Misplaced Pages

Dvinosauria

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#429570

53-593: Dvinosaurs are one of several new clades of temnospondyls named in the phylogenetic review of the group by Yates and Warren 2000. They represent a group of primitive semi-aquatic to completely aquatic temnospondyls, and are known from the Late Carboniferous to the Early Triassic, being most common in the Permian period. Their distinguishing characteristics are a reduction of the otic notch ;

106-479: A "ladder", with supposedly more "advanced" organisms at the top. Taxonomists have increasingly worked to make the taxonomic system reflect evolution. When it comes to naming , this principle is not always compatible with the traditional rank-based nomenclature (in which only taxa associated with a rank can be named) because not enough ranks exist to name a long series of nested clades. For these and other reasons, phylogenetic nomenclature has been developed; it

159-417: A ' grade ', which are fruitless to precisely delineate, especially when including extinct species. Radiation results in the generation of new subclades by bifurcation, but in practice sexual hybridization may blur very closely related groupings. As a hypothesis, a clade can be rejected only if some groupings were explicitly excluded. It may then be found that the excluded group did actually descend from

212-623: A clade can be described based on two different reference points, crown age and stem age. The crown age of a clade refers to the age of the most recent common ancestor of all of the species in the clade. The stem age of a clade refers to the time that the ancestral lineage of the clade diverged from its sister clade. A clade's stem age is either the same as or older than its crown age. Ages of clades cannot be directly observed. They are inferred, either from stratigraphy of fossils , or from molecular clock estimates. Viruses , and particularly RNA viruses form clades. These are useful in tracking

265-471: A cladistic hypothesis of relationships of taxa whose character states can be observed. Theoretically, a last common ancestor and all its descendants constitute a (minimal) clade. Importantly, all descendants stay in their overarching ancestral clade. For example, if the terms worms or fishes were used within a strict cladistic framework, these terms would include humans. Many of these terms are normally used paraphyletically , outside of cladistics, e.g. as

318-422: A coarse impression of the complexity. A more detailed account will give details about fractions of introgressions between groupings, and even geographic variations thereof. This has been used as an argument for the use of paraphyletic groupings, but typically other reasons are quoted. Horizontal gene transfer is the mobility of genetic info between different organisms that can have immediate or delayed effects for

371-479: A difficulty for taxonomy , where the rank and (genus-)naming of established groupings may turn out to be inconsistent. Cladistics is now the most commonly used method to classify organisms. The original methods used in cladistic analysis and the school of taxonomy derived from the work of the German entomologist Willi Hennig , who referred to it as phylogenetic systematics (also the title of his 1966 book); but

424-439: A grade of basal dvinosauroids. Below is a cladogram showing the phylogenetic relationships of dvinosaurs from Englehorn et al. (2008): Trimerorhachis Neldasaurus Perryella Isodectes ( Eobrachyopidae ) Acroplous (Eobrachyopidae) Dvinosauridae Kourerpetidae Slaugenhopia Tupilakosaurus Thabanchuia [REDACTED] [REDACTED] This Temnospondyli -related article

477-489: A large number and variety of different kinds of characters are viewed as more robust than those based on more limited evidence. Mono-, para- and polyphyletic taxa can be understood based on the shape of the tree (as done above), as well as based on their character states. These are compared in the table below. Cladistics, either generally or in specific applications, has been criticized from its beginnings. Decisions as to whether particular character states are homologous ,

530-473: A lot of possible trees. Assigning names to each possible clade may not be prudent. Furthermore, established names are discarded in cladistics, or alternatively carry connotations which may no longer hold, such as when additional groups are found to have emerged in them. Naming changes are the direct result of changes in the recognition of mutual relationships, which often is still in flux, especially for extinct species. Hanging on to older naming and/or connotations

583-457: A period, many branches may have radiated, and it may take hundreds of millions of years for them to have whittled down to just two. Only then one can theoretically assign proper last common ancestors of groupings which do not inadvertently include earlier branches. The process of true cladistic bifurcation can thus take a much more extended time than one is usually aware of. In practice, for recent radiations, cladistically guided findings only give

SECTION 10

#1732802142430

636-444: A phylogenetic tree are used to justify decisions about character states, which are then used as evidence for the shape of the tree. Phylogenetics uses various forms of parsimony to decide such questions; the conclusions reached often depend on the dataset and the methods. Such is the nature of empirical science, and for this reason, most cladists refer to their cladograms as hypotheses of relationship. Cladograms that are supported by

689-447: A potential piece of evidence for grouping. Synapomorphies (shared, derived character states) are viewed as evidence of grouping, while symplesiomorphies (shared ancestral character states) are not. The outcome of a cladistic analysis is a cladogram – a tree -shaped diagram ( dendrogram ) that is interpreted to represent the best hypothesis of phylogenetic relationships. Although traditionally such cladograms were generated largely on

742-553: A powerful way to test hypotheses about cross-cultural relationships among folktales. Literature : Cladistic methods have been used in the classification of the surviving manuscripts of the Canterbury Tales , and the manuscripts of the Sanskrit Charaka Samhita . Historical linguistics : Cladistic methods have been used to reconstruct the phylogeny of languages using linguistic features. This

795-400: A precondition of their being synapomorphies, have been challenged as involving circular reasoning and subjective judgements. Of course, the potential unreliability of evidence is a problem for any systematic method, or for that matter, for any empirical scientific endeavor at all. Transformed cladistics arose in the late 1970s in an attempt to resolve some of these problems by removing

848-406: A priori assumptions about phylogeny from cladistic analysis, but it has remained unpopular. The cladistic method does not identify fossil species as actual ancestors of a clade. Instead, fossil taxa are identified as belonging to separate extinct branches. While a fossil species could be the actual ancestor of a clade, there is no way to know that. Therefore, a more conservative hypothesis is that

901-422: A revised taxonomy based on a concept strongly resembling clades, although the term clade itself would not be coined until 1957 by his grandson, Julian Huxley . German biologist Emil Hans Willi Hennig (1913–1976) is considered to be the founder of cladistics . He proposed a classification system that represented repeated branchings of the family tree, as opposed to the previous systems, which put organisms on

954-429: A suffix added should be e.g. "dracohortian". A clade is by definition monophyletic , meaning that it contains one ancestor which can be an organism, a population, or a species and all its descendants. The ancestor can be known or unknown; any and all members of a clade can be extant or extinct. The science that tries to reconstruct phylogenetic trees and thus discover clades is called phylogenetics or cladistics ,

1007-438: Is a stub . You can help Misplaced Pages by expanding it . Clade In biological phylogenetics , a clade (from Ancient Greek κλάδος (kládos)  'branch'), also known as a monophyletic group or natural group , is a grouping of organisms that are monophyletic – that is, composed of a common ancestor and all its lineal descendants – on a phylogenetic tree . In the taxonomical literature, sometimes

1060-565: Is a synapomorphy of the earliest taxa to be included within Tetrapoda: did all the earliest members of the Tetrapoda inherit four limbs from a common ancestor, whereas all other vertebrates did not, or at least not homologously? By contrast, for a group within the tetrapods, such as birds, having four limbs is a plesiomorphy. Using these two terms allows a greater precision in the discussion of homology, in particular allowing clear expression of

1113-499: Is also used with a similar meaning in other fields besides biology, such as historical linguistics ; see Cladistics § In disciplines other than biology . The term "clade" was coined in 1957 by the biologist Julian Huxley to refer to the result of cladogenesis , the evolutionary splitting of a parent species into two distinct species, a concept Huxley borrowed from Bernhard Rensch . Many commonly named groups – rodents and insects , for example – are clades because, in each case,

SECTION 20

#1732802142430

1166-408: Is an approach to biological classification in which organisms are categorized in groups (" clades ") based on hypotheses of most recent common ancestry . The evidence for hypothesized relationships is typically shared derived characteristics ( synapomorphies ) that are not present in more distant groups and ancestors. However, from an empirical perspective, common ancestors are inferences based on

1219-440: Is correct, then the last common ancestor of turtles and birds, at the branch near the ▼ lived earlier than the last common ancestor of lizards and birds, near the ♦ . Most molecular evidence , however, produces cladograms more like this: lizards turtles crocodilians birds If this is accurate, then the last common ancestor of turtles and birds lived later than the last common ancestor of lizards and birds. Since

1272-578: Is counter-productive, as they typically do not reflect actual mutual relationships precisely at all. E.g. Archaea, Asgard archaea, protists, slime molds, worms, invertebrata, fishes, reptilia, monkeys, Ardipithecus , Australopithecus , Homo erectus all contain Homo sapiens cladistically, in their sensu lato meaning. For originally extinct stem groups, sensu lato generally means generously keeping previously included groups, which then may come to include even living species. A pruned sensu stricto meaning

1325-476: Is in turn included in the mammal, vertebrate and animal clades. The idea of a clade did not exist in pre- Darwinian Linnaean taxonomy , which was based by necessity only on internal or external morphological similarities between organisms. Many of the better known animal groups in Linnaeus's original Systema Naturae (mostly vertebrate groups) do represent clades. The phenomenon of convergent evolution

1378-528: Is no evidence that they recover more "true" or "correct" results from actual empirical data sets Every cladogram is based on a particular dataset analyzed with a particular method. Datasets are tables consisting of molecular , morphological, ethological and/or other characters and a list of operational taxonomic units (OTUs), which may be genes, individuals, populations, species, or larger taxa that are presumed to be monophyletic and therefore to form, all together, one large clade; phylogenetic analysis infers

1431-500: Is often adopted instead, but the group would need to be restricted to a single branch on the stem. Other branches then get their own name and level. This is commensurate to the fact that more senior stem branches are in fact closer related to the resulting group than the more basal stem branches; that those stem branches only may have lived for a short time does not affect that assessment in cladistics. The comparisons used to acquire data on which cladograms can be based are not limited to

1484-515: Is responsible for many cases of misleading similarities in the morphology of groups that evolved from different lineages. With the increasing realization in the first half of the 19th century that species had changed and split through the ages, classification increasingly came to be seen as branches on the evolutionary tree of life . The publication of Darwin's theory of evolution in 1859 gave this view increasing weight. In 1876 Thomas Henry Huxley , an early advocate of evolutionary theory, proposed

1537-504: Is similar to the traditional comparative method of historical linguistics, but is more explicit in its use of parsimony and allows much faster analysis of large datasets ( computational phylogenetics ). Textual criticism or stemmatics : Cladistic methods have been used to reconstruct the phylogeny of manuscripts of the same work (and reconstruct the lost original) using distinctive copying errors as apomorphies. This differs from traditional historical-comparative linguistics in enabling

1590-489: Is still controversial. As an example, see the full current classification of Anas platyrhynchos (the mallard duck) with 40 clades from Eukaryota down by following this Wikispecies link and clicking on "Expand". The name of a clade is conventionally a plural, where the singular refers to each member individually. A unique exception is the reptile clade Dracohors , which was made by haplology from Latin "draco" and "cohors", i.e. "the dragon cohort "; its form with

1643-650: The Latin form cladus (plural cladi ) is used rather than the English form. Clades are the fundamental unit of cladistics , a modern approach to taxonomy adopted by most biological fields. The common ancestor may be an individual, a population , or a species ( extinct or extant ). Clades are nested, one in another, as each branch in turn splits into smaller branches. These splits reflect evolutionary history as populations diverged and evolved independently. Clades are termed monophyletic (Greek: "one clan") groups. Over

Dvinosauria - Misplaced Pages Continue

1696-523: The 1990s, the development of effective polymerase chain reaction techniques allowed the application of cladistic methods to biochemical and molecular genetic traits of organisms, vastly expanding the amount of data available for phylogenetics. At the same time, cladistics rapidly became popular in evolutionary biology, because computers made it possible to process large quantities of data about organisms and their characteristics. The cladistic method interprets each shared character state transformation as

1749-429: The basis of morphological characters and originally calculated by hand, genetic sequencing data and computational phylogenetics are now commonly used in phylogenetic analyses, and the parsimony criterion has been abandoned by many phylogeneticists in favor of more "sophisticated" but less parsimonious evolutionary models of character state transformation. Cladists contend that these models are unjustified because there

1802-531: The branching pattern within that clade. Different datasets and different methods, not to mention violations of the mentioned assumptions, often result in different cladograms. Only scientific investigation can show which is more likely to be correct. Until recently, for example, cladograms like the following have generally been accepted as accurate representations of the ancestral relations among turtles, lizards, crocodilians, and birds: turtles lizards crocodilians birds If this phylogenetic hypothesis

1855-525: The clade, but in principle each level stands on its own, to be assigned a unique name. For a fully bifurcated tree, adding a group to a tree also adds an additional (named) clade, and a new level on that branch. Specifically, also extinct groups are always put on a side-branch, not distinguishing whether an actual ancestor of other groupings was found. The techniques and nomenclature of cladistics have been applied to disciplines other than biology. (See phylogenetic nomenclature .) Cladistics findings are posing

1908-443: The cladograms show two mutually exclusive hypotheses to describe the evolutionary history, at most one of them is correct. The cladogram to the right represents the current universally accepted hypothesis that all primates , including strepsirrhines like the lemurs and lorises , had a common ancestor all of whose descendants are or were primates, and so form a clade; the name Primates is therefore recognized for this clade. Within

1961-402: The development of cultures or artifacts using groups of cultural traits or artifact features. Comparative mythology and folktale use cladistic methods to reconstruct the protoversion of many myths. Mythological phylogenies constructed with mythemes clearly support low horizontal transmissions (borrowings), historical (sometimes Palaeolithic) diffusions and punctuated evolution. They also are

2014-410: The exact historic relationships between the groups. The following terms, coined by Hennig, are used to identify shared or distinct character states among groups: The terms plesiomorphy and apomorphy are relative; their application depends on the position of a group within a tree. For example, when trying to decide whether the tetrapods form a clade, an important question is whether having four limbs

2067-512: The field of biology. Any group of individuals or classes that are hypothesized to have a common ancestor, and to which a set of common characteristics may or may not apply, can be compared pairwise. Cladograms can be used to depict the hypothetical descent relationships within groups of items in many different academic realms. The only requirement is that the items have characteristics that can be identified and measured. Anthropology and archaeology : Cladistic methods have been used to reconstruct

2120-481: The fossil taxon is related to other fossil and extant taxa, as implied by the pattern of shared apomorphic features. An otherwise extinct group with any extant descendants, is not considered (literally) extinct, and for instance does not have a date of extinction. Anything having to do with biology and sex is complicated and messy, and cladistics is no exception. Many species reproduce sexually, and are capable of interbreeding for millions of years. Worse, during such

2173-546: The group consists of a common ancestor with all its descendant branches. Rodents, for example, are a branch of mammals that split off after the end of the period when the clade Dinosauria stopped being the dominant terrestrial vertebrates 66 million years ago. The original population and all its descendants are a clade. The rodent clade corresponds to the order Rodentia, and insects to the class Insecta. These clades include smaller clades, such as chipmunk or ant , each of which consists of even smaller clades. The clade "rodent"

Dvinosauria - Misplaced Pages Continue

2226-407: The hierarchical relationships among different homologous features. It can be difficult to decide whether a character state is in fact the same and thus can be classified as a synapomorphy, which may identify a monophyletic group, or whether it only appears to be the same and is thus a homoplasy, which cannot identify such a group. There is a danger of circular reasoning: assumptions about the shape of

2279-460: The last common ancestor of the group, and thus emerged within the group. ("Evolved from" is misleading, because in cladistics all descendants stay in the ancestral group). To keep only valid clades, upon finding that the group is paraphyletic this way, either such excluded groups should be granted to the clade, or the group should be abolished. Branches down to the divergence to the next significant (e.g. extant) sister are considered stem-groupings of

2332-590: The last few decades, the cladistic approach has revolutionized biological classification and revealed surprising evolutionary relationships among organisms. Increasingly, taxonomists try to avoid naming taxa that are not clades; that is, taxa that are not monophyletic . Some of the relationships between organisms that the molecular biology arm of cladistics has revealed include that fungi are closer relatives to animals than they are to plants, archaea are now considered different from bacteria , and multicellular organisms may have evolved from archaea. The term "clade"

2385-487: The latter contains Tarsiiformes and Anthropoidea. Lemurs and tarsiers may have looked closely related to humans, in the sense of being close on the evolutionary tree to humans. However, from the perspective of a tarsier, humans and lemurs would have looked close, in the exact same sense. Cladistics forces a neutral perspective, treating all branches (extant or extinct) in the same manner. It also forces one to try to make statements, and honestly take into account findings, about

2438-518: The latter term coined by Ernst Mayr (1965), derived from "clade". The results of phylogenetic/cladistic analyses are tree-shaped diagrams called cladograms ; they, and all their branches, are phylogenetic hypotheses. Three methods of defining clades are featured in phylogenetic nomenclature : node-, stem-, and apomorphy-based (see Phylogenetic nomenclature§Phylogenetic definitions of clade names for detailed definitions). The relationship between clades can be described in several ways: The age of

2491-559: The loss of a flange on the rear side of the pterygoid ; and 28 or more presacral vertebrae. Trimerorhachidae is the most basal family of dvinosaurs. Most other dvinosaurs are placed in the superfamily Dvinosauroidea. Within Dvinosauroidea are two families, Eobrachyopidae and Tupilakosauridae , as well as dvinosaurs that cannot be placed in either family, such as Dvinosaurus and Kourerpeton . A 2008 phylogenetic analysis found Eobrachyopidae to be paraphyletic , representing

2544-444: The primates, all anthropoids (monkeys, apes, and humans) are hypothesized to have had a common ancestor all of whose descendants are or were anthropoids, so they form the clade called Anthropoidea. The "prosimians", on the other hand, form a paraphyletic taxon. The name Prosimii is not used in phylogenetic nomenclature , which names only clades; the "prosimians" are instead divided between the clades Strepsirhini and Haplorhini , where

2597-432: The reciprocal host. There are several processes in nature which can cause horizontal gene transfer . This does typically not directly interfere with ancestry of the organism, but can complicate the determination of that ancestry. On another level, one can map the horizontal gene transfer processes, by determining the phylogeny of the individual genes using cladistics. If there is unclarity in mutual relationships, there are

2650-553: The spread of viral infections . HIV , for example, has clades called subtypes, which vary in geographical prevalence. HIV subtype (clade) B, for example is predominant in Europe, the Americas and Japan, whereas subtype A is more common in east Africa. Cladistics#In disciplines other than biology Cladistics ( / k l ə ˈ d ɪ s t ɪ k s / klə- DIST -iks ; from Ancient Greek κλάδος kládos 'branch')

2703-492: The terms "cladistics" and "clade" were popularized by other researchers. Cladistics in the original sense refers to a particular set of methods used in phylogenetic analysis, although it is now sometimes used to refer to the whole field. What is now called the cladistic method appeared as early as 1901 with a work by Peter Chalmers Mitchell for birds and subsequently by Robert John Tillyard (for insects) in 1921, and W. Zimmermann (for plants) in 1943. The term " clade "

SECTION 50

#1732802142430

2756-419: Was championed at this time by the numerical taxonomists Peter Sneath and Robert Sokal , and evolutionary taxonomy by Ernst Mayr . Originally conceived, if only in essence, by Willi Hennig in a book published in 1950, cladistics did not flourish until its translation into English in 1966 (Lewin 1997). Today, cladistics is the most popular method for inferring phylogenetic trees from morphological data. In

2809-554: Was introduced in 1958 by Julian Huxley after having been coined by Lucien Cuénot in 1940, "cladogenesis" in 1958, "cladistic" by Arthur Cain and Harrison in 1960, "cladist" (for an adherent of Hennig's school) by Ernst Mayr in 1965, and "cladistics" in 1966. Hennig referred to his own approach as "phylogenetic systematics". From the time of his original formulation until the end of the 1970s, cladistics competed as an analytical and philosophical approach to systematics with phenetics and so-called evolutionary taxonomy . Phenetics

#429570