Misplaced Pages

EOS-08

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

An Earth observation satellite or Earth remote sensing satellite is a satellite used or designed for Earth observation (EO) from orbit , including spy satellites and similar ones intended for non-military uses such as environmental monitoring , meteorology , cartography and others. The most common type are Earth imaging satellites , that take satellite images , analogous to aerial photographs ; some EO satellites may perform remote sensing without forming pictures, such as in GNSS radio occultation .

#728271

51-483: EOS-08 is an experimental earth-observation Indian satellite launched on 16 August 2024. The satellite carries three payloads namely Electro Optical Infrared Payload (EOIR), SAC, Global Navigation Satellite System- Reflectometry payload (GNSS-R), SAC and SiC UV Dosimeter, LEOS. The spacecraft was launched on the third and final test flight of the Small Satellite Launch Vehicle .The launch

102-483: A delta-v of approximately 50 m/s per year. A second effect to be taken into account is the longitudinal drift, caused by the asymmetry of the Earth – the equator is slightly elliptical ( equatorial eccentricity ). There are two stable equilibrium points sometimes called "gravitational wells" (at 75.3°E and 108°W) and two corresponding unstable points (at 165.3°E and 14.7°W). Any geostationary object placed between

153-427: A geostationary transfer orbit (GTO), an elliptical orbit with an apogee at GEO height and a low perigee . On-board satellite propulsion is then used to raise the perigee, circularise and reach GEO. Satellites in geostationary orbit must all occupy a single ring above the equator . The requirement to space these satellites apart, to avoid harmful radio-frequency interference during operations, means that there are

204-452: A temporary orbit , and placed in a slot above a particular point on the Earth's surface. The orbit requires some stationkeeping to keep its position, and modern retired satellites are placed in a higher graveyard orbit to avoid collisions. In 1929, Herman Potočnik described both geosynchronous orbits in general and the special case of the geostationary Earth orbit in particular as useful orbits for space stations . The first appearance of

255-537: A geostationary orbit in popular literature was in October 1942, in the first Venus Equilateral story by George O. Smith , but Smith did not go into details. British science fiction author Arthur C. Clarke popularised and expanded the concept in a 1945 paper entitled Extra-Terrestrial Relays – Can Rocket Stations Give Worldwide Radio Coverage? , published in Wireless World magazine. Clarke acknowledged

306-415: A geostationary orbit in particular, it ensures that it holds the same longitude over time. This orbital period, T , is directly related to the semi-major axis of the orbit through the formula: where: The eccentricity is zero, which produces a circular orbit . This ensures that the satellite does not move closer or further away from the Earth, which would cause it to track backwards and forwards across

357-525: A geostationary orbit was Syncom 3 , which was launched by a Delta D rocket in 1964. With its increased bandwidth, this satellite was able to transmit live coverage of the Summer Olympics from Japan to America. Geostationary orbits have been in common use ever since, in particular for satellite television. Today there are hundreds of geostationary satellites providing remote sensing and communications. Although most populated land locations on

408-399: A known position) and providing an additional reference signal. This improves position accuracy from approximately 5m to 1m or less. Past and current navigation systems that use geostationary satellites include: Geostationary satellites are launched to the east into a prograde orbit that matches the rotation rate of the equator. The smallest inclination that a satellite can be launched into

459-408: A large area of the earth's surface, extending 81° away in latitude and 77° in longitude. They appear stationary in the sky, which eliminates the need for ground stations to have movable antennas. This means that Earth-based observers can erect small, cheap and stationary antennas that are always directed at the desired satellite. However, latency becomes significant as it takes about 240 ms for

510-516: A limited number of orbital slots available, and thus only a limited number of satellites can be operated in geostationary orbit. This has led to conflict between different countries wishing access to the same orbital slots (countries near the same longitude but differing latitudes ) and radio frequencies . These disputes are addressed through the International Telecommunication Union 's allocation mechanism under

561-440: A satellite to hover over a constant spot on the earth since the orbital period at this altitude is 24 hours. This allows uninterrupted coverage of more than 1/3 of the Earth per satellite, so three satellites, spaced 120° apart, can cover the whole Earth. This type of orbit is mainly used for meteorological satellites . Herman Potočnik explored the idea of using orbiting spacecraft for detailed peaceful and military observation of

SECTION 10

#1732791821729

612-406: A signal to pass from a ground based transmitter on the equator to the satellite and back again. This delay presents problems for latency-sensitive applications such as voice communication, so geostationary communication satellites are primarily used for unidirectional entertainment and applications where low latency alternatives are not available. Geostationary satellites are directly overhead at

663-531: Is a type of satellite that is primarily used to monitor the weather and climate of the Earth . These meteorological satellites, however, see more than clouds and cloud systems. City lights, fires , effects of pollution , auroras , sand and dust storms , snow cover, ice mapping, boundaries of ocean currents , energy flows, etc., are other types of environmental information collected using weather satellites. Weather satellite images helped in monitoring

714-519: Is classified in accordance with ITU Radio Regulations (article 1) as follows: Fixed service (article 1.20) The allocation of radio frequencies is provided according to Article 5 of the ITU Radio Regulations (edition 2012). In order to improve harmonisation in spectrum utilisation, the majority of service-allocations stipulated in this document were incorporated in national Tables of Frequency Allocations and Utilisations which

765-452: Is that of the launch site's latitude, so launching the satellite from close to the equator limits the amount of inclination change needed later. Additionally, launching from close to the equator allows the speed of the Earth's rotation to give the satellite a boost. A launch site should have water or deserts to the east, so any failed rockets do not fall on a populated area. Most launch vehicles place geostationary satellites directly into

816-403: Is the gravitational constant , (6.674 28 ± 0.000 67 ) × 10  m kg s . The magnitude of the acceleration, a , of a body moving in a circle is given by: where v is the magnitude of the velocity (i.e. the speed) of the satellite. From Newton's second law of motion , the centripetal force F c is given by: As F c = F g , so that Replacing v with the equation for

867-781: Is typically 70°, and in some cases less. Geostationary satellite imagery has been used for tracking volcanic ash , measuring cloud top temperatures and water vapour, oceanography , measuring land temperature and vegetation coverage, facilitating cyclone path prediction, and providing real time cloud coverage and other tracking data. Some information has been incorporated into meteorological prediction models , but due to their wide field of view, full-time monitoring and lower resolution, geostationary weather satellite images are primarily used for short-term and real-time forecasting. Geostationary satellites can be used to augment GNSS systems by relaying clock , ephemeris and ionospheric error corrections (calculated from ground stations of

918-408: Is used to provide visible and infrared images of Earth's surface and atmosphere for weather observation, oceanography , and atmospheric tracking. As of 2019 there are 19 satellites in either operation or stand-by. These satellite systems include: These satellites typically capture images in the visual and infrared spectrum with a spatial resolution between 0.5 and 4 square kilometres. The coverage

969-562: Is with-in the responsibility of the appropriate national administration. The allocation might be primary, secondary, exclusive, and shared. However, military usage, in bands where there is civil usage, will be in accordance with the ITU Radio Regulations. Geostationary A geostationary orbit , also referred to as a geosynchronous equatorial orbit ( GEO ), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's equator , 42,164 km (26,199 mi) in radius from Earth's center, and following

1020-579: The Cold War prompted the rapid development of Satellite launch systems and camera technology capable of sufficient Earth observation to garner intelligence on enemy military infrastructure and evaluate nuclear posture. Following the U-2 incident in 1960, which highlighted the risks of aerial spying, the U.S. accelerated surveillance satellite programs like CORONA . Satellites largely replaced aircraft overflights for surveillance after 1960. A weather satellite

1071-536: The MetOp spacecraft of EUMETSAT are all operated at altitudes of about 800 km (500 mi). The Proba-1 , Proba-2 and SMOS spacecraft of European Space Agency are observing the Earth from an altitude of about 700 km (430 mi). The Earth observation satellites of UAE, DubaiSat-1 & DubaiSat-2 are also placed in Low Earth orbits (LEO) orbits and providing satellite imagery of various parts of

SECTION 20

#1732791821729

1122-481: The Radio Regulations . In the 1976 Bogota Declaration , eight countries located on the Earth's equator claimed sovereignty over the geostationary orbits above their territory, but the claims gained no international recognition. A statite is a hypothetical satellite that uses radiation pressure from the sun against a solar sail to modify its orbit. It would hold its location over the dark side of

1173-430: The centripetal force required to maintain the orbit ( F c ) is equal to the gravitational force acting on the satellite ( F g ): From Isaac Newton 's universal law of gravitation , where F g is the gravitational force acting between two objects, M E is the mass of the Earth, 5.9736 × 10  kg , m s is the mass of the satellite, r is the distance between the centers of their masses , and G

1224-451: The direction of Earth's rotation . An object in such an orbit has an orbital period equal to Earth's rotational period, one sidereal day , and so to ground observers it appears motionless, in a fixed position in the sky. The concept of a geostationary orbit was popularised by the science fiction writer Arthur C. Clarke in the 1940s as a way to revolutionise telecommunications, and the first satellite to be placed in this kind of orbit

1275-424: The Earth at a latitude of approximately 30 degrees. A statite is stationary relative to the Earth and Sun system rather than compared to surface of the Earth, and could ease congestion in the geostationary ring. Geostationary satellites require some station keeping to keep their position, and once they run out of thruster fuel they are generally retired. The transponders and other onboard systems often outlive

1326-531: The Earth. To get global coverage with a low orbit, a polar orbit is used. A low orbit will have an orbital period of roughly 100 minutes and the Earth will rotate around its polar axis about 25° between successive orbits. The ground track moves towards the west 25° each orbit, allowing a different section of the globe to be scanned with each orbit. Most are in Sun-synchronous orbits . A geostationary orbit , at 36,000 km (22,000 mi), allows

1377-400: The absence of servicing missions from the Earth or a renewable propulsion method, the consumption of thruster propellant for station-keeping places a limitation on the lifetime of the satellite. Hall-effect thrusters , which are currently in use, have the potential to prolong the service life of a satellite by providing high-efficiency electric propulsion . For circular orbits around a body,

1428-458: The concept was seen as impractical, so Hughes often withheld funds and support. By 1961, Rosen and his team had produced a cylindrical prototype with a diameter of 76 centimetres (30 in), height of 38 centimetres (15 in), weighing 11.3 kilograms (25 lb), light and small enough to be placed into orbit. It was spin stabilised with a dipole antenna producing a pancake shaped beam. In August 1961, they were contracted to begin building

1479-541: The connection in his introduction to The Complete Venus Equilateral . The orbit, which Clarke first described as useful for broadcast and relay communications satellites, is sometimes called the Clarke orbit. Similarly, the collection of artificial satellites in this orbit is known as the Clarke Belt. In technical terminology the orbit is referred to as either a geostationary or geosynchronous equatorial orbit, with

1530-583: The current vegetation state to its long term average. For example, the 2002 oil spill off the northwest coast of Spain was watched carefully by the European ENVISAT , which, though not a weather satellite, flies an instrument (ASAR) which can see changes in the sea surface. Anthropogenic emissions can be monitored by evaluating data of tropospheric NO 2 and SO 2 . These types of satellites are almost always in Sun-synchronous and "frozen" orbits. A Sun-synchronous orbit passes over each spot on

1581-495: The discovery of the Earth's Van Allen radiation belts . The TIROS-1 spacecraft, launched on April 1, 1960, as part of NASA's Television Infrared Observation Satellite (TIROS) program, sent back the first television footage of weather patterns to be taken from space. In 2008, more than 150 Earth observation satellites were in orbit, recording data with both passive and active sensors and acquiring more than 10 terabits of data daily. By 2021, that total had grown to over 950, with

EOS-08 - Misplaced Pages Continue

1632-659: The equator and appear lower in the sky to an observer nearer the poles. As the observer's latitude increases, communication becomes more difficult due to factors such as atmospheric refraction , Earth's thermal emission , line-of-sight obstructions, and signal reflections from the ground or nearby structures. At latitudes above about 81°, geostationary satellites are below the horizon and cannot be seen at all. Because of this, some Russian communication satellites have used elliptical Molniya and Tundra orbits, which have excellent visibility at high latitudes. A worldwide network of operational geostationary meteorological satellites

1683-474: The equilibrium points would (without any action) be slowly accelerated towards the stable equilibrium position, causing a periodic longitude variation. The correction of this effect requires station-keeping maneuvers with a maximal delta-v of about 2 m/s per year, depending on the desired longitude. Solar wind and radiation pressure also exert small forces on satellites: over time, these cause them to slowly drift away from their prescribed orbits. In

1734-553: The following properties: An inclination of zero ensures that the orbit remains over the equator at all times, making it stationary with respect to latitude from the point of view of a ground observer (and in the Earth-centered Earth-fixed reference frame). The orbital period is equal to exactly one sidereal day. This means that the satellite will return to the same point above the Earth's surface every (sidereal) day, regardless of other orbital properties. For

1785-460: The ground at the same time of day, so that observations from each pass can be more easily compared, since the Sun is in the same spot in each observation. A "frozen" orbit is the closest possible orbit to a circular orbit that is undisturbed by the oblateness of the Earth , gravitational attraction from the Sun and Moon, solar radiation pressure , and air drag . Terrain can be mapped from space with

1836-494: The ground in his 1928 book, The Problem of Space Travel . He described how the special conditions of space could be useful for scientific experiments. The book described geostationary satellites (first put forward by Konstantin Tsiolkovsky ) and discussed communication between them and the ground using radio, but fell short of the idea of using satellites for mass broadcasting and as telecommunications relays. The onset of

1887-523: The ground. All geostationary satellites have to be located on this ring. A combination of lunar gravity, solar gravity, and the flattening of the Earth at its poles causes a precession motion of the orbital plane of any geostationary object, with an orbital period of about 53 years and an initial inclination gradient of about 0.85° per year, achieving a maximal inclination of 15° after 26.5 years. To correct for this perturbation , regular orbital stationkeeping maneuvers are necessary, amounting to

1938-461: The largest number of satellites operated by US-based company Planet Labs . Most Earth observation satellites carry instruments that should be operated at a relatively low altitude. Most orbit at altitudes above 500 to 600 kilometers (310 to 370 mi). Lower orbits have significant air-drag , which makes frequent orbit reboost maneuvers necessary. The Earth observation satellites ERS-1, ERS-2 and Envisat of European Space Agency as well as

1989-465: The launch of the first artificial satellite, Sputnik 1 , by the Soviet Union on October 4, 1957. Sputnik 1 sent back radio signals, which scientists used to study the ionosphere . The United States Army Ballistic Missile Agency launched the first American satellite, Explorer 1 , for NASA's Jet Propulsion Laboratory on January 31, 1958. The information sent back from its radiation detector led to

2040-476: The planet now have terrestrial communications facilities ( microwave , fiber-optic ), with telephone access covering 96% of the population and internet access 90%, some rural and remote areas in developed countries are still reliant on satellite communications. Most commercial communications satellites , broadcast satellites and SBAS satellites operate in geostationary orbits. Geostationary communication satellites are useful because they are visible from

2091-640: The real satellite. They lost Syncom 1 to electronics failure, but Syncom 2 was successfully placed into a geosynchronous orbit in 1963. Although its inclined orbit still required moving antennas, it was able to relay TV transmissions, and allowed for US President John F. Kennedy in Washington D.C., to phone Nigerian prime minister Abubakar Tafawa Balewa aboard the USNS Kingsport docked in Lagos on August 23, 1963. The first satellite placed in

EOS-08 - Misplaced Pages Continue

2142-524: The same plane, altitude and speed; however, the presence of satellites in eccentric orbits allows for collisions at up to 4 km/s. Although a collision is comparatively unlikely, GEO satellites have a limited ability to avoid any debris. At geosynchronous altitude, objects less than 10 cm in diameter cannot be seen from the Earth, making it difficult to assess their prevalence. Despite efforts to reduce risk, spacecraft collisions have occurred. The European Space Agency telecom satellite Olympus-1

2193-405: The sky. A geostationary orbit can be achieved only at an altitude very close to 35,786 kilometres (22,236 miles) and directly above the equator. This equates to an orbital speed of 3.07 kilometres per second (1.91 miles per second) and an orbital period of 1,436 minutes, one sidereal day . This ensures that the satellite will match the Earth's rotational period and has a stationary footprint on

2244-492: The terms used somewhat interchangeably. The first geostationary satellite was designed by Harold Rosen while he was working at Hughes Aircraft in 1959. Inspired by Sputnik 1 , he wanted to use a geostationary satellite to globalise communications. Telecommunications between the US and Europe was then possible between just 136 people at a time, and reliant on high frequency radios and an undersea cable . Conventional wisdom at

2295-485: The thruster fuel and by allowing the satellite to move naturally into an inclined geosynchronous orbit some satellites can remain in use, or else be elevated to a graveyard orbit . This process is becoming increasingly regulated and satellites must have a 90% chance of moving over 200 km above the geostationary belt at end of life. Space debris at geostationary orbits typically has a lower collision speed than at low Earth orbit (LEO) since all GEO satellites orbit in

2346-501: The time was that it would require too much rocket power to place a satellite in a geostationary orbit and it would not survive long enough to justify the expense, so early efforts were put towards constellations of satellites in low or medium Earth orbit. The first of these were the passive Echo balloon satellites in 1960, followed by Telstar 1 in 1962. Although these projects had difficulties with signal strength and tracking, issues that could be solved using geostationary orbits,

2397-646: The use of satellites, such as Radarsat-1 and TerraSAR-X . According to the International Telecommunication Union (ITU), Earth exploration-satellite service (also: Earth exploration-satellite radiocommunication service ) is – according to Article 1.51 of the ITU Radio Regulations (RR) – defined as: A radiocommunication service between earth stations and one or more space stations , which may include links between space stations, in which: This service may also include feeder links necessary for its operation. This radiocommunication service

2448-478: The volcanic ash cloud from Mount St. Helens and activity from other volcanoes such as Mount Etna . Smoke from fires in the western United States such as Colorado and Utah have also been monitored. Other environmental satellites can assist environmental monitoring by detecting changes in the Earth's vegetation, atmospheric trace gas content, sea state, ocean color, and ice fields. By monitoring vegetation changes over time, droughts can be monitored by comparing

2499-494: Was launched in 1963. Communications satellites are often placed in a geostationary orbit so that Earth-based satellite antennas do not have to rotate to track them but can be pointed permanently at the position in the sky where the satellites are located. Weather satellites are also placed in this orbit for real-time monitoring and data collection, and navigation satellites to provide a known calibration point and enhance GPS accuracy. Geostationary satellites are launched via

2550-617: Was postponded from August 15 and finally took place on August 16, 2024. Three days after launch on August 19, the EIOR instrument sent back its first data, captureing high-resolution thermal images of pune city and of the Namibia Desert. It soon followed with an image capture over Santiago,Chile following a pass of Landsat-9,indicating the local temperature difference over a span of 4 hours. Earth observation satellite The first occurrence of satellite remote sensing can be dated to

2601-499: Was struck by a meteoroid on August 11, 1993, and eventually moved to a graveyard orbit , and in 2006 the Russian Express-AM11 communications satellite was struck by an unknown object and rendered inoperable, although its engineers had enough contact time with the satellite to send it into a graveyard orbit. In 2017, both AMC-9 and Telkom-1 broke apart from an unknown cause. A typical geostationary orbit has

SECTION 50

#1732791821729
#728271