Misplaced Pages

East African Orogeny

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The East African Orogeny ( EAO ) is the main stage in the Neoproterozoic assembly of East and West Gondwana (Australia–India–Antarctica and Africa–South America) along the Mozambique Belt .

#50949

77-708: The notion that Gondwana was assembled during the Late Precambrian from two older fragments along the Pan-African Mozambique Belt was first proposed in the early 1980s. A decade later this continental collision was named the East African Orogeny, but it was also realised that this was not the simple bringing together of two halves. Rather, it was the piecemeal assembly of several much smaller cratonic elements that once formed an earlier supercontinent (today known as Rodinia ),

154-400: A rising plume of molten material from the deep mantle. This would have built up a thick layer of depleted mantle underneath the cratons. A third model suggests that successive slabs of subducting oceanic lithosphere became lodged beneath a proto-craton, underplating the craton with chemically depleted rock. A fourth theory presented in a 2015 publication suggests that the origin of

231-400: A (usually small) angle. Sometimes multiple sets of layers with different orientations exist in the same rock, a structure called cross-bedding . Cross-bedding is characteristic of deposition by a flowing medium (wind or water). The opposite of cross-bedding is parallel lamination, where all sedimentary layering is parallel. Differences in laminations are generally caused by cyclic changes in

308-424: A diagenetic structure common in carbonate rocks is a stylolite . Stylolites are irregular planes where material was dissolved into the pore fluids in the rock. This can result in the precipitation of a certain chemical species producing colouring and staining of the rock, or the formation of concretions . Concretions are roughly concentric bodies with a different composition from the host rock. Their formation can be

385-463: A particular sedimentary environment. Examples of bed forms include dunes and ripple marks . Sole markings, such as tool marks and flute casts, are grooves eroded on a surface that are preserved by renewed sedimentation. These are often elongated structures and can be used to establish the direction of the flow during deposition. Ripple marks also form in flowing water. There can be symmetric or asymmetric. Asymmetric ripples form in environments where

462-637: A process that eventually culminated in the relatively short-lived Gondwanan supercontinent. Two partly incomparable scenarios have been proposed for this assembly. In one model, the EAO evolved from an accretionary orogeny involving the amalgamation of arcs and evolved into a collisional orogeny when the Neoproterozoic continent Azania collided with the Congo-Tanzania-Bangweulu Block at c. 640 Ma . In another model,

539-465: A red colour does not necessarily mean the rock formed in a continental environment or arid climate. The presence of organic material can colour a rock black or grey. Organic material is formed from dead organisms, mostly plants. Normally, such material eventually decays by oxidation or bacterial activity. Under anoxic circumstances, however, organic material cannot decay and leaves a dark sediment, rich in organic material. This can, for example, occur at

616-489: A rock is usually expressed with the Wentworth scale, though alternative scales are sometimes used. The grain size can be expressed as a diameter or a volume, and is always an average value, since a rock is composed of clasts with different sizes. The statistical distribution of grain sizes is different for different rock types and is described in a property called the sorting of the rock. When all clasts are more or less of

693-465: A sediment after its initial deposition. This includes compaction and lithification of the sediments. Early stages of diagenesis, described as eogenesis , take place at shallow depths (a few tens of meters) and is characterized by bioturbation and mineralogical changes in the sediments, with only slight compaction. The red hematite that gives red bed sandstones their color is likely formed during eogenesis. Some biochemical processes, like

770-463: A sedimentary rock are called sediment , and may be composed of geological detritus (minerals) or biological detritus (organic matter). The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement , which are called agents of denudation . Biological detritus

847-431: A sedimentary rock may have been present in the original sediments or may formed by precipitation during diagenesis. In the second case, a mineral precipitate may have grown over an older generation of cement. A complex diagenetic history can be established by optical mineralogy , using a petrographic microscope . Carbonate rocks predominantly consist of carbonate minerals such as calcite, aragonite or dolomite . Both

SECTION 10

#1732766040051

924-516: A small-scale property of a rock, but determines many of its large-scale properties, such as the density , porosity or permeability . The 3D orientation of the clasts is called the fabric of the rock. The size and form of clasts can be used to determine the velocity and direction of current in the sedimentary environment that moved the clasts from their origin; fine, calcareous mud only settles in quiet water while gravel and larger clasts are moved only by rapidly moving water. The grain size of

1001-457: A solid residue very close in composition to Archean lithospheric mantle, but continental shields do not contain enough komatiite to match the expected depletion. Either much of the komatiite never reached the surface, or other processes aided craton root formation. There are many competing hypotheses of how cratons have been formed. Jordan's model suggests that further cratonization was a result of repeated continental collisions. The thickening of

1078-952: A term for a fissile mudrock (regardless of grain size) although some older literature uses the term "shale" as a synonym for mudrock. Biochemical sedimentary rocks are created when organisms use materials dissolved in air or water to build their tissue. Examples include: Chemical sedimentary rock forms when mineral constituents in solution become supersaturated and inorganically precipitate . Common chemical sedimentary rocks include oolitic limestone and rocks composed of evaporite minerals, such as halite (rock salt), sylvite , baryte and gypsum . This fourth miscellaneous category includes volcanic tuff and volcanic breccias formed by deposition and later cementation of lava fragments erupted by volcanoes, and impact breccias formed after impact events . Alternatively, sedimentary rocks can be subdivided into compositional groups based on their mineralogy: Sedimentary rocks are formed when sediment

1155-417: A texture, only the average size of the crystals and the fabric are necessary. Most sedimentary rocks contain either quartz ( siliciclastic rocks) or calcite ( carbonate rocks ). In contrast to igneous and metamorphic rocks, a sedimentary rock usually contains very few different major minerals. However, the origin of the minerals in a sedimentary rock is often more complex than in an igneous rock. Minerals in

1232-413: A thick crust and deep lithospheric roots that extend as much as several hundred kilometres into Earth's mantle. The term craton is used to distinguish the stable portion of the continental crust from regions that are more geologically active and unstable. Cratons are composed of two layers: a continental shield , in which the basement rock crops out at the surface, and a platform which overlays

1309-425: A valuable indicator of the biological and ecological environment that existed after the sediment was deposited. On the other hand, the burrowing activity of organisms can destroy other (primary) structures in the sediment, making a reconstruction more difficult. Secondary structures can also form by diagenesis or the formation of a soil ( pedogenesis ) when a sediment is exposed above the water level. An example of

1386-503: Is deposited out of air, ice, wind, gravity, or water flows carrying the particles in suspension . This sediment is often formed when weathering and erosion break down a rock into loose material in a source area. The material is then transported from the source area to the deposition area. The type of sediment transported depends on the geology of the hinterland (the source area of the sediment). However, some sedimentary rocks, such as evaporites , are composed of material that form at

1463-421: Is a structure where beds with a smaller grain size occur on top of beds with larger grains. This structure forms when fast flowing water stops flowing. Larger, heavier clasts in suspension settle first, then smaller clasts. Although graded bedding can form in many different environments, it is a characteristic of turbidity currents . The surface of a particular bed, called the bedform , can also be indicative of

1540-557: Is an old and stable part of the continental lithosphere , which consists of Earth's two topmost layers, the crust and the uppermost mantle . Having often survived cycles of merging and rifting of continents, cratons are generally found in the interiors of tectonic plates ; the exceptions occur where geologically recent rifting events have separated cratons and created passive margins along their edges. Cratons are characteristically composed of ancient crystalline basement rock , which may be covered by younger sedimentary rock . They have

1617-409: Is called bedding . Single beds can be a couple of centimetres to several meters thick. Finer, less pronounced layers are called laminae, and the structure a lamina forms in a rock is called lamination . Laminae are usually less than a few centimetres thick. Though bedding and lamination are often originally horizontal in nature, this is not always the case. In some environments, beds are deposited at

SECTION 20

#1732766040051

1694-471: Is estimated to be only 8% of the volume of the crust. Sedimentary rocks are only a thin veneer over a crust consisting mainly of igneous and metamorphic rocks . Sedimentary rocks are deposited in layers as strata , forming a structure called bedding . Sedimentary rocks are often deposited in large structures called sedimentary basins . Sedimentary rocks have also been found on Mars . The study of sedimentary rocks and rock strata provides information about

1771-429: Is higher when the sedimentation rate is high (so that a carcass is quickly buried), in anoxic environments (where little bacterial activity occurs) or when the organism had a particularly hard skeleton. Larger, well-preserved fossils are relatively rare. Fossils can be both the direct remains or imprints of organisms and their skeletons. Most commonly preserved are the harder parts of organisms such as bones, shells, and

1848-491: Is mirrored by the broad categories of rudites , arenites , and lutites , respectively, in older literature. The subdivision of these three broad categories is based on differences in clast shape (conglomerates and breccias), composition (sandstones), or grain size or texture (mudrocks). Conglomerates are dominantly composed of rounded gravel, while breccias are composed of dominantly angular gravel. Sandstone classification schemes vary widely, but most geologists have adopted

1925-435: Is much older than oceanic lithosphere—up to 4 billion years versus 180 million years. Rock fragments ( xenoliths ) carried up from the mantle by magmas containing peridotite have been delivered to the surface as inclusions in subvolcanic pipes called kimberlites . These inclusions have densities consistent with craton composition and are composed of mantle material residual from high degrees of partial melt. Peridotite

2002-401: Is reduced. Sediments are typically saturated with groundwater or seawater when originally deposited, and as pore space is reduced, much of these connate fluids are expelled. In addition to this physical compaction, chemical compaction may take place via pressure solution . Points of contact between grains are under the greatest strain, and the strained mineral is more soluble than the rest of

2079-452: Is strongly influenced by the inclusion of moisture. Craton peridotite moisture content is unusually low, which leads to much greater strength. It also contains high percentages of low-weight magnesium instead of higher-weight calcium and iron. Peridotites are important for understanding the deep composition and origin of cratons because peridotite nodules are pieces of mantle rock modified by partial melting. Harzburgite peridotites represent

2156-493: Is the most stable, followed by feldspar , micas , and finally other less stable minerals that are only present when little weathering has occurred. The amount of weathering depends mainly on the distance to the source area, the local climate and the time it took for the sediment to be transported to the point where it is deposited. In most sedimentary rocks, mica, feldspar and less stable minerals have been weathered to clay minerals like kaolinite , illite or smectite . Among

2233-601: The Baltic Shield had been eroded into a subdued terrain already during the Late Mesoproterozoic when the rapakivi granites intruded. Sedimentary rock Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface , followed by cementation . Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form

2310-1126: The East European Craton , the Amazonian Craton in South America, the Kaapvaal Craton in South Africa, the North American Craton (also called the Laurentia Craton), and the Gawler Craton in South Australia. Cratons have thick lithospheric roots. Mantle tomography shows that cratons are underlain by anomalously cold mantle corresponding to lithosphere more than twice the typical 100 km (60 mi) thickness of mature oceanic or non-cratonic, continental lithosphere. At that depth, craton roots extend into

2387-423: The asthenosphere , and the low-velocity zone seen elsewhere at these depths is weak or absent beneath stable cratons. Craton lithosphere is distinctly different from oceanic lithosphere because cratons have a neutral or positive buoyancy and a low intrinsic density. This low density offsets density increases from geothermal contraction and prevents the craton from sinking into the deep mantle. Cratonic lithosphere

East African Orogeny - Misplaced Pages Continue

2464-463: The history of life . The scientific discipline that studies the properties and origin of sedimentary rocks is called sedimentology . Sedimentology is part of both geology and physical geography and overlaps partly with other disciplines in the Earth sciences , such as pedology , geomorphology , geochemistry and structural geology . Sedimentary rocks can be subdivided into four groups based on

2541-682: The organic material of a dead organism undergoes chemical reactions in which volatiles such as water and carbon dioxide are expulsed. The fossil, in the end, consists of a thin layer of pure carbon or its mineralized form, graphite . This form of fossilisation is called carbonisation . It is particularly important for plant fossils. The same process is responsible for the formation of fossil fuels like lignite or coal. Structures in sedimentary rocks can be divided into primary structures (formed during deposition) and secondary structures (formed after deposition). Unlike textures, structures are always large-scale features that can easily be studied in

2618-406: The "cratonic regime". It involves processes of pediplanation and etchplanation that lead to the formation of flattish surfaces known as peneplains . While the process of etchplanation is associated to humid climate and pediplanation with arid and semi-arid climate, shifting climate over geological time leads to the formation of so-called polygenetic peneplains of mixed origin. Another result of

2695-501: The Dott scheme, which uses the relative abundance of quartz, feldspar, and lithic framework grains and the abundance of a muddy matrix between the larger grains. Six sandstone names are possible using the descriptors for grain composition (quartz-, feldspathic-, and lithic-) and the amount of matrix (wacke or arenite). For example, a quartz arenite would be composed of mostly (>90%) quartz grains and have little or no clayey matrix between

2772-645: The Gondwana Super-fan, exceeded 100 million cubic kilometres (24 million cubic miles) or the equivalent to covering the United States with c. 10 km (6.2 mi) of sediment, lasted for 260 million years and coincided with the Cambrian explosion , the sudden radiation of animal ( Metazoan ) life c. 550 Ma . These unprecedented sedimentary depositions probably made the diversification of early animal life possible. The orogen

2849-470: The activity of bacteria , can affect minerals in a rock and are therefore seen as part of diagenesis. Deeper burial is accompanied by mesogenesis , during which most of the compaction and lithification takes place. Compaction takes place as the sediments come under increasing overburden (lithostatic) pressure from overlying sediments. Sediment grains move into more compact arrangements, grains of ductile minerals (such as mica ) are deformed, and pore space

2926-506: The assembly of East Gondwana c. 750 to 530 Ma was a multiphase process which included two main periods of orogenesis: the older EAO ( c. 750 to 620 Ma ) and the younger Kuunga Orogeny ( c. 570 to 530 Ma ). In the former scenario the Kuunga Orogeny of the latter scenario are two coeval events: the collisions between India and Australia-East Antarctica and Azania and India. Furthermore,

3003-399: The bottom of deep seas and lakes. There is little water mixing in such environments; as a result, oxygen from surface water is not brought down, and the deposited sediment is normally a fine dark clay. Dark rocks, rich in organic material, are therefore often shales. The size , form and orientation of clasts (the original pieces of rock) in a sediment is called its texture . The texture is

3080-504: The cement and the clasts (including fossils and ooids ) of a carbonate sedimentary rock usually consist of carbonate minerals. The mineralogy of a clastic rock is determined by the material supplied by the source area, the manner of its transport to the place of deposition and the stability of that particular mineral. The resistance of rock-forming minerals to weathering is expressed by the Goldich dissolution series . In this series, quartz

3157-421: The cement to produce secondary porosity . At sufficiently high temperature and pressure, the realm of diagenesis makes way for metamorphism , the process that forms metamorphic rock . The color of a sedimentary rock is often mostly determined by iron , an element with two major oxides: iron(II) oxide and iron(III) oxide . Iron(II) oxide (FeO) only forms under low oxygen ( anoxic ) circumstances and gives

East African Orogeny - Misplaced Pages Continue

3234-465: The cratons is similar to crustal plateaus observed on Venus, which may have been created by large asteroid impacts. In this model, large impacts on the Earth's early lithosphere penetrated deep into the mantle and created enormous lava ponds. The paper suggests these lava ponds cooled to form the craton's root. The chemistry of xenoliths and seismic tomography both favor the two accretional models over

3311-399: The crust associated with these collisions may have been balanced by craton root thickening according to the principle of isostacy . Jordan likens this model to "kneading" of the cratons, allowing low density material to move up and higher density to move down, creating stable cratonic roots as deep as 400 km (250 mi). A second model suggests that the surface crust was thickened by

3388-481: The crystalline residues after extraction of melts of compositions like basalt and komatiite . The process by which cratons were formed is called cratonization . There is much about this process that remains uncertain, with very little consensus in the scientific community. However, the first cratonic landmasses likely formed during the Archean eon. This is indicated by the age of diamonds , which originate in

3465-572: The current is in one direction, such as rivers. The longer flank of such ripples is on the upstream side of the current. Symmetric wave ripples occur in environments where currents reverse directions, such as tidal flats. Mudcracks are a bed form caused by the dehydration of sediment that occasionally comes above the water surface. Such structures are commonly found at tidal flats or point bars along rivers. Secondary sedimentary structures are those which formed after deposition. Such structures form by chemical, physical and biological processes within

3542-426: The depleted "lid" formed by the first layer. The impact origin model does not require plumes or accretion; this model is, however, not incompatible with either. All these proposed mechanisms rely on buoyant, viscous material separating from a denser residue due to mantle flow, and it is possible that more than one mechanism contributed to craton root formation. The long-term erosion of cratons has been labelled

3619-663: The dominant particle size. Most geologists use the Udden-Wentworth grain size scale and divide unconsolidated sediment into three fractions: gravel (>2 mm diameter), sand (1/16 to 2 mm diameter), and mud (<1/16 mm diameter). Mud is further divided into silt (1/16 to 1/256 mm diameter) and clay (<1/256 mm diameter). The classification of clastic sedimentary rocks parallels this scheme; conglomerates and breccias are made mostly of gravel, sandstones are made mostly of sand , and mudrocks are made mostly of mud. This tripartite subdivision

3696-489: The field. Sedimentary structures can indicate something about the sedimentary environment or can serve to tell which side originally faced up where tectonics have tilted or overturned sedimentary layers. Sedimentary rocks are laid down in layers called beds or strata . A bed is defined as a layer of rock that has a uniform lithology and texture. Beds form by the deposition of layers of sediment on top of each other. The sequence of beds that characterizes sedimentary rocks

3773-404: The flow calms and the particles settle out of suspension . Most authors presently use the term "mudrock" to refer to all rocks composed dominantly of mud. Mudrocks can be divided into siltstones, composed dominantly of silt-sized particles; mudstones with subequal mixture of silt- and clay-sized particles; and claystones, composed mostly of clay-sized particles. Most authors use " shale " as

3850-485: The grain. As a result, the contact points are dissolved away, allowing the grains to come into closer contact. The increased pressure and temperature stimulate further chemical reactions, such as the reactions by which organic material becomes lignite or coal. Lithification follows closely on compaction, as increased temperatures at depth hasten the precipitation of cement that binds the grains together. Pressure solution contributes to this process of cementation , as

3927-510: The grains, a lithic wacke would have abundant lithic grains and abundant muddy matrix, etc. Although the Dott classification scheme is widely used by sedimentologists, common names like greywacke , arkose , and quartz sandstone are still widely used by non-specialists and in popular literature. Mudrocks are sedimentary rocks composed of at least 50% silt- and clay-sized particles. These relatively fine-grained particles are commonly transported by turbulent flow in water or air, and deposited as

SECTION 50

#1732766040051

4004-587: The host rock. For example, a shell consisting of calcite can dissolve while a cement of silica then fills the cavity. In the same way, precipitating minerals can fill cavities formerly occupied by blood vessels , vascular tissue or other soft tissues. This preserves the form of the organism but changes the chemical composition, a process called permineralization . The most common minerals involved in permineralization are various forms of amorphous silica ( chalcedony , flint , chert ), carbonates (especially calcite), and pyrite . At high pressure and temperature,

4081-471: The late Archean, accompanied by voluminous mafic magmatism. However, melt extraction alone cannot explain all the properties of craton roots. Jordan notes in his paper that this mechanism could be effective for constructing craton roots only down to a depth of 200 kilometers (120 mi). The great depths of craton roots required further explanation. The 30 to 40 percent partial melting of mantle rock at 4 to 10 GPa pressure produces komatiite magma and

4158-435: The lithologies dehydrates. Clay can be easily compressed as a result of dehydration, while sand retains the same volume and becomes relatively less dense. On the other hand, when the pore fluid pressure in a sand layer surpasses a critical point, the sand can break through overlying clay layers and flow through, forming discordant bodies of sedimentary rock called sedimentary dykes . The same process can form mud volcanoes on

4235-468: The longevity of cratons is that they may alternate between periods of high and low relative sea levels . High relative sea level leads to increased oceanicity, while the opposite leads to increased inland conditions . Many cratons have had subdued topographies since Precambrian times. For example, the Yilgarn Craton of Western Australia was flattish already by Middle Proterozoic times and

4312-450: The mineral dissolved from strained contact points is redeposited in the unstrained pore spaces. This further reduces porosity and makes the rock more compact and competent . Unroofing of buried sedimentary rock is accompanied by telogenesis , the third and final stage of diagenesis. As erosion reduces the depth of burial, renewed exposure to meteoric water produces additional changes to the sedimentary rock, such as leaching of some of

4389-438: The place of deposition. The nature of a sedimentary rock, therefore, not only depends on the sediment supply, but also on the sedimentary depositional environment in which it formed. As sediments accumulate in a depositional environment, older sediments are buried by younger sediments, and they undergo diagenesis. Diagenesis includes all the chemical, physical, and biological changes, exclusive of surface weathering, undergone by

4466-420: The plume model. However, other geochemical evidence favors mantle plumes. Tomography shows two layers in the craton roots beneath North America. One is found at depths shallower than 150 km (93 mi) and may be Archean, while the second is found at depths from 180 to 240 km (110 to 150 mi) and may be younger. The second layer may be a less depleted thermal boundary layer that stagnated against

4543-627: The processes responsible for their formation: clastic sedimentary rocks, biochemical (biogenic) sedimentary rocks, chemical sedimentary rocks, and a fourth category for "other" sedimentary rocks formed by impacts, volcanism , and other minor processes. Clastic sedimentary rocks are composed of rock fragments ( clasts ) that have been cemented together. The clasts are commonly individual grains of quartz , feldspar , clay minerals , or mica . However, any type of mineral may be present. Clasts may also be lithic fragments composed of more than one mineral. Clastic sedimentary rocks are subdivided according to

4620-480: The result of localized precipitation due to small differences in composition or porosity of the host rock, such as around fossils, inside burrows or around plant roots. In carbonate rocks such as limestone or chalk , chert or flint concretions are common, while terrestrial sandstones sometimes contain iron concretions. Calcite concretions in clay containing angular cavities or cracks are called septarian concretions . After deposition, physical processes can deform

4697-454: The rock a grey or greenish colour. Iron(III) oxide (Fe 2 O 3 ) in a richer oxygen environment is often found in the form of the mineral hematite and gives the rock a reddish to brownish colour. In arid continental climates rocks are in direct contact with the atmosphere, and oxidation is an important process, giving the rock a red or orange colour. Thick sequences of red sedimentary rocks formed in arid climates are called red beds . However,

SECTION 60

#1732766040051

4774-550: The roots of cratons, and which are almost always over 2 billion years and often over 3 billion years in age. Rock of Archean age makes up only 7% of the world's current cratons; even allowing for erosion and destruction of past formations, this suggests that only 5 to 40 percent of the present continental crust formed during the Archean. Cratonization likely was completed during the Proterozoic . Subsequent growth of continents

4851-469: The same size, the rock is called 'well-sorted', and when there is a large spread in grain size, the rock is called 'poorly sorted'. The form of the clasts can reflect the origin of the rock. For example, coquina , a rock composed of clasts of broken shells, can only form in energetic water. The form of a clast can be described by using four parameters: Chemical sedimentary rocks have a non-clastic texture, consisting entirely of crystals. To describe such

4928-433: The sediment supply, caused, for example, by seasonal changes in rainfall, temperature or biochemical activity. Laminae that represent seasonal changes (similar to tree rings ) are called varves . Any sedimentary rock composed of millimeter or finer scale layers can be named with the general term laminite . When sedimentary rocks have no lamination at all, their structural character is called massive bedding. Graded bedding

5005-402: The sediment, producing a third class of secondary structures. Density contrasts between different sedimentary layers, such as between sand and clay, can result in flame structures or load casts , formed by inverted diapirism . While the clastic bed is still fluid, diapirism can cause a denser upper layer to sink into a lower layer. Sometimes, density contrasts occur or are enhanced when one of

5082-443: The sediment. They can be indicators of circumstances after deposition. Some can be used as way up criteria . Organic materials in a sediment can leave more traces than just fossils. Preserved tracks and burrows are examples of trace fossils (also called ichnofossils). Such traces are relatively rare. Most trace fossils are burrows of molluscs or arthropods . This burrowing is called bioturbation by sedimentologists. It can be

5159-602: The shield in some areas with sedimentary rock . The word craton was first proposed by the Austrian geologist Leopold Kober in 1921 as Kratogen , referring to stable continental platforms, and orogen as a term for mountain or orogenic belts . Later Hans Stille shortened the former term to Kraton , from which craton derives. Examples of cratons are the Dharwar Craton in India, North China Craton ,

5236-453: The subsurface that is useful for civil engineering , for example in the construction of roads , houses , tunnels , canals or other structures. Sedimentary rocks are also important sources of natural resources including coal , fossil fuels , drinking water and ores . The study of the sequence of sedimentary rock strata is the main source for an understanding of the Earth's history , including palaeogeography , paleoclimatology and

5313-515: The surrounding hotter, but more chemically dense, mantle. In addition to cooling the craton roots and lowering their chemical density, the extraction of magma also increased the viscosity and melting temperature of the craton roots and prevented mixing with the surrounding undepleted mantle. The resulting mantle roots have remained stable for billions of years. Jordan suggests that depletion occurred primarily in subduction zones and secondarily as flood basalts . This model of melt extraction from

5390-527: The three major types of rock, fossils are most commonly found in sedimentary rock. Unlike most igneous and metamorphic rocks, sedimentary rocks form at temperatures and pressures that do not destroy fossil remnants. Often these fossils may only be visible under magnification . Dead organisms in nature are usually quickly removed by scavengers , bacteria , rotting and erosion, but under exceptional circumstances, these natural processes are unable to take place, leading to fossilisation. The chance of fossilisation

5467-746: The two orogens of the latter scenario intersect in Madagascar, the proposed location of the Azania-India collision, and this part of the Kuunga Orogeny should be renamed the Malagasy Orogeny . The East African orogeny resulted in the formation of an enormous mountain chain, known as the Transgondwanan Supermountain, which was more than 8,000 km (5,000 mi)-long and 1,000 km (620 mi)-wide. The sedimentary deposition from this mountain chain, known as

5544-455: The upper mantle has held up well with subsequent observations. The properties of mantle xenoliths confirm that the geothermal gradient is much lower beneath continents than oceans. The olivine of craton root xenoliths is extremely dry, which would give the roots a very high viscosity. Rhenium–osmium dating of xenoliths indicates that the oldest melting events took place in the early to middle Archean. Significant cratonization continued into

5621-404: The woody tissue of plants. Soft tissue has a much smaller chance of being fossilized, and the preservation of soft tissue of animals older than 40 million years is very rare. Imprints of organisms made while they were still alive are called trace fossils , examples of which are burrows , footprints , etc. As a part of a sedimentary rock, fossils undergo the same diagenetic processes as does

5698-473: Was by accretion at continental margins. The origin of the roots of cratons is still debated. However, the present understanding of cratonization began with the publication in 1978 of a paper by Thomas H. Jordan in Nature . Jordan proposes that cratons formed from a high degree of partial melting of the upper mantle, with 30 to 40 percent of the source rock entering the melt. Such a high degree of melting

5775-799: Was eroded to such extent that by the Ordovician epoch it had been leveled to a planation surface in Ethiopia. The Cenozoic East African Rift System mostly evolved along the complex pattern of Proterozoic prerift systems in eastern Africa. It passes through the Mozambique Belt east of the Tanzania Craton . Craton A craton ( / ˈ k r eɪ t ɒ n / KRAYT -on , / ˈ k r æ t ɒ n / KRAT -on , or / ˈ k r eɪ t ən / KRAY -tən ; from ‹See Tfd› Greek : κράτος kratos "strength")

5852-422: Was formed by bodies and parts (mainly shells) of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies ( marine snow ). Sedimentation may also occur as dissolved minerals precipitate from water solution . The sedimentary rock cover of the continents of the Earth's crust is extensive (73% of the Earth's current land surface), but sedimentary rock

5929-423: Was possible because of the high mantle temperatures of the Archean. The extraction of so much magma left behind a solid peridotite residue that was enriched in lightweight magnesium and thus lower in chemical density than undepleted mantle. This lower chemical density compensated for the effects of thermal contraction as the craton and its roots cooled, so that the physical density of the cratonic roots matched that of

#50949