different thallus. After fertilization, a zygote is formed which grows into a new sporophytic plant. The condition of having separate sporophyte and gametophyte plants is called alternation of generations . The bryophytes , which include liverworts , hornworts and mosses , reproduce both sexually and vegetatively . They are small plants found growing in moist locations and like ferns, have motile sperm with flagella and need water to facilitate sexual reproduction. These plants start as
8370-514: The spores reach a suitable substrate, they germinate, form new hyphae, which restarts the fungal life cycle. The form of the ascus is important for classification and is divided into four basic types: unitunicate-operculate, unitunicate-inoperculate, bitunicate, or prototunicate. See the article on asci for further details. The Ascomycota fulfil a central role in most land-based ecosystems . They are important decomposers , breaking down organic materials, such as dead leaves and animals, and helping
8463-409: The thallus of the fungus defines the shape of the symbiotic colony. Some dimorphic species, such as Candida albicans , can switch between growth as single cells and as filamentous, multicellular hyphae. Other species are pleomorphic , exhibiting asexual (anamorphic) as well as a sexual (teleomorphic) growth forms. Except for lichens, the non-reproductive (vegetative) mycelium of most ascomycetes
8556-857: The yeasts and yeast-like fungi that have now been placed into the Saccharomycotina or Taphrinomycotina , while the Euascomycetes included the remaining species of the Ascomycota, which are now in the Pezizomycotina , and the Neolecta , which are in the Taphrinomycotina. Some ascomycetes do not reproduce sexually or are not known to produce asci and are therefore anamorphic species. Those anamorphs that produce conidia (mitospores) were previously described as mitosporic Ascomycota . Some taxonomists placed this group into
8649-424: Was sticky, suggesting it was carried by insects. Ferns produce large diploid sporophytes with rhizomes , roots and leaves. Fertile leaves produce sporangia that contain haploid spores . The spores are released and germinate to produce small, thin gametophytes that are typically heart shaped and green in color. The gametophyte prothalli , produce motile sperm in the antheridia and egg cells in archegonia on
#427572