Misplaced Pages

Econometrics

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Statistics (from German : Statistik , orig. "description of a state , a country" ) is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data . In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments .

#284715

97-491: Econometrics is an application of statistical methods to economic data in order to give empirical content to economic relationships. More precisely, it is "the quantitative analysis of actual economic phenomena based on the concurrent development of theory and observation, related by appropriate methods of inference." An introductory economics textbook describes econometrics as allowing economists "to sift through mountains of data to extract simple relationships." Jan Tinbergen

194-474: A distribution (sample or population): central tendency (or location ) seeks to characterize the distribution's central or typical value, while dispersion (or variability ) characterizes the extent to which members of the distribution depart from its center and each other. Inferences made using mathematical statistics employ the framework of probability theory , which deals with the analysis of random phenomena. A standard statistical procedure involves

291-469: A population , for example by testing hypotheses and deriving estimates. It is assumed that the observed data set is sampled from a larger population. Inferential statistics can be contrasted with descriptive statistics . Descriptive statistics is solely concerned with properties of the observed data, and it does not rest on the assumption that the data come from a larger population. Consider independent identically distributed (IID) random variables with

388-700: A spurious relationship where two variables are correlated but causally unrelated. In a study of the use of econometrics in major economics journals, McCloskey concluded that some economists report p -values (following the Fisherian tradition of tests of significance of point null-hypotheses ) and neglect concerns of type II errors ; some economists fail to report estimates of the size of effects (apart from statistical significance ) and to discuss their economic importance. She also argues that some economists also fail to use economic reasoning for model selection , especially for deciding which variables to include in

485-418: A decade earlier in 1795. The modern field of statistics emerged in the late 19th and early 20th century in three stages. The first wave, at the turn of the century, was led by the work of Francis Galton and Karl Pearson , who transformed statistics into a rigorous mathematical discipline used for analysis, not just in science, but in industry and politics as well. Galton's contributions included introducing

582-416: A decrease in the unemployment, as hypothesized . If the estimate of β 1 {\displaystyle \beta _{1}} were not significantly different from 0, the test would fail to find evidence that changes in the growth rate and unemployment rate were related. The variance in a prediction of the dependent variable (unemployment) as a function of the independent variable (GDP growth)

679-458: A given probability distribution : standard statistical inference and estimation theory defines a random sample as the random vector given by the column vector of these IID variables. The population being examined is described by a probability distribution that may have unknown parameters. A statistic is a random variable that is a function of the random sample, but not a function of unknown parameters . The probability distribution of

776-484: A given probability of containing the true value is to use a credible interval from Bayesian statistics : this approach depends on a different way of interpreting what is meant by "probability" , that is as a Bayesian probability . In principle confidence intervals can be symmetrical or asymmetrical. An interval can be asymmetrical because it works as lower or upper bound for a parameter (left-sided interval or right sided interval), but it can also be asymmetrical because

873-471: A given situation and carry the computation, several methods have been proposed: the method of moments , the maximum likelihood method, the least squares method and the more recent method of estimating equations . Interpretation of statistical information can often involve the development of a null hypothesis which is usually (but not necessarily) that no relationship exists among variables or that no change occurred over time. The best illustration for

970-555: A mathematical discipline only took shape at the very end of the 17th century, particularly in Jacob Bernoulli 's posthumous work Ars Conjectandi . This was the first book where the realm of games of chance and the realm of the probable (which concerned opinion, evidence, and argument) were combined and submitted to mathematical analysis. The method of least squares was first described by Adrien-Marie Legendre in 1805, though Carl Friedrich Gauss presumably made use of it

1067-1033: A meaningful order to those values, and permit any order-preserving transformation. Interval measurements have meaningful distances between measurements defined, but the zero value is arbitrary (as in the case with longitude and temperature measurements in Celsius or Fahrenheit ), and permit any linear transformation. Ratio measurements have both a meaningful zero value and the distances between different measurements defined, and permit any rescaling transformation. Because variables conforming only to nominal or ordinal measurements cannot be reasonably measured numerically, sometimes they are grouped together as categorical variables , whereas ratio and interval measurements are grouped together as quantitative variables , which can be either discrete or continuous , due to their numerical nature. Such distinctions can often be loosely correlated with data type in computer science, in that dichotomous categorical variables may be represented with

SECTION 10

#1732773375285

1164-408: A more or less complete solution of the whole riddle. In breaking it up, he segregates those disturbing causes, whose wanderings happen to be inconvenient, for the time in a pound called Ceteris Paribus. The study of some group of tendencies is isolated by the assumption other things being equal: the existence of other tendencies is not denied, but their disturbing effect is neglected for a time. The more

1261-499: A novice is the predicament encountered by a criminal trial. The null hypothesis, H 0 , asserts that the defendant is innocent, whereas the alternative hypothesis, H 1 , asserts that the defendant is guilty. The indictment comes because of suspicion of the guilt. The H 0 (status quo) stands in opposition to H 1 and is maintained unless H 1 is supported by evidence "beyond a reasonable doubt". However, "failure to reject H 0 " in this case does not imply innocence, but merely that

1358-404: A population, so results do not fully represent the whole population. Any estimates obtained from the sample only approximate the population value. Confidence intervals allow statisticians to express how closely the sample estimate matches the true value in the whole population. Often they are expressed as 95% confidence intervals. Formally, a 95% confidence interval for a value is a range where, if

1455-590: A regression. In some cases, economic variables cannot be experimentally manipulated as treatments randomly assigned to subjects. In such cases, economists rely on observational studies , often using data sets with many strongly associated covariates , resulting in enormous numbers of models with similar explanatory ability but different covariates and regression estimates. Regarding the plurality of models compatible with observational data-sets, Edward Leamer urged that "professionals ... properly withhold belief until an inference can be shown to be adequately insensitive to

1552-465: A statistician would use a modified, more structured estimation method (e.g., difference in differences estimation and instrumental variables , among many others) that produce consistent estimators . The basic steps of a statistical experiment are: Experiments on human behavior have special concerns. The famous Hawthorne study examined changes to the working environment at the Hawthorne plant of

1649-517: A sufficient sample size to specifying an adequate null hypothesis. Statistical measurement processes are also prone to error in regards to the data that they generate. Many of these errors are classified as random (noise) or systematic ( bias ), but other types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also occur. The presence of missing data or censoring may result in biased estimates and specific techniques have been developed to address these problems. Statistics

1746-637: A test and confidence intervals . Jerzy Neyman in 1934 showed that stratified random sampling was in general a better method of estimation than purposive (quota) sampling. Today, statistical methods are applied in all fields that involve decision making, for making accurate inferences from a collated body of data and for making decisions in the face of uncertainty based on statistical methodology. The use of modern computers has expedited large-scale statistical computations and has also made possible new methods that are impractical to perform manually. Statistics continues to be an area of active research, for example on

1843-399: A transformation is sensible to contemplate depends on the question one is trying to answer." A descriptive statistic (in the count noun sense) is a summary statistic that quantitatively describes or summarizes features of a collection of information , while descriptive statistics in the mass noun sense is the process of using and analyzing those statistics. Descriptive statistics

1940-419: A value accurately rejecting the null hypothesis (sometimes referred to as the p-value ). The standard approach is to test a null hypothesis against an alternative hypothesis. A critical region is the set of values of the estimator that leads to refuting the null hypothesis. The probability of type I error is therefore the probability that the estimator belongs to the critical region given that null hypothesis

2037-453: Is a Latin phrase, meaning "other things equal"; some other English translations of the phrase are " all other things being equal ", " other things held constant ", " all else unchanged ", and " all else being equal ". A statement about a causal , empirical , or logical relation between two states of affairs is ceteris paribus if it is acknowledged that the statement, although usually accurate in expected conditions, can fail because of, or

SECTION 20

#1732773375285

2134-435: Is a mathematical body of science that pertains to the collection, analysis, interpretation or explanation, and presentation of data , or as a branch of mathematics . Some consider statistics to be a distinct mathematical science rather than a branch of mathematics. While many scientific investigations make use of data, statistics is generally concerned with the use of data in the context of uncertainty and decision-making in

2231-575: Is another type of observational study in which people with and without the outcome of interest (e.g. lung cancer) are invited to participate and their exposure histories are collected. Various attempts have been made to produce a taxonomy of levels of measurement . The psychophysicist Stanley Smith Stevens defined nominal, ordinal, interval, and ratio scales. Nominal measurements do not have meaningful rank order among values, and permit any one-to-one (injective) transformation. Ordinal measurements have imprecise differences between consecutive values, but have

2328-465: Is appropriate to apply different kinds of statistical methods to data obtained from different kinds of measurement procedures is complicated by issues concerning the transformation of variables and the precise interpretation of research questions. "The relationship between the data and what they describe merely reflects the fact that certain kinds of statistical statements may have truth values which are not invariant under some transformations. Whether or not

2425-508: Is assumed fixed in order to analyse the influence of another factor in isolation. This would be hypothetical isolation. An example would be the hypothetical separation of the income effect and the substitution effect of a price change, which actually go together. The other use of the ceteris paribus clause is to see it as a means for obtaining an approximate solution. Here it would yield a substantive isolation. Substantive isolation has two aspects: temporal and causal. Temporal isolation requires

2522-834: Is called error term, disturbance or more simply noise. Both linear regression and non-linear regression are addressed in polynomial least squares , which also describes the variance in a prediction of the dependent variable (y axis) as a function of the independent variable (x axis) and the deviations (errors, noise, disturbances) from the estimated (fitted) curve. Measurement processes that generate statistical data are also subject to error. Many of these errors are classified as random (noise) or systematic ( bias ), but other types of errors (e.g., blunder, such as when an analyst reports incorrect units) can also be important. The presence of missing data or censoring may result in biased estimates and specific techniques have been developed to address these problems. Most studies only sample part of

2619-410: Is contained, more exactly than would otherwise have been possible. With each step more things can be let out of the pound; exact discussions can be made less abstract, realistic discussions can be made less inexact than was possible at an earlier stage. The above passage by Marshall highlights two ways in which the ceteris paribus clause may be used: The one is hypothetical, in the sense that some factor

2716-428: Is distinguished from inferential statistics (or inductive statistics), in that descriptive statistics aims to summarize a sample , rather than use the data to learn about the population that the sample of data is thought to represent. Statistical inference is the process of using data analysis to deduce properties of an underlying probability distribution . Inferential statistical analysis infers properties of

2813-464: Is estimated to be 0.83 and β 1 {\displaystyle \beta _{1}} is estimated to be -1.77. This means that if GDP growth increased by one percentage point, the unemployment rate would be predicted to drop by 1.77 * 1 points, other things held constant . The model could then be tested for statistical significance as to whether an increase in GDP growth is associated with

2910-423: Is given in polynomial least squares . Econometric theory uses statistical theory and mathematical statistics to evaluate and develop econometric methods. Econometricians try to find estimators that have desirable statistical properties including unbiasedness , efficiency , and consistency . An estimator is unbiased if its expected value is the true value of the parameter; it is consistent if it converges to

3007-499: Is inadmissible as a substantive isolation (Lucas critique). The concept of ceteris paribus is crucial for economists and can be applied in researching: In reality, there are certain limitations for the ceteris paribus condition, in many situations it is not feasible for economists to keep factors constant or make assumptions. When testing, Economists are unable to regulate every variable or are able to classify important or potential variables. Although there are certain limitations with

Econometrics - Misplaced Pages Continue

3104-415: Is often loosely translated as "holding all else constant." It does not imply that no other things will in fact change; rather, it isolates the effect of one particular change. Holding all other things constant is directly analogous to using a partial derivative in calculus rather than a total derivative , and to running a regression containing multiple variables rather than just one in order to isolate

3201-702: Is one of the two founding fathers of econometrics. The other, Ragnar Frisch , also coined the term in the sense in which it is used today. A basic tool for econometrics is the multiple linear regression model. Econometric theory uses statistical theory and mathematical statistics to evaluate and develop econometric methods. Econometricians try to find estimators that have desirable statistical properties including unbiasedness , efficiency , and consistency . Applied econometrics uses theoretical econometrics and real-world data for assessing economic theories, developing econometric models , analysing economic history , and forecasting . A basic tool for econometrics

3298-418: Is one that explores the association between smoking and lung cancer. This type of study typically uses a survey to collect observations about the area of interest and then performs statistical analysis. In this case, the researchers would collect observations of both smokers and non-smokers, perhaps through a cohort study , and then look for the number of cases of lung cancer in each group. A case-control study

3395-442: Is the multiple linear regression model. In modern econometrics, other statistical tools are frequently used, but linear regression is still the most frequently used starting point for an analysis. Estimating a linear regression on two variables can be visualised as fitting a line through data points representing paired values of the independent and dependent variables. For example, consider Okun's law , which relates GDP growth to

3492-429: Is to estimate the parameters, β 0  and  β 1 {\displaystyle \beta _{0}{\mbox{ and }}\beta _{1}} under specific assumptions about the random variable ε {\displaystyle \varepsilon } . For example, if ε {\displaystyle \varepsilon } is uncorrelated with years of education, then

3589-402: Is true ( statistical significance ) and the probability of type II error is the probability that the estimator does not belong to the critical region given that the alternative hypothesis is true. The statistical power of a test is the probability that it correctly rejects the null hypothesis when the null hypothesis is false. Referring to statistical significance does not necessarily mean that

3686-441: Is used to consider the effect of some causes in isolation, by assuming that other influences are absent. Alfred Marshall expressed the use of the clause as follows: The element of time is a chief cause of those difficulties in economic investigations which make it necessary for man with his limited powers to go step by step; breaking up a complex question, studying one bit at a time, and at last combining his partial solutions into

3783-449: Is widely employed in government, business, and natural and social sciences. The mathematical foundations of statistics developed from discussions concerning games of chance among mathematicians such as Gerolamo Cardano , Blaise Pascal , Pierre de Fermat , and Christiaan Huygens . Although the idea of probability was already examined in ancient and medieval law and philosophy (such as the work of Juan Caramuel ), probability theory as

3880-765: The Boolean data type , polytomous categorical variables with arbitrarily assigned integers in the integral data type , and continuous variables with the real data type involving floating-point arithmetic . But the mapping of computer science data types to statistical data types depends on which categorization of the latter is being implemented. Other categorizations have been proposed. For example, Mosteller and Tukey (1977) distinguished grades, ranks, counted fractions, counts, amounts, and balances. Nelder (1990) described continuous counts, continuous ratios, count ratios, and categorical modes of data. (See also: Chrisman (1998), van den Berg (1991). ) The issue of whether or not it

3977-487: The Western Electric Company . The researchers were interested in determining whether increased illumination would increase the productivity of the assembly line workers. The researchers first measured the productivity in the plant, then modified the illumination in an area of the plant and checked if the changes in illumination affected productivity. It turned out that productivity indeed improved (under

Econometrics - Misplaced Pages Continue

4074-546: The forecasting , prediction , and estimation of unobserved values either in or associated with the population being studied. It can include extrapolation and interpolation of time series or spatial data , as well as data mining . Mathematical statistics is the application of mathematics to statistics. Mathematical techniques used for this include mathematical analysis , linear algebra , stochastic analysis , differential equations , and measure-theoretic probability theory . Formal discussions on inference date back to

4171-432: The limit to the true value of such parameter. Other desirable properties for estimators include: UMVUE estimators that have the lowest variance for all possible values of the parameter to be estimated (this is usually an easier property to verify than efficiency) and consistent estimators which converges in probability to the true value of such parameter. This still leaves the question of how to obtain estimators in

4268-719: The mathematicians and cryptographers of the Islamic Golden Age between the 8th and 13th centuries. Al-Khalil (717–786) wrote the Book of Cryptographic Messages , which contains one of the first uses of permutations and combinations , to list all possible Arabic words with and without vowels. Al-Kindi 's Manuscript on Deciphering Cryptographic Messages gave a detailed description of how to use frequency analysis to decipher encrypted messages, providing an early example of statistical inference for decoding . Ibn Adlan (1187–1268) later made an important contribution on

4365-499: The natural logarithm of a person's wage is a linear function of the number of years of education that person has acquired. The parameter β 1 {\displaystyle \beta _{1}} measures the increase in the natural log of the wage attributable to one more year of education. The term ε {\displaystyle \varepsilon } is a random variable representing all other factors that may have direct influence on wage. The econometric goal

4462-468: The changing demand for beef will account for the price changes over time (Temporary Equilibrium Method). The other aspect of substantive isolation is causal isolation: those factors frozen under a ceteris paribus clause should not significantly be affected by the processes under study. If a change in government policies induces changes in consumers' behaviour on the same time scale, the assumption that consumer behaviour remains unchanged while policy changes

4559-408: The choice of assumptions". Statistics When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey samples . Representative sampling assures that inferences and conclusions can reasonably extend from the sample to the population as a whole. An experimental study involves taking measurements of the system under study, manipulating

4656-399: The clause is used to operationally describe everything surrounding the relationship between both the price and the quantity demanded of an ordinary good . This operational description intentionally ignores both known and unknown factors that may also influence the relationship between price and quantity demanded, and thus to assume ceteris paribus is to assume away any interference with

4753-429: The collection of data leading to a test of the relationship between two statistical data sets, or a data set and synthetic data drawn from an idealized model. A hypothesis is proposed for the statistical relationship between the two data sets, an alternative to an idealized null hypothesis of no relationship between two data sets. Rejecting or disproving the null hypothesis is done using statistical tests that quantify

4850-540: The concepts of standard deviation , correlation , regression analysis and the application of these methods to the study of the variety of human characteristics—height, weight and eyelash length among others. Pearson developed the Pearson product-moment correlation coefficient , defined as a product-moment, the method of moments for the fitting of distributions to samples and the Pearson distribution , among many other things. Galton and Pearson founded Biometrika as

4947-542: The concepts of sufficiency , ancillary statistics , Fisher's linear discriminator and Fisher information . He also coined the term null hypothesis during the Lady tasting tea experiment, which "is never proved or established, but is possibly disproved, in the course of experimentation". In his 1930 book The Genetical Theory of Natural Selection , he applied statistics to various biological concepts such as Fisher's principle (which A. W. F. Edwards called "probably

SECTION 50

#1732773375285

5044-492: The design of observational studies in econometrics is similar to the design of studies in other observational disciplines, such as astronomy, epidemiology, sociology and political science. Analysis of data from an observational study is guided by the study protocol, although exploratory data analysis may be useful for generating new hypotheses. Economics often analyses systems of equations and inequalities, such as supply and demand hypothesized to be in equilibrium . Consequently,

5141-489: The disciplines in which ceteris paribus clauses are most widely used is economics , in which they are employed to simplify the formulation and description of economic outcomes. When using ceteris paribus in economics, one assumes that all other variables except those under immediate consideration are held constant. For example, it can be predicted that if the price of beef increases — ceteris paribus —the quantity of beef demanded by buyers will decrease . In this example,

5238-406: The effect of differences of an independent variable (or variables) on the behavior of the dependent variable are observed. The difference between the two types lies in how the study is actually conducted. Each can be very effective. An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements with different levels using

5335-806: The effect of education on wages. The most obvious way to control for birthplace is to include a measure of the effect of birthplace in the equation above. Exclusion of birthplace, together with the assumption that ϵ {\displaystyle \epsilon } is uncorrelated with education produces a misspecified model. Another technique is to include in the equation additional set of measured covariates which are not instrumental variables, yet render β 1 {\displaystyle \beta _{1}} identifiable. An overview of econometric methods used to study this problem were provided by Card (1999). The main journals that publish work in econometrics are: Like other forms of statistical analysis, badly specified econometric models may show

5432-453: The equation can be estimated with ordinary least squares . If the researcher could randomly assign people to different levels of education, the data set thus generated would allow estimation of the effect of changes in years of education on wages. In reality, those experiments cannot be conducted. Instead, the econometrician observes the years of education of and the wages paid to people who differ along many dimensions. Given this kind of data,

5529-454: The estimated coefficient on years of education in the equation above reflects both the effect of education on wages and the effect of other variables on wages, if those other variables were correlated with education. For example, people born in certain places may have higher wages and higher levels of education. Unless the econometrician controls for place of birth in the above equation, the effect of birthplace on wages may be falsely attributed to

5626-495: The evidence was insufficient to convict. So the jury does not necessarily accept H 0 but fails to reject H 0 . While one can not "prove" a null hypothesis, one can test how close it is to being true with a power test , which tests for type II errors . What statisticians call an alternative hypothesis is simply a hypothesis that contradicts the null hypothesis. Working from a null hypothesis , two broad categories of error are recognized: Standard deviation refers to

5723-478: The expected value assumes on a given sample (also called prediction). Mean squared error is used for obtaining efficient estimators , a widely used class of estimators. Root mean square error is simply the square root of mean squared error. Many statistical methods seek to minimize the residual sum of squares , and these are called " methods of least squares " in contrast to Least absolute deviations . The latter gives equal weight to small and big errors, while

5820-474: The experimental conditions). However, the study is heavily criticized today for errors in experimental procedures, specifically for the lack of a control group and blindness . The Hawthorne effect refers to finding that an outcome (in this case, worker productivity) changed due to observation itself. Those in the Hawthorne study became more productive not because the lighting was changed but because they were being observed. An example of an observational study

5917-402: The extent to which individual observations in a sample differ from a central value, such as the sample or population mean, while Standard error refers to an estimate of difference between sample mean and population mean. A statistical error is the amount by which an observation differs from its expected value . A residual is the amount an observation differs from the value the estimator of

SECTION 60

#1732773375285

6014-467: The face of uncertainty. In applying statistics to a problem, it is common practice to start with a population or process to be studied. Populations can be diverse topics, such as "all people living in a country" or "every atom composing a crystal". Ideally, statisticians compile data about the entire population (an operation called a census ). This may be organized by governmental statistical institutes. Descriptive statistics can be used to summarize

6111-419: The factors fixed under the ceteris paribus clause to actually move so slowly relative to the other influence that they can be taken as practically constant at any point in time. So, if vegetarianism spreads very slowly, inducing a slow decline in the demand for beef, and the market for beef clears comparatively quickly, we can determine the price of beef at any instant by the intersection of supply and demand, and

6208-411: The field of econometrics has developed methods for identification and estimation of simultaneous equations models . These methods are analogous to methods used in other areas of science, such as the field of system identification in systems analysis and control theory . Such methods may allow researchers to estimate models and investigate their empirical consequences, without directly manipulating

6305-432: The first journal of mathematical statistics and biostatistics (then called biometry ), and the latter founded the world's first university statistics department at University College London . The second wave of the 1910s and 20s was initiated by William Sealy Gosset , and reached its culmination in the insights of Ronald Fisher , who wrote the textbooks that were to define the academic discipline in universities around

6402-402: The former gives more weight to large errors. Residual sum of squares is also differentiable , which provides a handy property for doing regression . Least squares applied to linear regression is called ordinary least squares method and least squares applied to nonlinear regression is called non-linear least squares . Also in a linear regression model the non deterministic part of the model

6499-419: The given example. Such factors that would be intentionally ignored include: a change in the price of substitute goods, (e.g., the price of pork or lamb); a change in the level of risk aversion among buyers (e.g., due to an increase in the fear of mad cow disease ); and a change in the level of overall demand for a good regardless of its current price (e.g., a societal shift toward vegetarianism ). The clause

6596-605: The given parameters of a total population to deduce probabilities that pertain to samples. Statistical inference, however, moves in the opposite direction— inductively inferring from samples to the parameters of a larger or total population. A common goal for a statistical research project is to investigate causality , and in particular to draw a conclusion on the effect of changes in the values of predictors or independent variables on dependent variables . There are two major types of causal statistical studies: experimental studies and observational studies . In both types of studies,

6693-422: The individual effect of one of the variables. Ceteris paribus is an extension of scientific modeling. The scientific method is built on identifying, isolating, and testing the impact of an independent variable on a dependent variable. One thing to note is that since economic variables can only be isolated in theory and not in practice, ceteris paribus can only ever highlight tendencies, not absolutes. The clause

6790-489: The inquiry. An example in economics is "If the price of milk falls, ceteris paribus, the quantity of milk demanded will rise." This means that, if other factors, such as deflation, pricing objectives, utility, and marketing methods, do not change, the decrease in the price of milk will lead to an increase in demand for it. Some examples of ceteris paribus conditions commonly employed in economics include: Ceteris paribus has been relevant in economics for centuries, in which

6887-412: The issue is thus narrowed, the more exactly can it be handled: but also the less closely does it correspond to real life. I.e. The more we apply the rule of ceteris paribus the further we distance ourselves from reality, e.g. If hydrocarbon fuels are infinite then society is sustainable. Each exact and firm handling of a narrow issue, however, helps towards treating broader issues, in which that narrow issue

6984-628: The majority of the phrases first uses were in economic contexts, dating back to its first traces in 1295 by Peter Olivi . The earliest case of the Latin phrase being used in the English language publications was in the 17th century by William Petty , who used the clause to condition his labour theory of value. Economist John Stuart Mill’s use of the Latin phrase had significant influences as he characterised economy through how it managed troubling factors. Economist Alfred Marshall had significant effects on

7081-424: The most celebrated argument in evolutionary biology ") and Fisherian runaway , a concept in sexual selection about a positive feedback runaway effect found in evolution . The final wave, which mainly saw the refinement and expansion of earlier developments, emerged from the collaborative work between Egon Pearson and Jerzy Neyman in the 1930s. They introduced the concepts of " Type II " error, power of

7178-412: The overall result is significant in real world terms. For example, in a large study of a drug it may be shown that the drug has a statistically significant but very small beneficial effect, such that the drug is unlikely to help the patient noticeably. Although in principle the acceptable level of statistical significance may be subject to debate, the significance level is the largest p-value that allows

7275-429: The popularity for the ceteris paribus clause in the 19th century. It was his support to economics where he promoted partial equilibrium analysis, claiming that this analysis, and similar analysis’ hold due to the ceteris paribus clauses. The importance that ceteris paribus has brought to economics is not only found in histographical interests, but is still vital to economists today, seen frequently in textbooks. One of

7372-415: The population data. Numerical descriptors include mean and standard deviation for continuous data (like income), while frequency and percentage are more useful in terms of describing categorical data (like education). When a census is not feasible, a chosen subset of the population called a sample is studied. Once a sample that is representative of the population is determined, data is collected for

7469-544: The population. Sampling theory is part of the mathematical discipline of probability theory . Probability is used in mathematical statistics to study the sampling distributions of sample statistics and, more generally, the properties of statistical procedures . The use of any statistical method is valid when the system or population under consideration satisfies the assumptions of the method. The difference in point of view between classic probability theory and sampling theory is, roughly, that probability theory starts from

7566-494: The problem of how to analyze big data . When full census data cannot be collected, statisticians collect sample data by developing specific experiment designs and survey samples . Statistics itself also provides tools for prediction and forecasting through statistical models . To use a sample as a guide to an entire population, it is important that it truly represents the overall population. Representative sampling assures that inferences and conclusions can safely extend from

7663-470: The publication of Natural and Political Observations upon the Bills of Mortality by John Graunt . Early applications of statistical thinking revolved around the needs of states to base policy on demographic and economic data, hence its stat- etymology . The scope of the discipline of statistics broadened in the early 19th century to include the collection and analysis of data in general. Today, statistics

7760-485: The relation can be abolished by, intervening factors. A ceteris paribus assumption is often key to scientific inquiry, because scientists seek to eliminate factors that perturb a relation of interest. Thus epidemiologists , for example, may seek to control independent variables as factors that may influence dependent variables —the outcomes of interest. Likewise, in scientific modeling , simplifying assumptions permit illustration of concepts considered relevant to

7857-461: The same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation . Instead, data are gathered and correlations between predictors and response are investigated. While the tools of data analysis work best on data from randomized studies , they are also applied to other kinds of data—like natural experiments and observational studies —for which

7954-439: The sample data to draw inferences about the population represented while accounting for randomness. These inferences may take the form of answering yes/no questions about the data ( hypothesis testing ), estimating numerical characteristics of the data ( estimation ), describing associations within the data ( correlation ), and modeling relationships within the data (for example, using regression analysis ). Inference can extend to

8051-399: The sample members in an observational or experimental setting. Again, descriptive statistics can be used to summarize the sample data. However, drawing the sample contains an element of randomness; hence, the numerical descriptors from the sample are also prone to uncertainty. To draw meaningful conclusions about the entire population, inferential statistics are needed. It uses patterns in

8148-405: The sample to the population as a whole. A major problem lies in determining the extent that the sample chosen is actually representative. Statistics offers methods to estimate and correct for any bias within the sample and data collection procedures. There are also methods of experimental design that can lessen these issues at the outset of a study, strengthening its capability to discern truths about

8245-412: The sampling and analysis were repeated under the same conditions (yielding a different dataset), the interval would include the true (population) value in 95% of all possible cases. This does not imply that the probability that the true value is in the confidence interval is 95%. From the frequentist perspective, such a claim does not even make sense, as the true value is not a random variable . Either

8342-462: The sense in which the null can be proven false, given the data that are used in the test. Working from a null hypothesis, two basic forms of error are recognized: Type I errors (null hypothesis is rejected when it is in fact true, giving a "false positive") and Type II errors (null hypothesis fails to be rejected when it is in fact false, giving a "false negative"). Multiple problems have come to be associated with this framework, ranging from obtaining

8439-408: The statistic, though, may have unknown parameters. Consider now a function of the unknown parameter: an estimator is a statistic used to estimate such function. Commonly used estimators include sample mean , unbiased sample variance and sample covariance . A random variable that is a function of the random sample and of the unknown parameter, but whose probability distribution does not depend on

8536-647: The system, and then taking additional measurements using the same procedure to determine if the manipulation has modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation. Two main statistical methods are used in data analysis : descriptive statistics , which summarize data from a sample using indexes such as the mean or standard deviation , and inferential statistics , which draw conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). Descriptive statistics are most often concerned with two sets of properties of

8633-440: The system. In the absence of evidence from controlled experiments, econometricians often seek illuminating natural experiments or apply quasi-experimental methods to draw credible causal inference. The methods include regression discontinuity design , instrumental variables , and difference-in-differences . A simple example of a relationship in econometrics from the field of labour economics is: This example assumes that

8730-493: The test to reject the null hypothesis. This test is logically equivalent to saying that the p-value is the probability, assuming the null hypothesis is true, of observing a result at least as extreme as the test statistic . Therefore, the smaller the significance level, the lower the probability of committing type I error. Ceteris paribus Ceteris paribus (also spelled caeteris paribus ) (Classical Latin pronunciation: [ˈkeːtɛ.riːs ˈpa.rɪ.bʊs] )

8827-1259: The true value as the sample size gets larger, and it is efficient if the estimator has lower standard error than other unbiased estimators for a given sample size. Ordinary least squares (OLS) is often used for estimation since it provides the BLUE or "best linear unbiased estimator" (where "best" means most efficient, unbiased estimator) given the Gauss-Markov assumptions. When these assumptions are violated or other statistical properties are desired, other estimation techniques such as maximum likelihood estimation , generalized method of moments , or generalized least squares are used. Estimators that incorporate prior beliefs are advocated by those who favour Bayesian statistics over traditional, classical or "frequentist" approaches . Applied econometrics uses theoretical econometrics and real-world data for assessing economic theories, developing econometric models , analysing economic history , and forecasting . Econometrics uses standard statistical models to study economic questions, but most often these are based on observational data, rather than data from controlled experiments . In this,

8924-420: The true value is or is not within the given interval. However, it is true that, before any data are sampled and given a plan for how to construct the confidence interval, the probability is 95% that the yet-to-be-calculated interval will cover the true value: at this point, the limits of the interval are yet-to-be-observed random variables . One approach that does yield an interval that can be interpreted as having

9021-416: The two sided interval is built violating symmetry around the estimate. Sometimes the bounds for a confidence interval are reached asymptotically and these are used to approximate the true bounds. Statistics rarely give a simple Yes/No type answer to the question under analysis. Interpretation often comes down to the level of statistical significance applied to the numbers and often refers to the probability of

9118-835: The unemployment rate. This relationship is represented in a linear regression where the change in unemployment rate ( Δ   Unemployment {\displaystyle \Delta \ {\text{Unemployment}}} ) is a function of an intercept ( β 0 {\displaystyle \beta _{0}} ), a given value of GDP growth multiplied by a slope coefficient β 1 {\displaystyle \beta _{1}} and an error term, ε {\displaystyle \varepsilon } : The unknown parameters β 0 {\displaystyle \beta _{0}} and β 1 {\displaystyle \beta _{1}} can be estimated. Here β 0 {\displaystyle \beta _{0}}

9215-485: The unknown parameter is called a pivotal quantity or pivot. Widely used pivots include the z-score , the chi square statistic and Student's t-value . Between two estimators of a given parameter, the one with lower mean squared error is said to be more efficient . Furthermore, an estimator is said to be unbiased if its expected value is equal to the true value of the unknown parameter being estimated, and asymptotically unbiased if its expected value converges at

9312-640: The use of sample size in frequency analysis. Although the term statistic was introduced by the Italian scholar Girolamo Ghilini in 1589 with reference to a collection of facts and information about a state, it was the German Gottfried Achenwall in 1749 who started using the term as a collection of quantitative information, in the modern use for this science. The earliest writing containing statistics in Europe dates back to 1663, with

9409-468: The world. Fisher's most important publications were his 1918 seminal paper The Correlation between Relatives on the Supposition of Mendelian Inheritance (which was the first to use the statistical term, variance ), his classic 1925 work Statistical Methods for Research Workers and his 1935 The Design of Experiments , where he developed rigorous design of experiments models. He originated

#284715