Misplaced Pages

Ehrlichiaceae

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A prokaryote ( / p r oʊ ˈ k ær i oʊ t , - ə t / ; less commonly spelled procaryote ) is a single-cell organism whose cell lacks a nucleus and other membrane -bound organelles . The word prokaryote comes from the Ancient Greek πρό ( pró ), meaning 'before', and κάρυον ( káruon ), meaning 'nut' or 'kernel'. In the two-empire system arising from the work of Édouard Chatton , prokaryotes were classified within the empire Prokaryota . However in the three-domain system , based upon molecular analysis , prokaryotes are divided into two domains : Bacteria (formerly Eubacteria) and Archaea (formerly Archaebacteria). Organisms with nuclei are placed in a third domain: Eukaryota .

#807192

99-420: The Ehrlichiaceae are a family of bacteria , included in the order Rickettsiales . This Alphaproteobacteria -related article is a stub . You can help Misplaced Pages by expanding it . Bacterium See § Phyla Bacteria ( / b æ k ˈ t ɪər i ə / ; sg. : bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell . They constitute

198-409: A haploid chromosomal composition that is partially replicated, a condition known as merodiploidy . Prokaryotes lack mitochondria and chloroplasts . Instead, processes such as oxidative phosphorylation and photosynthesis take place across the prokaryotic cell membrane . However, prokaryotes do possess some internal structures, such as prokaryotic cytoskeletons . It has been suggested that

297-406: A nucleus and rarely harbour membrane -bound organelles . Although the term bacteria traditionally included all prokaryotes, the scientific classification changed after the discovery in the 1990s that prokaryotes consist of two very different groups of organisms that evolved from an ancient common ancestor . These evolutionary domains are called Bacteria and Archaea . The word bacteria

396-693: A paraphyletic group, just like dinosaurs without birds. Unlike the above assumption of a fundamental split between prokaryotes and eukaryotes, the most important difference between biota may be the division between Bacteria and the rest (Archaea and Eukaryota). For instance, DNA replication differs fundamentally between the Bacteria and Archaea (including that in eukaryotic nuclei), and it may not be homologous between these two groups. Moreover, ATP synthase , though common (homologous) in all organisms, differs greatly between bacteria (including eukaryotic organelles such as mitochondria and chloroplasts ) and

495-543: A potential difference analogous to a battery. The general lack of internal membranes in bacteria means these reactions, such as electron transport , occur across the cell membrane between the cytoplasm and the outside of the cell or periplasm . However, in many photosynthetic bacteria, the plasma membrane is highly folded and fills most of the cell with layers of light-gathering membrane. These light-gathering complexes may even form lipid-enclosed structures called chlorosomes in green sulfur bacteria . Bacteria do not have

594-1088: A prokaryotic cytoskeleton that is more primitive than that of the eukaryotes. Besides homologues of actin and tubulin ( MreB and FtsZ ), the helically arranged building-block of the flagellum , flagellin , is one of the most significant cytoskeletal proteins of bacteria, as it provides structural backgrounds of chemotaxis , the basic cell physiological response of bacteria. At least some prokaryotes also contain intracellular structures that can be seen as primitive organelles. Membranous organelles (or intracellular membranes) are known in some groups of prokaryotes, such as vacuoles or membrane systems devoted to special metabolic properties, such as photosynthesis or chemolithotrophy . In addition, some species also contain carbohydrate-enclosed microcompartments, which have distinct physiological roles (e.g. carboxysomes or gas vacuoles). Most prokaryotes are between 1 μm and 10 μm, but they can vary in size from 0.2 μm ( Mycoplasma genitalium ) to 750 μm ( Thiomargarita namibiensis ). Prokaryotic cells have various shapes;

693-401: A taxon to be found nearby the then-unknown Asgard group). For example, histones which usually package DNA in eukaryotic nuclei, have also been found in several archaean groups, giving evidence for homology . This idea might clarify the mysterious predecessor of eukaryotic cells ( eucytes ) which engulfed an alphaproteobacterium forming the first eucyte ( LECA , l ast e ukaryotic c ommon

792-404: A terminal electron acceptor in a redox reaction . Chemotrophs are further divided by the types of compounds they use to transfer electrons. Bacteria that derive electrons from inorganic compounds such as hydrogen, carbon monoxide , or ammonia are called lithotrophs , while those that use organic compounds are called organotrophs . Still, more specifically, aerobic organisms use oxygen as

891-744: A bacterial strain. However, liquid growth media are used when the measurement of growth or large volumes of cells are required. Growth in stirred liquid media occurs as an even cell suspension, making the cultures easy to divide and transfer, although isolating single bacteria from liquid media is difficult. The use of selective media (media with specific nutrients added or deficient, or with antibiotics added) can help identify specific organisms. Most laboratory techniques for growing bacteria use high levels of nutrients to produce large amounts of cells cheaply and quickly. However, in natural environments, nutrients are limited, meaning that bacteria cannot continue to reproduce indefinitely. This nutrient limitation has led

990-1203: A bacterium to bind, take up and recombine donor DNA into its own chromosome, it must first enter a special physiological state called competence . About 40 genes are required in Bacillus subtilis for the development of competence. The length of DNA transferred during B. subtilis transformation can be as much as a third to the whole chromosome. Transformation is a common mode of DNA transfer, and 67 prokaryotic species are thus far known to be naturally competent for transformation. Among archaea, Halobacterium volcanii forms cytoplasmic bridges between cells that appear to be used for transfer of DNA from one cell to another. Another archaeon, Sulfolobus solfataricus , transfers DNA between cells by direct contact. Frols et al. (2008) found that exposure of S. solfataricus to DNA damaging agents induces cellular aggregation, and suggested that cellular aggregation may enhance DNA transfer among cells to provide increased repair of damaged DNA via homologous recombination. While prokaryotes are considered strictly unicellular, most can form stable aggregate communities. When such communities are encased in

1089-424: A disorganised slime layer of extracellular polymeric substances to a highly structured capsule . These structures can protect cells from engulfment by eukaryotic cells such as macrophages (part of the human immune system ). They can also act as antigens and be involved in cell recognition, as well as aiding attachment to surfaces and the formation of biofilms. The assembly of these extracellular structures

SECTION 10

#1732798828808

1188-413: A few micrometres in thickness to up to half a metre in depth, and may contain multiple species of bacteria, protists and archaea. Bacteria living in biofilms display a complex arrangement of cells and extracellular components, forming secondary structures, such as microcolonies , through which there are networks of channels to enable better diffusion of nutrients. In natural environments, such as soil or

1287-415: A few species are visible to the unaided eye—for example, Thiomargarita namibiensis is up to half a millimetre long, Epulopiscium fishelsoni reaches 0.7 mm, and Thiomargarita magnifica can reach even 2 cm in length, which is 50 times larger than other known bacteria. Among the smallest bacteria are members of the genus Mycoplasma , which measure only 0.3 micrometres, as small as

1386-426: A fixed size and then reproduce through binary fission , a form of asexual reproduction . Under optimal conditions, bacteria can grow and divide extremely rapidly, and some bacterial populations can double as quickly as every 17 minutes. In cell division, two identical clone daughter cells are produced. Some bacteria, while still reproducing asexually, form more complex reproductive structures that help disperse

1485-399: A higher metabolic rate , a higher growth rate, and as a consequence, a shorter generation time than eukaryotes. There is increasing evidence that the roots of the eukaryotes are to be found in (or at least next to) the archaean Asgard group, perhaps Heimdallarchaeota (an idea which is a modern version of the 1984 eocyte hypothesis , eocytes being an old synonym for Thermoproteota ,

1584-418: A large domain of prokaryotic microorganisms . Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth , and are present in most of its habitats . Bacteria inhabit the air, soil, water, acidic hot springs , radioactive waste , and the deep biosphere of Earth's crust . Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and

1683-408: A membrane-bound nucleus, and their genetic material is typically a single circular bacterial chromosome of DNA located in the cytoplasm in an irregularly shaped body called the nucleoid . The nucleoid contains the chromosome with its associated proteins and RNA . Like all other organisms , bacteria contain ribosomes for the production of proteins, but the structure of the bacterial ribosome

1782-527: A ncestor) according to endosymbiotic theory . There might have been some additional support by viruses, called viral eukaryogenesis . The non-bacterial group comprising archaea and eukaryota was called Neomura by Thomas Cavalier-Smith in 2002. However, in a cladistic view, Eukaryota are Archaea in the same sense as birds are dinosaurs because they evolved from the Maniraptora dinosaur group. In contrast, archaea without eukaryota appear to be

1881-659: A nucleus. Both eukaryotes and prokaryotes contain large RNA / protein structures called ribosomes , which produce protein , but the ribosomes of prokaryotes are smaller than those of eukaryotes. Mitochondria and chloroplasts , two organelles found in many eukaryotic cells, contain ribosomes similar in size and makeup to those found in prokaryotes. This is one of many pieces of evidence that mitochondria and chloroplasts are descended from free-living bacteria. The endosymbiotic theory holds that early eukaryotic cells took in primitive prokaryotic cells by phagocytosis and adapted themselves to incorporate their structures, leading to

1980-528: A particular organism or group of organisms ( syntrophy ). Bacterial growth follows four phases. When a population of bacteria first enter a high-nutrient environment that allows growth, the cells need to adapt to their new environment. The first phase of growth is the lag phase , a period of slow growth when the cells are adapting to the high-nutrient environment and preparing for fast growth. The lag phase has high biosynthesis rates, as proteins necessary for rapid growth are produced. The second phase of growth

2079-415: A process called transformation . Many bacteria can naturally take up DNA from the environment, while others must be chemically altered in order to induce them to take up DNA. The development of competence in nature is usually associated with stressful environmental conditions and seems to be an adaptation for facilitating repair of DNA damage in recipient cells. Second, bacteriophages can integrate into

SECTION 20

#1732798828808

2178-690: A similar group of selfish individuals (see inclusive fitness and Hamilton's rule ). Should these instances of prokaryotic sociality prove to be the rule rather than the exception, it would have serious implications for the way we view prokaryotes in general, and the way we deal with them in medicine. Bacterial biofilms may be 100 times more resistant to antibiotics than free-living unicells and may be nearly impossible to remove from surfaces once they have colonized them. Other aspects of bacterial cooperation—such as bacterial conjugation and quorum-sensing-mediated pathogenicity , present additional challenges to researchers and medical professionals seeking to treat

2277-425: A single continuous stretch of DNA. Although several different types of introns do exist in bacteria, these are much rarer than in eukaryotes. Bacteria, as asexual organisms, inherit an identical copy of the parent's genome and are clonal . However, all bacteria can evolve by selection on changes to their genetic material DNA caused by genetic recombination or mutations . Mutations arise from errors made during

2376-473: A single founder (in the way that animals and plants are founded by single cells), which presents a number of theoretical issues. Most explanations of co-operation and the evolution of multicellularity have focused on high relatedness between members of a group (or colony, or whole organism). If a copy of a gene is present in all members of a group, behaviors that promote cooperation between members may permit those members to have (on average) greater fitness than

2475-427: A single linear chromosome, while some Vibrio species contain more than one chromosome. Some bacteria contain plasmids , small extra-chromosomal molecules of DNA that may contain genes for various useful functions such as antibiotic resistance , metabolic capabilities, or various virulence factors . Bacteria genomes usually encode a few hundred to a few thousand genes. The genes in bacterial genomes are usually

2574-649: A source of electrons and a substrate for carbon anabolism . In many ways, bacterial metabolism provides traits that are useful for ecological stability and for human society. For example, diazotrophs have the ability to fix nitrogen gas using the enzyme nitrogenase . This trait, which can be found in bacteria of most metabolic types listed above, leads to the ecologically important processes of denitrification , sulfate reduction , and acetogenesis , respectively. Bacterial metabolic processes are important drivers in biological responses to pollution ; for example, sulfate-reducing bacteria are largely responsible for

2673-679: A stabilizing polymer matrix ("slime"), they may be called " biofilms ". Cells in biofilms often show distinct patterns of gene expression (phenotypic differentiation) in time and space. Also, as with multicellular eukaryotes, these changes in expression often appear to result from cell-to-cell signaling , a phenomenon known as quorum sensing . Biofilms may be highly heterogeneous and structurally complex and may attach to solid surfaces, or exist at liquid-air interfaces, or potentially even liquid-liquid interfaces. Bacterial biofilms are often made up of microcolonies (approximately dome-shaped masses of bacteria and matrix) separated by "voids" through which

2772-797: A thick peptidoglycan cell wall like a Gram-positive bacterium, but also a second outer layer of lipids. In many bacteria, an S-layer of rigidly arrayed protein molecules covers the outside of the cell. This layer provides chemical and physical protection for the cell surface and can act as a macromolecular diffusion barrier . S-layers have diverse functions and are known to act as virulence factors in Campylobacter species and contain surface enzymes in Bacillus stearothermophilus . Flagella are rigid protein structures, about 20 nanometres in diameter and up to 20 micrometres in length, that are used for motility . Flagella are driven by

2871-417: A three- dimensional random walk . Bacterial species differ in the number and arrangement of flagella on their surface; some have a single flagellum ( monotrichous ), a flagellum at each end ( amphitrichous ), clusters of flagella at the poles of the cell ( lophotrichous ), while others have flagella distributed over the entire surface of the cell ( peritrichous ). The flagella of a group of bacteria,

2970-404: Is evidence on Mars of fossil or living prokaryotes. However, this possibility remains the subject of considerable debate and skepticism. The division between prokaryotes and eukaryotes is usually considered the most important distinction or difference among organisms. The distinction is that eukaryotic cells have a "true" nucleus containing their DNA , whereas prokaryotic cells do not have

3069-480: Is caused by a toxin released by the bacteria that grow from the spores. Clostridioides difficile infection , a common problem in healthcare settings, is caused by spore-forming bacteria. Bacteria exhibit an extremely wide variety of metabolic types. The distribution of metabolic traits within a group of bacteria has traditionally been used to define their taxonomy , but these traits often do not correspond with modern genetic classifications. Bacterial metabolism

Ehrlichiaceae - Misplaced Pages Continue

3168-412: Is classified into nutritional groups on the basis of three major criteria: the source of energy , the electron donors used, and the source of carbon used for growth. Phototrophic bacteria derive energy from light using photosynthesis , while chemotrophic bacteria breaking down chemical compounds through oxidation , driving metabolism by transferring electrons from a given electron donor to

3267-536: Is dependent on bacterial secretion systems . These transfer proteins from the cytoplasm into the periplasm or into the environment around the cell. Many types of secretion systems are known and these structures are often essential for the virulence of pathogens, so are intensively studied. Some genera of Gram-positive bacteria, such as Bacillus , Clostridium , Sporohalobacter , Anaerobacter , and Heliobacterium , can form highly resistant, dormant structures called endospores . Endospores develop within

3366-534: Is determined by the bacterial cell wall and cytoskeleton and is important because it can influence the ability of bacteria to acquire nutrients, attach to surfaces, swim through liquids and escape predators . Multicellularity . Most bacterial species exist as single cells; others associate in characteristic patterns: Neisseria forms diploids (pairs), streptococci form chains, and staphylococci group together in "bunch of grapes" clusters. Bacteria can also group to form larger multicellular structures, such as

3465-441: Is different from that of eukaryotes and archaea. Some bacteria produce intracellular nutrient storage granules, such as glycogen , polyphosphate , sulfur or polyhydroxyalkanoates . Bacteria such as the photosynthetic cyanobacteria , produce internal gas vacuoles , which they use to regulate their buoyancy, allowing them to move up or down into water layers with different light intensities and nutrient levels. Around

3564-414: Is essential to the survival of many bacteria, and the antibiotic penicillin (produced by a fungus called Penicillium ) is able to kill bacteria by inhibiting a step in the synthesis of peptidoglycan. There are broadly speaking two different types of cell wall in bacteria, that classify bacteria into Gram-positive bacteria and Gram-negative bacteria . The names originate from the reaction of cells to

3663-529: Is made of about 20 proteins, with approximately another 30 proteins required for its regulation and assembly. The flagellum is a rotating structure driven by a reversible motor at the base that uses the electrochemical gradient across the membrane for power. Bacteria can use flagella in different ways to generate different kinds of movement. Many bacteria (such as E. coli ) have two distinct modes of movement: forward movement (swimming) and tumbling. The tumbling allows them to reorient and makes their movement

3762-468: Is made primarily of phospholipids . This membrane encloses the contents of the cell and acts as a barrier to hold nutrients, proteins and other essential components of the cytoplasm within the cell. Unlike eukaryotic cells , bacteria usually lack large membrane-bound structures in their cytoplasm such as a nucleus , mitochondria , chloroplasts and the other organelles present in eukaryotic cells. However, some bacteria have protein-bound organelles in

3861-496: Is motile in liquid or solid media. Several Listeria and Shigella species move inside host cells by usurping the cytoskeleton , which is normally used to move organelles inside the cell. By promoting actin polymerisation at one pole of their cells, they can form a kind of tail that pushes them through the host cell's cytoplasm. A few bacteria have chemical systems that generate light. This bioluminescence often occurs in bacteria that live in association with fish, and

3960-447: Is the stationary phase and is caused by depleted nutrients. The cells reduce their metabolic activity and consume non-essential cellular proteins. The stationary phase is a transition from rapid growth to a stress response state and there is increased expression of genes involved in DNA repair , antioxidant metabolism and nutrient transport . The final phase is the death phase where

4059-440: Is the logarithmic phase , also known as the exponential phase. The log phase is marked by rapid exponential growth . The rate at which cells grow during this phase is known as the growth rate ( k ), and the time it takes the cells to double is known as the generation time ( g ). During log phase, nutrients are metabolised at maximum speed until one of the nutrients is depleted and starts limiting growth. The third phase of growth

Ehrlichiaceae - Misplaced Pages Continue

4158-694: Is the plural of the Neo-Latin bacterium , which is the Latinisation of the Ancient Greek βακτήριον ( baktḗrion ), the diminutive of βακτηρία ( baktēría ), meaning "staff, cane", because the first ones to be discovered were rod-shaped . The ancestors of bacteria were unicellular microorganisms that were the first forms of life to appear on Earth, about 4 billion years ago. For about 3 billion years, most organisms were microscopic, and bacteria and archaea were

4257-472: The Gram stain , a long-standing test for the classification of bacterial species. Gram-positive bacteria possess a thick cell wall containing many layers of peptidoglycan and teichoic acids . In contrast, Gram-negative bacteria have a relatively thin cell wall consisting of a few layers of peptidoglycan surrounded by a second lipid membrane containing lipopolysaccharides and lipoproteins . Most bacteria have

4356-555: The encapsulin protein cages ), have been discovered, along with other prokaryotic organelles . While being unicellular, some prokaryotes, such as cyanobacteria , may form colonies held together by biofilms , and large colonies can create multilayered microbial mats . Others, such as myxobacteria , have multicellular stages in their life cycles . Prokaryotes are asexual , reproducing via binary fission without any fusion of gametes , although horizontal gene transfer may take place. Molecular studies have provided insight into

4455-624: The fixation of nitrogen from the atmosphere . The nutrient cycle includes the decomposition of dead bodies ; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps , extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane , to energy. Bacteria also live in mutualistic , commensal and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in

4554-444: The spirochaetes , are found between two membranes in the periplasmic space. They have a distinctive helical body that twists about as it moves. Two other types of bacterial motion are called twitching motility that relies on a structure called the type IV pilus , and gliding motility , that uses other mechanisms. In twitching motility, the rod-like pilus extends out from the cell, binds some substrate, and then retracts, pulling

4653-551: The vacuum and radiation of outer space , leading to the possibility that bacteria could be distributed throughout the Universe by space dust , meteoroids , asteroids , comets , planetoids , or directed panspermia . Endospore-forming bacteria can cause disease; for example, anthrax can be contracted by the inhalation of Bacillus anthracis endospores, and contamination of deep puncture wounds with Clostridium tetani endospores causes tetanus , which, like botulism ,

4752-793: The Gram-negative cell wall, and only members of the Bacillota group and actinomycetota (previously known as the low G+C and high G+C Gram-positive bacteria, respectively) have the alternative Gram-positive arrangement. These differences in structure can produce differences in antibiotic susceptibility; for instance, vancomycin can kill only Gram-positive bacteria and is ineffective against Gram-negative pathogens , such as Haemophilus influenzae or Pseudomonas aeruginosa . Some bacteria have cell wall structures that are neither classically Gram-positive or Gram-negative. This includes clinically important bacteria such as mycobacteria which have

4851-608: The archaea/eukaryote nucleus group. The last common antecessor of all life (called LUCA , l ast u niversal c ommon a ncestor) should have possessed an early version of this protein complex. As ATP synthase is obligate membrane bound, this supports the assumption that LUCA was a cellular organism. The RNA world hypothesis might clarify this scenario, as LUCA might have been a ribocyte (also called ribocell) lacking DNA, but with an RNA genome built by ribosomes as primordial self-replicating entities . A Peptide-RNA world (also called RNP world) hypothesis has been proposed based on

4950-425: The archaeal/eukaryotic lineage. The most recent common ancestor (MRCA) of bacteria and archaea was probably a hyperthermophile that lived about 2.5 billion–3.2 billion years ago. The earliest life on land may have been bacteria some 3.22 billion years ago. Bacteria were also involved in the second great evolutionary divergence, that of the archaea and eukaryotes. Here, eukaryotes resulted from

5049-478: The associated diseases. Prokaryotes have diversified greatly throughout their long existence. The metabolism of prokaryotes is far more varied than that of eukaryotes, leading to many highly distinct prokaryotic types. For example, in addition to using photosynthesis or organic compounds for energy, as eukaryotes do, prokaryotes may obtain energy from inorganic compounds such as hydrogen sulfide . This enables prokaryotes to thrive in harsh environments as cold as

SECTION 50

#1732798828808

5148-455: The atmosphere and one cubic metre of air holds around one hundred million bacterial cells. The oceans and seas harbour around 3 x 10 bacteria which provide up to 50% of the oxygen humans breathe. Only around 2% of bacterial species have been fully studied. Size . Bacteria display a wide diversity of shapes and sizes. Bacterial cells are about one-tenth the size of eukaryotic cells and are typically 0.5–5.0  micrometres in length. However,

5247-520: The bacteria have come into contact with in the past, which allows them to block virus replication through a form of RNA interference . Third, bacteria can transfer genetic material through direct cell contact via conjugation . In ordinary circumstances, transduction, conjugation, and transformation involve transfer of DNA between individual bacteria of the same species, but occasionally transfer may occur between individuals of different bacterial species, and this may have significant consequences, such as

5346-444: The bacteria perform separate tasks; for example, about one in ten cells migrate to the top of a fruiting body and differentiate into a specialised dormant state called a myxospore, which is more resistant to drying and other adverse environmental conditions. Biofilms . Bacteria often attach to surfaces and form dense aggregations called biofilms and larger formations known as microbial mats . These biofilms and mats can range from

5445-401: The bacteria run out of nutrients and die. Most bacteria have a single circular chromosome that can range in size from only 160,000 base pairs in the endosymbiotic bacteria Carsonella ruddii , to 12,200,000 base pairs (12.2 Mbp) in the soil-dwelling bacteria Sorangium cellulosum . There are many exceptions to this; for example, some Streptomyces and Borrelia species contain

5544-412: The bacterial chromosome, introducing foreign DNA in a process known as transduction . Many types of bacteriophage exist; some infect and lyse their host bacteria, while others insert into the bacterial chromosome. Bacteria resist phage infection through restriction modification systems that degrade foreign DNA and a system that uses CRISPR sequences to retain fragments of the genomes of phage that

5643-450: The bacterial phylum Planctomycetota has a membrane around the nucleoid and contains other membrane-bound cellular structures. However, further investigation revealed that Planctomycetota cells are not compartmentalized or nucleated and, like other bacterial membrane systems, are interconnected. Prokaryotic cells are usually much smaller than eukaryotic cells. Therefore, prokaryotes have a larger surface-area-to-volume ratio , giving them

5742-421: The biofilm—has led some to speculate that this may constitute a circulatory system and many researchers have started calling prokaryotic communities multicellular (for example ). Differential cell expression, collective behavior, signaling, programmed cell death , and (in some cases) discrete biological dispersal events all seem to point in this direction. However, these colonies are seldom if ever founded by

5841-495: The bodies of other organisms, including humans. Prokaryotes have high populations in the soil - including the rhizosphere and rhizosheath . Soil prokaryotes are still heavily undercharacterized despite their easy proximity to humans and their tremendous economic importance to agriculture . In 1977, Carl Woese proposed dividing prokaryotes into the Bacteria and Archaea (originally Eubacteria and Archaebacteria) because of

5940-502: The breakdown of oil spills , the production of cheese and yogurt through fermentation , the recovery of gold, palladium , copper and other metals in the mining sector ( biomining , bioleaching ), as well as in biotechnology , and the manufacture of antibiotics and other chemicals. Once regarded as plants constituting the class Schizomycetes ("fission fungi"), bacteria are now classified as prokaryotes . Unlike cells of animals and other eukaryotes , bacterial cells do not contain

6039-437: The cell forward. Motile bacteria are attracted or repelled by certain stimuli in behaviours called taxes : these include chemotaxis , phototaxis , energy taxis , and magnetotaxis . In one peculiar group, the myxobacteria, individual bacteria move together to form waves of cells that then differentiate to form fruiting bodies containing spores. The myxobacteria move only when on solid surfaces, unlike E. coli , which

SECTION 60

#1732798828808

6138-454: The current set of prokaryotic species may have evolved from more complex eukaryotic ancestors through a process of simplification. Others have argued that the three domains of life arose simultaneously, from a set of varied cells that formed a single gene pool. This controversy was summarized in 2005: There is no consensus among biologists concerning the position of the eukaryotes in the overall scheme of cell evolution. Current opinions on

6237-629: The cytoplasm of the cell; generally, a single endospore develops in each cell. Each endospore contains a core of DNA and ribosomes surrounded by a cortex layer and protected by a multilayer rigid coat composed of peptidoglycan and a variety of proteins. Endospores show no detectable metabolism and can survive extreme physical and chemical stresses, such as high levels of UV light , gamma radiation , detergents , disinfectants , heat, freezing, pressure, and desiccation . In this dormant state, these organisms may remain viable for millions of years. Endospores even allow bacteria to survive exposure to

6336-419: The cytoplasm which compartmentalise aspects of bacterial metabolism, such as the carboxysome . Additionally, bacteria have a multi-component cytoskeleton to control the localisation of proteins and nucleic acids within the cell, and to manage the process of cell division . Many important biochemical reactions, such as energy generation, occur due to concentration gradients across membranes, creating

6435-411: The dominant forms of life. Although bacterial fossils exist, such as stromatolites , their lack of distinctive morphology prevents them from being used to examine the history of bacterial evolution, or to date the time of origin of a particular bacterial species. However, gene sequences can be used to reconstruct the bacterial phylogeny , and these studies indicate that bacteria diverged first from

6534-526: The elongated filaments of Actinomycetota species, the aggregates of Myxobacteria species, and the complex hyphae of Streptomyces species. These multicellular structures are often only seen in certain conditions. For example, when starved of amino acids, myxobacteria detect surrounding cells in a process known as quorum sensing , migrate towards each other, and aggregate to form fruiting bodies up to 500 micrometres long and containing approximately 100,000 bacterial cells. In these fruiting bodies,

6633-501: The energy released by the transfer of ions down an electrochemical gradient across the cell membrane. Fimbriae (sometimes called " attachment pili ") are fine filaments of protein, usually 2–10 nanometres in diameter and up to several micrometres in length. They are distributed over the surface of the cell, and resemble fine hairs when seen under the electron microscope . Fimbriae are believed to be involved in attachment to solid surfaces or to other cells, and are essential for

6732-602: The entering of ancient bacteria into endosymbiotic associations with the ancestors of eukaryotic cells, which were themselves possibly related to the Archaea. This involved the engulfment by proto-eukaryotic cells of alphaproteobacterial symbionts to form either mitochondria or hydrogenosomes , which are still found in all known Eukarya (sometimes in highly reduced form , e.g. in ancient "amitochondrial" protozoa). Later, some eukaryotes that already contained mitochondria also engulfed cyanobacteria -like organisms, leading to

6831-530: The evolution and interrelationships of the three domains of life. The division between prokaryotes and eukaryotes reflects the existence of two very different levels of cellular organization; only eukaryotic cells have an enveloped nucleus that contains its chromosomal DNA , and other characteristic membrane-bound organelles including mitochondria. Distinctive types of prokaryotes include extremophiles and methanogens ; these are common in some extreme environments. The distinction between prokaryotes and eukaryotes

6930-641: The evolution of different growth strategies (see r/K selection theory ). Some organisms can grow extremely rapidly when nutrients become available, such as the formation of algal and cyanobacterial blooms that often occur in lakes during the summer. Other organisms have adaptations to harsh environments, such as the production of multiple antibiotics by Streptomyces that inhibit the growth of competing microorganisms. In nature, many organisms live in communities (e.g., biofilms ) that may allow for increased supply of nutrients and protection from environmental stresses. These relationships can be essential for growth of

7029-570: The formation of chloroplasts in algae and plants. This is known as primary endosymbiosis . Bacteria are ubiquitous, living in every possible habitat on the planet including soil, underwater, deep in Earth's crust and even such extreme environments as acidic hot springs and radioactive waste. There are thought to be approximately 2×10 bacteria on Earth, forming a biomass that is only exceeded by plants. They are abundant in lakes and oceans, in arctic ice, and geothermal springs where they provide

7128-432: The formation of the Earth's crust. Eukaryotes only appear in the fossil record later, and may have formed from endosymbiosis of multiple prokaryote ancestors. The oldest known fossil eukaryotes are about 1.7 billion years old. However, some genetic evidence suggests eukaryotes appeared as early as 3 billion years ago. While Earth is the only place in the universe where life is known to exist, some have suggested that there

7227-909: The four basic shapes of bacteria are: The archaeon Haloquadratum has flat square-shaped cells. Bacteria and archaea reproduce through asexual reproduction, usually by binary fission . Genetic exchange and recombination still occur, but this is a form of horizontal gene transfer and is not a replicative process, simply involving the transference of DNA between two cells, as in bacterial conjugation . DNA transfer between prokaryotic cells occurs in bacteria and archaea, although it has been mainly studied in bacteria. In bacteria, gene transfer occurs by three processes. These are (1) bacterial virus ( bacteriophage )-mediated transduction , (2) plasmid -mediated conjugation , and (3) natural transformation . Transduction of bacterial genes by bacteriophage appears to reflect an occasional error during intracellular assembly of virus particles, rather than an adaptation of

7326-457: The growth in cell population. Prokaryote Prokaryotes evolved before eukaryotes, and lack nuclei, mitochondria , and most of the other distinct organelles that characterize the eukaryotic cell. It was once thought that prokaryotic cellular components were unenclosed within the cytoplasm except for an outer cell membrane , but bacterial microcompartments , which are thought to be quasi-organelles enclosed in protein shells (such as

7425-453: The gut. However, several species of bacteria are pathogenic and cause infectious diseases , including cholera , syphilis , anthrax , leprosy , tuberculosis , tetanus and bubonic plague . The most common fatal bacterial diseases are respiratory infections . Antibiotics are used to treat bacterial infections and are also used in farming, making antibiotic resistance a growing problem. Bacteria are important in sewage treatment and

7524-432: The host bacteria. The transfer of bacterial DNA is under the control of the bacteriophage's genes rather than bacterial genes. Conjugation in the well-studied E. coli system is controlled by plasmid genes, and is an adaptation for distributing copies of a plasmid from one bacterial host to another. Infrequently during this process, a plasmid may integrate into the host bacterial chromosome, and subsequently transfer part of

7623-537: The host bacterial DNA to another bacterium. Plasmid mediated transfer of host bacterial DNA (conjugation) also appears to be an accidental process rather than a bacterial adaptation. Natural bacterial transformation involves the transfer of DNA from one bacterium to another through the intervening medium. Unlike transduction and conjugation, transformation is clearly a bacterial adaptation for DNA transfer, because it depends on numerous bacterial gene products that specifically interact to perform this complex process. For

7722-426: The idea that oligopeptides may have been built together with primordial nucleic acids at the same time, which also supports the concept of a ribocyte as LUCA. The feature of DNA as the material base of the genome might have then been adopted separately in bacteria and in archaea (and later eukaryote nuclei), presumably by help of some viruses (possibly retroviruses as they could reverse transcribe RNA to DNA). As

7821-409: The laboratory. The study of bacteria is known as bacteriology , a branch of microbiology . Like all animals, humans carry vast numbers (approximately 10 to 10 ) of bacteria. Most are in the gut , though there are many on the skin. Most of the bacteria in and on the body are harmless or rendered so by the protective effects of the immune system , and many are beneficial , particularly the ones in

7920-627: The largest viruses . Some bacteria may be even smaller, but these ultramicrobacteria are not well-studied. Shape . Most bacterial species are either spherical, called cocci ( singular coccus , from Greek kókkos , grain, seed), or rod-shaped, called bacilli ( sing . bacillus, from Latin baculus , stick). Some bacteria, called vibrio , are shaped like slightly curved rods or comma-shaped; others can be spiral-shaped, called spirilla , or tightly coiled, called spirochaetes . A small number of other unusual shapes have been described, such as star-shaped bacteria. This wide variety of shapes

8019-716: The light probably serves to attract fish or other large animals. Bacteria often function as multicellular aggregates known as biofilms , exchanging a variety of molecular signals for intercell communication and engaging in coordinated multicellular behaviour. The communal benefits of multicellular cooperation include a cellular division of labour , accessing resources that cannot effectively be used by single cells, collectively defending against antagonists, and optimising population survival by differentiating into distinct cell types. For example, bacteria in biofilms can have more than five hundred times increased resistance to antibacterial agents than individual "planktonic" bacteria of

8118-424: The major differences in the structure and genetics between the two groups of organisms. Archaea were originally thought to be extremophiles, living only in inhospitable conditions such as extremes of temperature , pH , and radiation but have since been found in all types of habitats . The resulting arrangement of Eukaryota (also called "Eucarya"), Bacteria, and Archaea is called the three-domain system , replacing

8217-406: The medium (e.g., water) may flow easily. The microcolonies may join together above the substratum to form a continuous layer, closing the network of channels separating microcolonies. This structural complexity—combined with observations that oxygen limitation (a ubiquitous challenge for anything growing in size beyond the scale of diffusion) is at least partially eased by movement of medium throughout

8316-571: The mitochondria and chloroplasts. The genome in a prokaryote is held within a DNA/protein complex in the cytosol called the nucleoid , which lacks a nuclear envelope . The complex contains a single, cyclic, double-stranded molecule of stable chromosomal DNA, in contrast to the multiple linear, compact, highly organized chromosomes found in eukaryotic cells. In addition, many important genes of prokaryotes are stored in separate circular DNA structures called plasmids . Like eukaryotes, prokaryotes may partially duplicate genetic material, and can have

8415-417: The newly formed daughter cells. Examples include fruiting body formation by myxobacteria and aerial hyphae formation by Streptomyces species, or budding. Budding involves a cell forming a protrusion that breaks away and produces a daughter cell. In the laboratory, bacteria are usually grown using solid or liquid media. Solid growth media , such as agar plates , are used to isolate pure cultures of

8514-403: The nucleus, that eukaryotes arose without endosymbiosis, and that eukaryotes arose through a symbiotic event entailing a simultaneous endosymbiotic origin of the flagellum and the nucleus, in addition to many other models, which have been reviewed and summarized elsewhere. The oldest known fossilized prokaryotes were laid down approximately 3.5 billion years ago, only about 1 billion years after

8613-473: The nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane , to energy. They live on and in plants and animals. Most do not cause diseases, are beneficial to their environments, and are essential for life. The soil is a rich source of bacteria and a few grams contain around a thousand million of them. They are all essential to soil ecology, breaking down toxic waste and recycling nutrients. They are even found in

8712-408: The origin and position of eukaryotes span a broad spectrum including the views that eukaryotes arose first in evolution and that prokaryotes descend from them, that eukaryotes arose contemporaneously with eubacteria and archaebacteria and hence represent a primary line of descent of equal age and rank as the prokaryotes, that eukaryotes arose through a symbiotic event entailing an endosymbiotic origin of

8811-475: The outside of the cell membrane is the cell wall . Bacterial cell walls are made of peptidoglycan (also called murein), which is made from polysaccharide chains cross-linked by peptides containing D- amino acids . Bacterial cell walls are different from the cell walls of plants and fungi , which are made of cellulose and chitin , respectively. The cell wall of bacteria is also distinct from that of achaea, which do not contain peptidoglycan. The cell wall

8910-612: The production of the highly toxic forms of mercury ( methyl- and dimethylmercury ) in the environment. Nonrespiratory anaerobes use fermentation to generate energy and reducing power, secreting metabolic by-products (such as ethanol in brewing) as waste. Facultative anaerobes can switch between fermentation and different terminal electron acceptors depending on the environmental conditions in which they find themselves. Unlike in multicellular organisms, increases in cell size ( cell growth ) and reproduction by cell division are tightly linked in unicellular organisms. Bacteria grow to

9009-560: The replication of DNA or from exposure to mutagens . Mutation rates vary widely among different species of bacteria and even among different clones of a single species of bacteria. Genetic changes in bacterial genomes emerge from either random mutation during replication or "stress-directed mutation", where genes involved in a particular growth-limiting process have an increased mutation rate. Some bacteria transfer genetic material between cells. This can occur in three main ways. First, bacteria can take up exogenous DNA from their environment in

9108-530: The same species. One type of intercellular communication by a molecular signal is called quorum sensing , which serves the purpose of determining whether the local population density is sufficient to support investment in processes that are only successful if large numbers of similar organisms behave similarly, such as excreting digestive enzymes or emitting light. Quorum sensing enables bacteria to coordinate gene expression and to produce, release, and detect autoinducers or pheromones that accumulate with

9207-427: The snow surface of Antarctica , studied in cryobiology , or as hot as undersea hydrothermal vents and land-based hot springs . Prokaryotes live in nearly all environments on Earth. Some archaea and bacteria are extremophiles , thriving in harsh conditions, such as high temperatures ( thermophiles ) or high salinity ( halophiles ). Many archaea grow as plankton in the oceans. Symbiotic prokaryotes live in or on

9306-412: The surfaces of plants, the majority of bacteria are bound to surfaces in biofilms. Biofilms are also important in medicine, as these structures are often present during chronic bacterial infections or in infections of implanted medical devices , and bacteria protected within biofilms are much harder to kill than individual isolated bacteria. The bacterial cell is surrounded by a cell membrane , which

9405-457: The terminal electron acceptor, while anaerobic organisms use other compounds such as nitrate , sulfate , or carbon dioxide. Many bacteria, called heterotrophs , derive their carbon from other organic carbon . Others, such as cyanobacteria and some purple bacteria , are autotrophic , meaning they obtain cellular carbon by fixing carbon dioxide . In unusual circumstances, the gas methane can be used by methanotrophic bacteria as both

9504-426: The traditional two-empire system . According to the phylogenetic analysis of Hug (2016), the relationships could be the following: A widespread current model of the evolution of the first living organisms is that these were some form of prokaryotes, which may have evolved out of protocells , while the eukaryotes evolved later in the history of life. Some authors have questioned this conclusion, arguing that

9603-447: The transfer of antibiotic resistance. In such cases, gene acquisition from other bacteria or the environment is called horizontal gene transfer and may be common under natural conditions. Many bacteria are motile (able to move themselves) and do so using a variety of mechanisms. The best studied of these are flagella , long filaments that are turned by a motor at the base to generate propeller-like movement. The bacterial flagellum

9702-495: The virulence of some bacterial pathogens. Pili ( sing . pilus) are cellular appendages, slightly larger than fimbriae, that can transfer genetic material between bacterial cells in a process called conjugation where they are called conjugation pili or sex pili (see bacterial genetics, below). They can also generate movement where they are called type IV pili . Glycocalyx is produced by many bacteria to surround their cells, and varies in structural complexity: ranging from

9801-520: Was firmly established by the microbiologists Roger Stanier and C. B. van Niel in their 1962 paper The concept of a bacterium (though spelled procaryote and eucaryote there). That paper cites Édouard Chatton 's 1937 book Titres et Travaux Scientifiques for using those terms and recognizing the distinction. One reason for this classification was so that what was then often called blue-green algae (now called cyanobacteria ) would not be classified as plants but grouped with bacteria. Prokaryotes have

#807192