Misplaced Pages

European Geostationary Navigation Overlay Service

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The European Geostationary Navigation Overlay Service ( EGNOS ) is a satellite-based augmentation system (SBAS) developed by the European Space Agency and EUROCONTROL on behalf of the European Commission . Currently, it supplements GPS by reporting on the reliability and accuracy of their positioning data and sending out corrections. The system will supplement Galileo in the future version 3.0.

#122877

58-492: EGNOS consists of 40 Ranging Integrity Monitoring Stations, 2 Mission Control Centres, 6 Navigation Land Earth Stations, the EGNOS Wide Area Network (EWAN), and 3 geostationary satellites . Ground stations determine the accuracy of the satellite navigation systems data and transfer it to the geostationary satellites; users may freely obtain this data from those satellites using an EGNOS-enabled receiver, or over

116-483: A delta-v of approximately 50 m/s per year. A second effect to be taken into account is the longitudinal drift, caused by the asymmetry of the Earth – the equator is slightly elliptical ( equatorial eccentricity ). There are two stable equilibrium points sometimes called "gravitational wells" (at 75.3°E and 108°W) and two corresponding unstable points (at 165.3°E and 14.7°W). Any geostationary object placed between

174-427: A geostationary transfer orbit (GTO), an elliptical orbit with an apogee at GEO height and a low perigee . On-board satellite propulsion is then used to raise the perigee, circularise and reach GEO. Satellites in geostationary orbit must all occupy a single ring above the equator . The requirement to space these satellites apart, to avoid harmful radio-frequency interference during operations, means that there are

232-431: A geosynchronous equatorial orbit ( GEO ), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's equator , 42,164 km (26,199 mi) in radius from Earth's center, and following the direction of Earth's rotation . An object in such an orbit has an orbital period equal to Earth's rotational period, one sidereal day , and so to ground observers it appears motionless, in

290-616: A budget of €14.6 billion for its six-year, 2021–2027, research and development period. The system started its initial operations in July 2005, with accuracy better than two metres and availability above 99%. As of July 2005, EGNOS has been broadcasting a continuous signal, and at the end of July 2005, the system was again used to track cyclists in the Tour de France road race. In 2009, the European Commission announced it had signed

348-520: A contract with the company European Satellite Services Provider to run EGNOS. The official start of operations was announced by the European Commission on 1 October 2009. The system was certified for use in safety of life applications in March 2011. An EGNOS Data Access Service became available in July 2012. Initial work to extend EGNOS coverage to the Southern Africa region is being done under

406-455: A fixed position in the sky. The concept of a geostationary orbit was popularised by the science fiction writer Arthur C. Clarke in the 1940s as a way to revolutionise telecommunications, and the first satellite to be placed in this kind of orbit was launched in 1963. Communications satellites are often placed in a geostationary orbit so that Earth-based satellite antennas do not have to rotate to track them but can be pointed permanently at

464-415: A geostationary orbit in particular, it ensures that it holds the same longitude over time. This orbital period, T , is directly related to the semi-major axis of the orbit through the formula: where: The eccentricity is zero, which produces a circular orbit . This ensures that the satellite does not move closer or further away from the Earth, which would cause it to track backwards and forwards across

522-579: A geostationary satellite to globalise communications. Telecommunications between the US and Europe was then possible between just 136 people at a time, and reliant on high frequency radios and an undersea cable . Conventional wisdom at the time was that it would require too much rocket power to place a satellite in a geostationary orbit and it would not survive long enough to justify the expense, so early efforts were put towards constellations of satellites in low or medium Earth orbit. The first of these were

580-552: A higher graveyard orbit to avoid collisions. In 1929, Herman Potočnik described both geosynchronous orbits in general and the special case of the geostationary Earth orbit in particular as useful orbits for space stations . The first appearance of a geostationary orbit in popular literature was in October 1942, in the first Venus Equilateral story by George O. Smith , but Smith did not go into details. British science fiction author Arthur C. Clarke popularised and expanded

638-399: A known position) and providing an additional reference signal. This improves position accuracy from approximately 5m to 1m or less. Past and current navigation systems that use geostationary satellites include: Geostationary satellites are launched to the east into a prograde orbit that matches the rotation rate of the equator. The smallest inclination that a satellite can be launched into

SECTION 10

#1732776813123

696-408: A large area of the earth's surface, extending 81° away in latitude and 77° in longitude. They appear stationary in the sky, which eliminates the need for ground stations to have movable antennas. This means that Earth-based observers can erect small, cheap and stationary antennas that are always directed at the desired satellite. However, latency becomes significant as it takes about 240 ms for

754-516: A limited number of orbital slots available, and thus only a limited number of satellites can be operated in geostationary orbit. This has led to conflict between different countries wishing access to the same orbital slots (countries near the same longitude but differing latitudes ) and radio frequencies . These disputes are addressed through the International Telecommunication Union 's allocation mechanism under

812-678: A project called ESESA - EGNOS Service Extension to South Africa. The European Commission is defining the roadmap for the evolution of the EGNOS mission. This roadmap should cope with legacy and new missions: In 2021, following Brexit , the United Kingdom withdrew regulatory approval for EGNOS, and aircraft pilots were no longer permitted to use the system. Similar to WAAS , EGNOS is mostly designed for aviation users who enjoy unperturbed reception of direct signals from geostationary satellites up to very high latitudes . The use of EGNOS on

870-406: A signal to pass from a ground based transmitter on the equator to the satellite and back again. This delay presents problems for latency-sensitive applications such as voice communication, so geostationary communication satellites are primarily used for unidirectional entertainment and applications where low latency alternatives are not available. Geostationary satellites are directly overhead at

928-507: A way that, at any point in time, at least two GEOs broadcast an operational signal. 4. User Segment : the EGNOS user segment consists of EGNOS receivers that enable their users to accurately compute their positions with integrity. To receive EGNOS signals, the end user must use an EGNOS-compatible receiver. Currently, EGNOS compatible receivers are available for such market segments as agriculture, aviation, maritime, rail, mapping/surveying, road and location based services (LBS). In March 2011,

986-478: Is an important factor in the VMC minima: as aircraft flying in clouds cannot be seen, a buffer zone from clouds established by the minimum separation requirements provides for time to react to an unseen/unknown aircraft exiting the clouds, especially when air traffic control may not be enforcing aircraft separation (as in airspace classes C-G). IMC should not be confused with IFR ( instrument flight rules ) – IMC describes

1044-473: Is in the units of measurement as different regulatory authorities use different units of measurement in aviation. The VMC minima tend to be stricter in controlled airspace, where there is increased air traffic, therefore greater visibility and cloud clearance is desirable. The degree of separation provided by air traffic control is also a factor. For example, in strictly-controlled class A and B airspace , where all aircraft are provided with positive separation,

1102-438: Is possible to be flying under VFR in conditions that are legally considered VMC, but still be forced to rely on flight instruments for attitude control because there is no distinct external horizon; for example, at night over water, which may create a so-called black hole effect if the sky and ground are equally dark, or when lights on the water cannot be distinguished from stars in the sky. If weather deteriorates during flight or

1160-452: Is that of the launch site's latitude, so launching the satellite from close to the equator limits the amount of inclination change needed later. Additionally, launching from close to the equator allows the speed of the Earth's rotation to give the satellite a boost. A launch site should have water or deserts to the east, so any failed rockets do not fall on a populated area. Most launch vehicles place geostationary satellites directly into

1218-403: Is the gravitational constant , (6.674 28 ± 0.000 67 ) × 10  m kg s . The magnitude of the acceleration, a , of a body moving in a circle is given by: where v is the magnitude of the velocity (i.e. the speed) of the satellite. From Newton's second law of motion , the centripetal force F c is given by: As F c = F g , so that Replacing v with the equation for

SECTION 20

#1732776813123

1276-781: Is typically 70°, and in some cases less. Geostationary satellite imagery has been used for tracking volcanic ash , measuring cloud top temperatures and water vapour, oceanography , measuring land temperature and vegetation coverage, facilitating cyclone path prediction, and providing real time cloud coverage and other tracking data. Some information has been incorporated into meteorological prediction models , but due to their wide field of view, full-time monitoring and lower resolution, geostationary weather satellite images are primarily used for short-term and real-time forecasting. Geostationary satellites can be used to augment GNSS systems by relaying clock , ephemeris and ionospheric error corrections (calculated from ground stations of

1334-408: Is used to provide visible and infrared images of Earth's surface and atmosphere for weather observation, oceanography , and atmospheric tracking. As of 2019 there are 19 satellites in either operation or stand-by. These satellite systems include: These satellites typically capture images in the visual and infrared spectrum with a spatial resolution between 0.5 and 4 square kilometres. The coverage

1392-481: The Radio Regulations . In the 1976 Bogota Declaration , eight countries located on the Earth's equator claimed sovereignty over the geostationary orbits above their territory, but the claims gained no international recognition. A statite is a hypothetical satellite that uses radiation pressure from the sun against a solar sail to modify its orbit. It would hold its location over the dark side of

1450-732: The USNS Kingsport docked in Lagos on August 23, 1963. The first satellite placed in a geostationary orbit was Syncom 3 , which was launched by a Delta D rocket in 1964. With its increased bandwidth, this satellite was able to transmit live coverage of the Summer Olympics from Japan to America. Geostationary orbits have been in common use ever since, in particular for satellite television. Today there are hundreds of geostationary satellites providing remote sensing and communications. Although most populated land locations on

1508-430: The centripetal force required to maintain the orbit ( F c ) is equal to the gravitational force acting on the satellite ( F g ): From Isaac Newton 's universal law of gravitation , where F g is the gravitational force acting between two objects, M E is the mass of the Earth, 5.9736 × 10  kg , m s is the mass of the satellite, r is the distance between the centers of their masses , and G

1566-857: The speed of an object moving around a circle produces: where T is the orbital period (i.e. one sidereal day), and is equal to 86 164 .090 54  s . This gives an equation for r : The product GM E is known with much greater precision than either factor alone; it is known as the geocentric gravitational constant μ = 398 600 .4418 ± 0.0008 km s . Hence Instrument meteorological conditions In aviation , instrument meteorological conditions ( IMC ) are weather conditions that require pilots to fly primarily by reference to flight instruments , and therefore under instrument flight rules (IFR), as opposed to flying by outside visual references under visual flight rules (VFR). Typically, this means flying in cloud or poor weather, where little or nothing can be seen or recognised when looking out of

1624-647: The EGNOS Safety-of-Life Service was deemed acceptable for use in aviation. This allows pilots throughout Europe to use the EGNOS system as a form of positioning during an approach, and allows pilots to land the aircraft in IMC using a GPS approach. As of September 2018 LPV ( Localizer performance with vertical guidance ) landing procedures, which are EGNOS-enabled, were available at more than 180 airports across Europe. Geostationary satellite A geostationary orbit , also referred to as

1682-543: The EGNOS Service Provider (ESSP). 3. Space Segment: composed of at least three geostationary satellites broadcasting corrections and integrity information for GPS satellites in the L1 frequency band (1575.42 MHz). This space segment configuration provides a high level of redundancy over the whole service area in the event of a failure in the geostationary satellite link. EGNOS operations are handled in such

1740-638: The EGNOS Wide Area Network (EWAN), which provides the communication network for all the components of the ground segment. 2. Support segment: In addition to the above-mentioned stations/centres, the system has other ground support installations involved in system operations planning and performance assessment, namely the Performance Assessment and Checkout Facility (PACF) and the Application Specific Qualification Facility (ASQF) which are operated by

1798-424: The Earth at a latitude of approximately 30 degrees. A statite is stationary relative to the Earth and Sun system rather than compared to surface of the Earth, and could ease congestion in the geostationary ring. Geostationary satellites require some station keeping to keep their position, and once they run out of thruster fuel they are generally retired. The transponders and other onboard systems often outlive

European Geostationary Navigation Overlay Service - Misplaced Pages Continue

1856-584: The Federal Aviation Administration indicate that spatial disorientation is a factor in approximately 15% of general aviation accidents; of those, approximately 90% are fatal. Other statistics indicate that 4% of general aviation accidents were attributable to weather; of those weather-related accidents, 50% resulted from VFR into IMC, and 72% of the VFR into IMC accidents were fatal. In the 180—Degree Turn Experiment conducted in 1954 by

1914-960: The Internet. One main use of the system is in aviation . According to specifications, horizontal position accuracy when using EGNOS-provided corrections should be better than seven metres. In practice, the horizontal position accuracy is at the metre level. Similar service is provided in North America by the Wide Area Augmentation System (WAAS), in Russia by the System for Differential Corrections and Monitoring (SDCM), and in Asia, by Japan's Multi-functional Satellite Augmentation System (MSAS) and India's GPS-aided GEO augmented navigation (GAGAN). Galileo and EGNOS received

1972-556: The University of Illinois, twenty student pilots flew from VFR into simulated IMC; after entry, all of them eventually reached a dangerous flight condition or attitude over a period ranging from 20 to 480 seconds. The average time to reach a dangerous condition was 178 seconds, echoed in the title of the "178 Seconds to Live" article distributed by the Federal Aviation Administration in 1993; however,

2030-496: The VMC minima feature visibility limits only, whereas in classes C–G airspace, where some or all aircraft are not separated from each other by air traffic control, the VMC minima also feature cloud separation criteria. With good visibility, pilots can determine the aircraft attitude by utilising visual cues from outside the aircraft, most significantly the horizon . Without such external visual cues, pilots may be subject to sensory illusions and must use an alternative reference for

2088-400: The absence of servicing missions from the Earth or a renewable propulsion method, the consumption of thruster propellant for station-keeping places a limitation on the lifetime of the satellite. Hall-effect thrusters , which are currently in use, have the potential to prolong the service life of a satellite by providing high-efficiency electric propulsion . For circular orbits around a body,

2146-500: The actual weather conditions, while IFR describes the rules under which the aircraft is flying. Aircraft can (and often do) fly IFR in clear weather, for operational reasons or when flying in airspace where flight under VFR is not permitted; for example, in the United States, flight under VFR in class A airspaces is prohibited except in emergencies. Indeed by far the majority of commercial flights are operated solely under IFR. It

2204-432: The aircraft flies into clouds, a flight that started out under VFR may turn into a flight under IMC. This is known as inadvertent entry into instrument meteorological conditions (IIMC), or more briefly VFR into IMC . IIMC is a potentially dangerous situation that has resulted in many accidents, as pilots may succumb to spatial disorientation , leading to loss of control or controlled flight into terrain . Statistics from

2262-428: The attitude, which is usually provided by gyroscopically-driven instruments such as the attitude indicator ("artificial horizon"). The availability of a good horizon cue is controlled by meteorological visibility, hence minimum visibility limits feature in the VMC minima. Because the basic traffic avoidance principle of flying under visual flight rules (VFR) is to "see and avoid", it follows that distance from clouds

2320-464: The collection of artificial satellites in this orbit is known as the Clarke Belt. In technical terminology the orbit is referred to as either a geostationary or geosynchronous equatorial orbit, with the terms used somewhat interchangeably. The first geostationary satellite was designed by Harold Rosen while he was working at Hughes Aircraft in 1959. Inspired by Sputnik 1 , he wanted to use

2378-520: The concept in a 1945 paper entitled Extra-Terrestrial Relays – Can Rocket Stations Give Worldwide Radio Coverage? , published in Wireless World magazine. Clarke acknowledged the connection in his introduction to The Complete Venus Equilateral . The orbit, which Clarke first described as useful for broadcast and relay communications satellites, is sometimes called the Clarke orbit. Similarly,

European Geostationary Navigation Overlay Service - Misplaced Pages Continue

2436-659: The equator and appear lower in the sky to an observer nearer the poles. As the observer's latitude increases, communication becomes more difficult due to factors such as atmospheric refraction , Earth's thermal emission , line-of-sight obstructions, and signal reflections from the ground or nearby structures. At latitudes above about 81°, geostationary satellites are below the horizon and cannot be seen at all. Because of this, some Russian communication satellites have used elliptical Molniya and Tundra orbits, which have excellent visibility at high latitudes. A worldwide network of operational geostationary meteorological satellites

2494-474: The equilibrium points would (without any action) be slowly accelerated towards the stable equilibrium position, causing a periodic longitude variation. The correction of this effect requires station-keeping maneuvers with a maximal delta-v of about 2 m/s per year, depending on the desired longitude. Solar wind and radiation pressure also exert small forces on satellites: over time, these cause them to slowly drift away from their prescribed orbits. In

2552-553: The following properties: An inclination of zero ensures that the orbit remains over the equator at all times, making it stationary with respect to latitude from the point of view of a ground observer (and in the Earth-centered Earth-fixed reference frame). The orbital period is equal to exactly one sidereal day. This means that the satellite will return to the same point above the Earth's surface every (sidereal) day, regardless of other orbital properties. For

2610-640: The ground, especially in urban areas, is limited due to relatively low elevation of geostationary satellites : about 30° above horizon in central Europe and much less in the North of Europe. To address this problem, ESA released in 2002 SISNeT, an Internet service designed for continuous delivery of EGNOS signals to ground users. The first experimental SISNeT receiver was created by the Finnish Geodetic Institute . The commercial SISNeT receivers have been developed by Septentrio . PRN #136

2668-523: The ground. All geostationary satellites have to be located on this ring. A combination of lunar gravity, solar gravity, and the flattening of the Earth at its poles causes a precession motion of the orbital plane of any geostationary object, with an orbital period of about 53 years and an initial inclination gradient of about 0.85° per year, achieving a maximal inclination of 15° after 26.5 years. To correct for this perturbation , regular orbital stationkeeping maneuvers are necessary, amounting to

2726-422: The minima specified for visual meteorological conditions. Conditions that are above VMC minima but relatively close to one or more of them are sometimes referred to as marginal VMC , and flight in such conditions is referred to as marginal VFR . ICAO recommends the VMC minima internationally; they are defined and enforced by national regulations, which rarely significantly vary from ICAO. The typical variation

2784-416: The original 1954 study was noted for simulating an aircraft the subjects had little to no experience with, and only providing a partial instrument panel. In addition, the "178 seconds" average time was extracted from the preliminary evaluation; after training for a standardized procedure to exit IMC, each student pilot was tested three times, and 59 of the 60 resulting simulated flights successfully resulted in

2842-538: The passive Echo balloon satellites in 1960, followed by Telstar 1 in 1962. Although these projects had difficulties with signal strength and tracking, issues that could be solved using geostationary orbits, the concept was seen as impractical, so Hughes often withheld funds and support. By 1961, Rosen and his team had produced a cylindrical prototype with a diameter of 76 centimetres (30 in), height of 38 centimetres (15 in), weighing 11.3 kilograms (25 lb), light and small enough to be placed into orbit. It

2900-476: The planet now have terrestrial communications facilities ( microwave , fiber-optic ), with telephone access covering 96% of the population and internet access 90%, some rural and remote areas in developed countries are still reliant on satellite communications. Most commercial communications satellites , broadcast satellites and SBAS satellites operate in geostationary orbits. Geostationary communication satellites are useful because they are visible from

2958-485: The position in the sky where the satellites are located. Weather satellites are also placed in this orbit for real-time monitoring and data collection, and navigation satellites to provide a known calibration point and enhance GPS accuracy. Geostationary satellites are launched via a temporary orbit , and placed in a slot above a particular point on the Earth's surface. The orbit requires some stationkeeping to keep its position, and modern retired satellites are placed in

SECTION 50

#1732776813123

3016-524: The same plane, altitude and speed; however, the presence of satellites in eccentric orbits allows for collisions at up to 4 km/s. Although a collision is comparatively unlikely, GEO satellites have a limited ability to avoid any debris. At geosynchronous altitude, objects less than 10 cm in diameter cannot be seen from the Earth, making it difficult to assess their prevalence. Despite efforts to reduce risk, spacecraft collisions have occurred. The European Space Agency telecom satellite Olympus-1

3074-405: The sky. A geostationary orbit can be achieved only at an altitude very close to 35,786 kilometres (22,236 miles) and directly above the equator. This equates to an orbital speed of 3.07 kilometres per second (1.91 miles per second) and an orbital period of 1,436 minutes, one sidereal day . This ensures that the satellite will match the Earth's rotational period and has a stationary footprint on

3132-485: The thruster fuel and by allowing the satellite to move naturally into an inclined geosynchronous orbit some satellites can remain in use, or else be elevated to a graveyard orbit . This process is becoming increasingly regulated and satellites must have a 90% chance of moving over 200 km above the geostationary belt at end of life. Space debris at geostationary orbits typically has a lower collision speed than at low Earth orbit (LEO) since all GEO satellites orbit in

3190-477: The window. Simulated IMC can be achieved for training purposes by wearing view-limiting devices , which restrict outside vision and force the trainee to rely on instrument indications only. The weather conditions required for flight under VFR are known as visual meteorological conditions (VMC). The boundary criteria between VMC and IMC are known as VMC minima . IMC and VMC are mutually exclusive. In fact, instrument meteorological conditions are defined as less than

3248-566: Was spin stabilised with a dipole antenna producing a pancake shaped beam. In August 1961, they were contracted to begin building the real satellite. They lost Syncom 1 to electronics failure, but Syncom 2 was successfully placed into a geosynchronous orbit in 1963. Although its inclined orbit still required moving antennas, it was able to relay TV transmissions, and allowed for US President John F. Kennedy in Washington D.C., to phone Nigerian prime minister Abubakar Tafawa Balewa aboard

3306-473: Was placed into the Operational Platform from 23/08/2018 at 10:00 UTC and PRN #120 was placed into Test Platform from 30/08/2018 at 13:00 UTC. EGNOS is divided into four functional segments: 1. Ground segment: comprises a network of 40 Ranging Integrity Monitoring Stations (RIMS), 2 Mission Control Centres (MCC), 2 Navigation Land Earth Stations (NLES) per Geostationary Earth Orbit (GEO), and

3364-499: Was struck by a meteoroid on August 11, 1993, and eventually moved to a graveyard orbit , and in 2006 the Russian Express-AM11 communications satellite was struck by an unknown object and rendered inoperable, although its engineers had enough contact time with the satellite to send it into a graveyard orbit. In 2017, both AMC-9 and Telkom-1 broke apart from an unknown cause. A typical geostationary orbit has

#122877