The electromagnetic spectrum is the full range of electromagnetic radiation , organized by frequency or wavelength . The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high frequency these are: radio waves , microwaves , infrared , visible light , ultraviolet , X-rays , and gamma rays . The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications.
115-541: Radio waves, at the low-frequency end of the spectrum, have the lowest photon energy and the longest wavelengths—thousands of kilometers , or more. They can be emitted and received by antennas , and pass through the atmosphere, foliage, and most building materials. Gamma rays, at the high-frequency end of the spectrum, have the highest photon energies and the shortest wavelengths—much smaller than an atomic nucleus . Gamma rays, X-rays, and extreme ultraviolet rays are called ionizing radiation because their high photon energy
230-563: A medium with matter , their wavelength is decreased. Wavelengths of electromagnetic radiation, whatever medium they are traveling through, are usually quoted in terms of the vacuum wavelength , although this is not always explicitly stated. Generally, electromagnetic radiation is classified by wavelength into radio wave , microwave , infrared , visible light , ultraviolet , X-rays and gamma rays . The behavior of EM radiation depends on its wavelength. When EM radiation interacts with single atoms and molecules , its behavior also depends on
345-442: A paper published in 1865, James Clerk Maxwell proposed that light was an electromagnetic wave and, therefore, travelled at speed c . In 1905, Albert Einstein postulated that the speed of light c with respect to any inertial frame of reference is a constant and is independent of the motion of the light source. He explored the consequences of that postulate by deriving the theory of relativity and, in doing so, showed that
460-425: A radio receiver . Earth's atmosphere is mainly transparent to radio waves, except for layers of charged particles in the ionosphere which can reflect certain frequencies. Radio waves are extremely widely used to transmit information across distances in radio communication systems such as radio broadcasting , television , two way radios , mobile phones , communication satellites , and wireless networking . In
575-418: A radio wave photon that has a wavelength of 21.12 cm. Also, frequencies of 30 Hz and below can be produced by and are important in the study of certain stellar nebulae and frequencies as high as 2.9 × 10 Hz have been detected from astrophysical sources. The types of electromagnetic radiation are broadly classified into the following classes (regions, bands or types): This classification goes in
690-446: A transmitter generates an alternating electric current which is applied to an antenna. The oscillating electrons in the antenna generate oscillating electric and magnetic fields that radiate away from the antenna as radio waves. In reception of radio waves, the oscillating electric and magnetic fields of a radio wave couple to the electrons in an antenna, pushing them back and forth, creating oscillating currents which are applied to
805-404: A "complete standstill" by passing it through a Bose–Einstein condensate of the element rubidium . The popular description of light being "stopped" in these experiments refers only to light being stored in the excited states of atoms, then re-emitted at an arbitrarily later time, as stimulated by a second laser pulse. During the time it had "stopped", it had ceased to be light. This type of behaviour
920-439: A few meters of water. One notable use is diagnostic X-ray imaging in medicine (a process known as radiography ). X-rays are useful as probes in high-energy physics. In astronomy, the accretion disks around neutron stars and black holes emit X-rays, enabling studies of these phenomena. X-rays are also emitted by stellar corona and are strongly emitted by some types of nebulae . However, X-ray telescopes must be placed outside
1035-505: A further 4–24 minutes for commands to travel from Earth to Mars. Receiving light and other signals from distant astronomical sources takes much longer. For example, it takes 13 billion (13 × 10 ) years for light to travel to Earth from the faraway galaxies viewed in the Hubble Ultra-Deep Field images. Those photographs, taken today, capture images of the galaxies as they appeared 13 billion years ago, when
1150-464: A light year is nearly 10 trillion kilometres or nearly 6 trillion miles. Proxima Centauri , the closest star to Earth after the Sun, is around 4.2 light-years away. Radar systems measure the distance to a target by the time it takes a radio-wave pulse to return to the radar antenna after being reflected by the target: the distance to the target is half the round-trip transit time multiplied by
1265-615: A material-dependent constant. The refractive index of air is approximately 1.0003. Denser media, such as water , glass , and diamond , have refractive indexes of around 1.3, 1.5 and 2.4, respectively, for visible light. In exotic materials like Bose–Einstein condensates near absolute zero, the effective speed of light may be only a few metres per second. However, this represents absorption and re-radiation delay between atoms, as do all slower-than- c speeds in material substances. As an extreme example of light "slowing" in matter, two independent teams of physicists claimed to bring light to
SECTION 10
#17327717530121380-636: A radio communication system, a radio frequency current is modulated with an information-bearing signal in a transmitter by varying either the amplitude, frequency or phase, and applied to an antenna. The radio waves carry the information across space to a receiver, where they are received by an antenna and the information extracted by demodulation in the receiver. Radio waves are also used for navigation in systems like Global Positioning System (GPS) and navigational beacons , and locating distant objects in radiolocation and radar . They are also used for remote control , and for industrial heating. The use of
1495-584: A result, if something were travelling faster than c relative to an inertial frame of reference, it would be travelling backwards in time relative to another frame, and causality would be violated. In such a frame of reference, an "effect" could be observed before its "cause". Such a violation of causality has never been recorded, and would lead to paradoxes such as the tachyonic antitelephone . There are situations in which it may seem that matter, energy, or information-carrying signal travels at speeds greater than c , but they do not. For example, as
1610-412: A time dilation factor of γ = 2 occurs at a relative velocity of 86.6% of the speed of light ( v = 0.866 c ). Similarly, a time dilation factor of γ = 10 occurs at 99.5% the speed of light ( v = 0.995 c ). The results of special relativity can be summarized by treating space and time as a unified structure known as spacetime (with c relating
1725-459: A time interval of 1 ⁄ 299 792 458 of a second", fixing the value of the speed of light at 299 792 458 m/s by definition, as described below . Consequently, accurate measurements of the speed of light yield an accurate realization of the metre rather than an accurate value of c . Outer space is a convenient setting for measuring the speed of light because of its large scale and nearly perfect vacuum . Typically, one measures
1840-437: A wave nature or a particle nature with René Descartes , Robert Hooke and Christiaan Huygens favouring a wave description and Newton favouring a particle description. Huygens in particular had a well developed theory from which he was able to derive the laws of reflection and refraction. Around 1801, Thomas Young measured the wavelength of a light beam with his two-slit experiment thus conclusively demonstrating that light
1955-492: A wavelength of 700 nm in the photosystem I , corresponding to an energy of each photon of ≈ 2 eV ≈ 3 × 10 J ≈ 75 k B T , where k B T denotes the thermal energy. A minimum of 48 photons is needed for the synthesis of a single glucose molecule from CO 2 and water (chemical potential difference 5 × 10 J ) with a maximal energy conversion efficiency of 35%. Speed of light The speed of light in vacuum , commonly denoted c ,
2070-484: Is a universal physical constant that is exactly equal to 299,792,458 metres per second (approximately 300,000 kilometres per second; 186,000 miles per second; 671 million miles per hour). According to the special theory of relativity , c is the upper limit for the speed at which conventional matter or energy (and thus any signal carrying information ) can travel through space . All forms of electromagnetic radiation , including visible light , travel at
2185-412: Is able to ionize atoms, causing chemical reactions. Longer-wavelength radiation such as visible light is nonionizing; the photons do not have sufficient energy to ionize atoms. Throughout most of the electromagnetic spectrum, spectroscopy can be used to separate waves of different frequencies, so that the intensity of the radiation can be measured as a function of frequency or wavelength. Spectroscopy
2300-408: Is called fluorescence . UV fluorescence is used by forensics to detect any evidence like blood and urine, that is produced by a crime scene. Also UV fluorescence is used to detect counterfeit money and IDs, as they are laced with material that can glow under UV. At the middle range of UV, UV rays cannot ionize but can break chemical bonds, making molecules unusually reactive. Sunburn , for example,
2415-722: Is caused by the disruptive effects of middle range UV radiation on skin cells , which is the main cause of skin cancer . UV rays in the middle range can irreparably damage the complex DNA molecules in the cells producing thymine dimers making it a very potent mutagen . Due to skin cancer caused by UV, the sunscreen industry was invented to combat UV damage. Mid UV wavelengths are called UVB and UVB lights such as germicidal lamps are used to kill germs and also to sterilize water. The Sun emits UV radiation (about 10% of its total power), including extremely short wavelength UV that could potentially destroy most life on land (ocean water would provide some protection for life there). However, most of
SECTION 20
#17327717530122530-424: Is described as a type of electromagnetic wave . The classical behaviour of the electromagnetic field is described by Maxwell's equations , which predict that the speed c with which electromagnetic waves (such as light) propagate in vacuum is related to the distributed capacitance and inductance of vacuum, otherwise respectively known as the electric constant ε 0 and the magnetic constant μ 0 , by
2645-421: Is discussed in the propagation of light in a medium section below, many wave velocities can exceed c . The phase velocity of X-rays through most glasses can routinely exceed c , but phase velocity does not determine the velocity at which waves convey information. If a laser beam is swept quickly across a distant object, the spot of light can move faster than c , although the initial movement of
2760-577: Is equal to 6.626 070 15 × 10 J , which is equal to 4.135 667 697 × 10 eV . Photon energy is often measured in electronvolts. One electronvolt (eV) is exactly 1.602 176 634 × 10 J or, using the atto prefix, 0.160 217 6634 aJ , in the SI system . To find the photon energy in electronvolt using the wavelength in micrometres , the equation is approximately since h c / e {\displaystyle hc/e} = 1.239 841 984 ... × 10 eV⋅m where h
2875-427: Is frame-independent, because it is impossible to measure the one-way speed of light (for example, from a source to a distant detector) without some convention as to how clocks at the source and at the detector should be synchronized. By adopting Einstein synchronization for the clocks, the one-way speed of light becomes equal to the two-way speed of light by definition. The special theory of relativity explores
2990-459: Is generally microscopically true of all transparent media which "slow" the speed of light. In transparent materials, the refractive index generally is greater than 1, meaning that the phase velocity is less than c . In other materials, it is possible for the refractive index to become smaller than 1 for some frequencies; in some exotic materials it is even possible for the index of refraction to become negative. The requirement that causality
3105-505: Is important in determining how a light wave travels through a material or from one material to another. It is often represented in terms of a refractive index . The refractive index of a material is defined as the ratio of c to the phase velocity v p in the material: larger indices of refraction indicate lower speeds. The refractive index of a material may depend on the light's frequency, intensity, polarization , or direction of propagation; in many cases, though, it can be treated as
3220-486: Is impossible for signals or energy to travel faster than c . One argument for this follows from the counter-intuitive implication of special relativity known as the relativity of simultaneity . If the spatial distance between two events A and B is greater than the time interval between them multiplied by c then there are frames of reference in which A precedes B, others in which B precedes A, and others in which they are simultaneous. As
3335-500: Is known as the Lorentz factor and is given by γ = (1 − v / c ) , where v is the speed of the object. The difference of γ from 1 is negligible for speeds much slower than c , such as most everyday speeds – in which case special relativity is closely approximated by Galilean relativity – but it increases at relativistic speeds and diverges to infinity as v approaches c . For example,
3450-532: Is not harmless and does create oxygen radicals, mutations and skin damage. After UV come X-rays , which, like the upper ranges of UV are also ionizing. However, due to their higher energies, X-rays can also interact with matter by means of the Compton effect . Hard X-rays have shorter wavelengths than soft X-rays and as they can pass through many substances with little absorption, they can be used to 'see through' objects with 'thicknesses' less than that equivalent to
3565-491: Is not violated implies that the real and imaginary parts of the dielectric constant of any material, corresponding respectively to the index of refraction and to the attenuation coefficient , are linked by the Kramers–Kronig relations . In practical terms, this means that in a material with refractive index less than 1, the wave will be absorbed quickly. A pulse with different group and phase velocities (which occurs if
Electromagnetic spectrum - Misplaced Pages Continue
3680-559: Is observed, so information cannot be transmitted in this manner. Another quantum effect that predicts the occurrence of faster-than-light speeds is called the Hartman effect : under certain conditions the time needed for a virtual particle to tunnel through a barrier is constant, regardless of the thickness of the barrier. This could result in a virtual particle crossing a large gap faster than light. However, no information can be sent using this effect. So-called superluminal motion
3795-473: Is possible for a particle to travel through a medium faster than the phase velocity of light in that medium (but still slower than c ). When a charged particle does that in a dielectric material, the electromagnetic equivalent of a shock wave , known as Cherenkov radiation , is emitted. The speed of light is of relevance to telecommunications : the one-way and round-trip delay time are greater than zero. This applies from small to astronomical scales. On
3910-401: Is seen in certain astronomical objects, such as the relativistic jets of radio galaxies and quasars . However, these jets are not moving at speeds in excess of the speed of light: the apparent superluminal motion is a projection effect caused by objects moving near the speed of light and approaching Earth at a small angle to the line of sight: since the light which was emitted when the jet
4025-800: Is the Planck constant , c is the speed of light , and e is the elementary charge . The photon energy of near infrared radiation at 1 μm wavelength is approximately 1.2398 eV. An FM radio station transmitting at 100 MHz emits photons with an energy of about 4.1357 × 10 eV . This minuscule amount of energy is approximately 8 × 10 times the electron 's mass (via mass–energy equivalence). Very-high-energy gamma rays have photon energies of 100 GeV to over 1 PeV (10 to 10 electronvolts) or 16 nJ to 160 μJ. This corresponds to frequencies of 2.42 × 10 Hz to 2.42 × 10 Hz . During photosynthesis , specific chlorophyll molecules absorb red-light photons at
4140-494: Is the part of the EM spectrum the human eye is the most sensitive to. Visible light (and near-infrared light) is typically absorbed and emitted by electrons in molecules and atoms that move from one energy level to another. This action allows the chemical mechanisms that underlie human vision and plant photosynthesis. The light that excites the human visual system is a very small portion of the electromagnetic spectrum. A rainbow shows
4255-451: Is too long for ordinary dioxygen in air to absorb. This leaves less than 3% of sunlight at sea level in UV, with all of this remainder at the lower energies. The remainder is UV-A, along with some UV-B. The very lowest energy range of UV between 315 nm and visible light (called UV-A) is not blocked well by the atmosphere, but does not cause sunburn and does less biological damage. However, it
4370-426: Is used to study the interactions of electromagnetic waves with matter. Humans have always been aware of visible light and radiant heat but for most of history it was not known that these phenomena were connected or were representatives of a more extensive principle. The ancient Greeks recognized that light traveled in straight lines and studied some of its properties, including reflection and refraction . Light
4485-559: The Deep Space Network determine distances to the Moon, planets and spacecraft, respectively, by measuring round-trip transit times. There are different ways to determine the value of c . One way is to measure the actual speed at which light waves propagate, which can be done in various astronomical and Earth-based setups. It is also possible to determine c from other physical laws where it appears, for example, by determining
4600-406: The electromagnetic spectrum . Photon energy is directly proportional to frequency. E = h f {\displaystyle E=hf} where This equation is known as the Planck relation . Additionally, using equation f = c / λ , E = h c λ {\displaystyle E={\frac {hc}{\lambda }}} where The photon energy at 1 Hz
4715-400: The geometrized unit system where c = 1 . Using these units, c does not appear explicitly because multiplication or division by 1 does not affect the result. Its unit of light-second per second is still relevant, even if omitted. The speed at which light waves propagate in vacuum is independent both of the motion of the wave source and of the inertial frame of reference of
Electromagnetic spectrum - Misplaced Pages Continue
4830-515: The impedance of free space . This article uses c exclusively for the speed of light in vacuum. Since 1983, the constant c has been defined in the International System of Units (SI) as exactly 299 792 458 m/s ; this relationship is used to define the metre as exactly the distance that light travels in vacuum in 1 ⁄ 299 792 458 of a second. By using the value of c , as well as an accurate measurement of
4945-459: The local speed of light is constant and equal to c , but the speed of light can differ from c when measured from a remote frame of reference, depending on how measurements are extrapolated to the region. It is generally assumed that fundamental constants such as c have the same value throughout spacetime, meaning that they do not depend on location and do not vary with time. However, it has been suggested in various theories that
5060-430: The printed circuit board refracts and slows down signals. Processors must therefore be placed close to each other, as well as memory chips, to minimize communication latencies, and care must be exercised when routing wires between them to ensure signal integrity . If clock frequencies continue to increase, the speed of light may eventually become a limiting factor for the internal design of single chips . Given that
5175-400: The quantum states of two particles that can be entangled . Until either of the particles is observed, they exist in a superposition of two quantum states. If the particles are separated and one particle's quantum state is observed, the other particle's quantum state is determined instantaneously. However, it is impossible to control which quantum state the first particle will take on when it
5290-963: The radio spectrum is strictly regulated by governments, coordinated by the International Telecommunication Union (ITU) which allocates frequencies to different users for different uses. Microwaves are radio waves of short wavelength , from about 10 centimeters to one millimeter, in the SHF and EHF frequency bands. Microwave energy is produced with klystron and magnetron tubes, and with solid state devices such as Gunn and IMPATT diodes . Although they are emitted and absorbed by short antennas, they are also absorbed by polar molecules , coupling to vibrational and rotational modes, resulting in bulk heating. Unlike higher frequency waves such as infrared and visible light which are absorbed mainly at surfaces, microwaves can penetrate into materials and deposit their energy below
5405-414: The speed of light may have changed over time . No conclusive evidence for such changes has been found, but they remain the subject of ongoing research. It is generally assumed that the two-way speed of light is isotropic , meaning that it has the same value regardless of the direction in which it is measured. Observations of the emissions from nuclear energy levels as a function of the orientation of
5520-537: The visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions . UV, X-rays, and gamma rays are thus collectively called ionizing radiation ; exposure to them can damage living tissue. UV can also cause substances to glow with visible light; this
5635-456: The > 10 MeV region)—which is of higher energy than any nuclear gamma ray—is not called X-ray or gamma ray, but instead by the generic term of "high-energy photons". The region of the spectrum where a particular observed electromagnetic radiation falls is reference frame -dependent (due to the Doppler shift for light), so EM radiation that one observer would say is in one region of
5750-649: The 7.6 eV (1.22 aJ) nuclear transition of thorium-229m ), and, despite being one million-fold less energetic than some muonic X-rays, the emitted photons are still called gamma rays due to their nuclear origin. The convention that EM radiation that is known to come from the nucleus is always called "gamma ray" radiation is the only convention that is universally respected, however. Many astronomical gamma ray sources (such as gamma ray bursts ) are known to be too energetic (in both intensity and wavelength) to be of nuclear origin. Quite often, in high-energy physics and in medical radiotherapy , very high energy EMR (in
5865-551: The Earth with speeds proportional to their distances. Beyond a boundary called the Hubble sphere , the rate at which their distance from Earth increases becomes greater than the speed of light. These recession rates, defined as the increase in proper distance per cosmological time , are not velocities in a relativistic sense. Faster-than-light cosmological recession speeds are only a coordinate artifact. In classical physics , light
SECTION 50
#17327717530125980-422: The Earth's atmosphere to see astronomical X-rays, since the great depth of the atmosphere of Earth is opaque to X-rays (with areal density of 1000 g/cm), equivalent to 10 meters thickness of water. This is an amount sufficient to block almost all astronomical X-rays (and also astronomical gamma rays—see below). After hard X-rays come gamma rays , which were discovered by Paul Ulrich Villard in 1900. These are
6095-632: The Latin celeritas (meaning 'swiftness, celerity'). In 1856, Wilhelm Eduard Weber and Rudolf Kohlrausch had used c for a different constant that was later shown to equal √ 2 times the speed of light in vacuum. Historically, the symbol V was used as an alternative symbol for the speed of light, introduced by James Clerk Maxwell in 1865. In 1894, Paul Drude redefined c with its modern meaning. Einstein used V in his original German-language papers on special relativity in 1905, but in 1907 he switched to c , which by then had become
6210-429: The Sun's damaging UV wavelengths are absorbed by the atmosphere before they reach the surface. The higher energy (shortest wavelength) ranges of UV (called "vacuum UV") are absorbed by nitrogen and, at longer wavelengths, by simple diatomic oxygen in the air. Most of the UV in the mid-range of energy is blocked by the ozone layer, which absorbs strongly in the important 200–315 nm range, the lower energy part of which
6325-434: The advantage which radio waves travelling at near to the speed of light through air have over comparatively slower fibre optic signals. Similarly, communications between the Earth and spacecraft are not instantaneous. There is a brief delay from the source to the receiver, which becomes more noticeable as distances increase. This delay was significant for communications between ground control and Apollo 8 when it became
6440-503: The amount of energy per quantum (photon) it carries. Spectroscopy can detect a much wider region of the EM spectrum than the visible wavelength range of 400 nm to 700 nm in a vacuum. A common laboratory spectroscope can detect wavelengths from 2 nm to 2500 nm. Detailed information about the physical properties of objects, gases, or even stars can be obtained from this type of device. Spectroscopes are widely used in astrophysics . For example, many hydrogen atoms emit
6555-840: The chemical mechanisms responsible for photosynthesis and the working of the visual system . The distinction between X-rays and gamma rays is partly based on sources: the photons generated from nuclear decay or other nuclear and subnuclear/particle process are always termed gamma rays, whereas X-rays are generated by electronic transitions involving highly energetic inner atomic electrons. In general, nuclear transitions are much more energetic than electronic transitions, so gamma rays are more energetic than X-rays, but exceptions exist. By analogy to electronic transitions, muonic atom transitions are also said to produce X-rays, even though their energy may exceed 6 megaelectronvolts (0.96 pJ), whereas there are many (77 known to be less than 10 keV (1.6 fJ)) low-energy nuclear transitions ( e.g. ,
6670-587: The consequences of this invariance of c with the assumption that the laws of physics are the same in all inertial frames of reference. One consequence is that c is the speed at which all massless particles and waves, including light, must travel in vacuum. Special relativity has many counterintuitive and experimentally verified implications. These include the equivalence of mass and energy ( E = mc ) , length contraction (moving objects shorten), and time dilation (moving clocks run more slowly). The factor γ by which lengths contract and times dilate
6785-454: The distance between two objects in a frame of reference with respect to which both are moving (their closing speed ) may have a value in excess of c . However, this does not represent the speed of any single object as measured in a single inertial frame. Certain quantum effects appear to be transmitted instantaneously and therefore faster than c , as in the EPR paradox . An example involves
6900-481: The effects of Compton scattering . Photon energy Photon energy is the energy carried by a single photon . The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength . The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy. Photon energy can be expressed using any energy unit . Among
7015-434: The electromagnetic spectrum covers the range from roughly 300 GHz to 400 THz (1 mm – 750 nm). It can be divided into three parts: Above infrared in frequency comes visible light . The Sun emits its peak power in the visible region, although integrating the entire emission power spectrum through all wavelengths shows that the Sun emits slightly more infrared than visible light. By definition, visible light
SECTION 60
#17327717530127130-809: The electromagnetic spectrum was filled in with the discovery of gamma rays . In 1900, Paul Villard was studying the radioactive emissions of radium when he identified a new type of radiation that he at first thought consisted of particles similar to known alpha and beta particles , but with the power of being far more penetrating than either. However, in 1910, British physicist William Henry Bragg demonstrated that gamma rays are electromagnetic radiation, not particles, and in 1914, Ernest Rutherford (who had named them gamma rays in 1903 when he realized that they were fundamentally different from charged alpha and beta particles) and Edward Andrade measured their wavelengths, and found that gamma rays were similar to X-rays, but with shorter wavelengths. The wave-particle debate
7245-479: The emitting nuclei in a magnetic field (see Hughes–Drever experiment ), and of rotating optical resonators (see Resonator experiments ) have put stringent limits on the possible two-way anisotropy . According to special relativity, the energy of an object with rest mass m and speed v is given by γmc , where γ is the Lorentz factor defined above. When v is zero, γ is equal to one, giving rise to
7360-418: The equation In modern quantum physics , the electromagnetic field is described by the theory of quantum electrodynamics (QED). In this theory, light is described by the fundamental excitations (or quanta) of the electromagnetic field, called photons . In QED, photons are massless particles and thus, according to special relativity, they travel at the speed of light in vacuum. Extensions of QED in which
7475-512: The equatorial circumference of the Earth is about 40 075 km and that c is about 300 000 km/s , the theoretical shortest time for a piece of information to travel half the globe along the surface is about 67 milliseconds. When light is traveling in optical fibre (a transparent material ) the actual transit time is longer, in part because the speed of light is slower by about 35% in optical fibre, depending on its refractive index n . Straight lines are rare in global communications and
7590-445: The eyes, this results in visual perception of the scene. The brain's visual system processes the multitude of reflected frequencies into different shades and hues, and through this insufficiently understood psychophysical phenomenon, most people perceive a bowl of fruit. At most wavelengths, however, the information carried by electromagnetic radiation is not directly detected by human senses. Natural sources produce EM radiation across
7705-495: The famous E = mc formula for mass–energy equivalence. The γ factor approaches infinity as v approaches c , and it would take an infinite amount of energy to accelerate an object with mass to the speed of light. The speed of light is the upper limit for the speeds of objects with positive rest mass, and individual photons cannot travel faster than the speed of light. This is experimentally established in many tests of relativistic energy and momentum . More generally, it
7820-407: The field. Analyzing the speed of these theoretical waves, Maxwell realized that they must travel at a speed that was about the known speed of light . This startling coincidence in value led Maxwell to make the inference that light itself is a type of electromagnetic wave. Maxwell's equations predicted an infinite range of frequencies of electromagnetic waves , all traveling at the speed of light. This
7935-560: The first crewed spacecraft to orbit the Moon : for every question, the ground control station had to wait at least three seconds for the answer to arrive. The communications delay between Earth and Mars can vary between five and twenty minutes depending upon the relative positions of the two planets. As a consequence of this, if a robot on the surface of Mars were to encounter a problem, its human controllers would not be aware of it until approximately 4–24 minutes later. It would then take
8050-401: The following three physical properties: the frequency f , wavelength λ , or photon energy E . Frequencies observed in astronomy range from 2.4 × 10 Hz (1 GeV gamma rays) down to the local plasma frequency of the ionized interstellar medium (~1 kHz). Wavelength is inversely proportional to the wave frequency, so gamma rays have very short wavelengths that are fractions of
8165-414: The frame of reference in which their speed is measured. In the theory of relativity , c interrelates space and time and appears in the famous mass–energy equivalence , E = mc . In some cases, objects or waves may appear to travel faster than light (e.g., phase velocities of waves, the appearance of certain high-speed astronomical objects , and particular quantum effects ). The expansion of
8280-416: The group velocity to become infinite or negative, with pulses travelling instantaneously or backwards in time. None of these options allow information to be transmitted faster than c . It is impossible to transmit information with a light pulse any faster than the speed of the earliest part of the pulse (the front velocity). It can be shown that this is (under certain assumptions) always equal to c . It
8395-569: The increasing order of wavelength, which is characteristic of the type of radiation. There are no precisely defined boundaries between the bands of the electromagnetic spectrum; rather they fade into each other like the bands in a rainbow (which is the sub-spectrum of visible light). Radiation of each frequency and wavelength (or in each band) has a mix of properties of the two regions of the spectrum that bound it. For example, red light resembles infrared radiation in that it can excite and add energy to some chemical bonds and indeed must do so to power
8510-429: The individual crests and troughs of a plane wave (a wave filling the whole space, with only one frequency ) propagate is called the phase velocity v p . A physical signal with a finite extent (a pulse of light) travels at a different speed. The overall envelope of the pulse travels at the group velocity v g , and its earliest part travels at the front velocity v f . The phase velocity
8625-425: The low end of the band the atmosphere is mainly transparent, at the upper end of the band absorption of microwaves by atmospheric gases limits practical propagation distances to a few kilometers. Terahertz radiation or sub-millimeter radiation is a region of the spectrum from about 100 GHz to 30 terahertz (THz) between microwaves and far infrared which can be regarded as belonging to either band. Until recently,
8740-502: The massive photon is described by Proca theory , the experimental upper bound for its mass is about 10 grams ; if photon mass is generated by a Higgs mechanism , the experimental upper limit is less sharp, m ≤ 10 eV/ c (roughly 2 × 10 g). Another reason for the speed of light to vary with its frequency would be the failure of special relativity to apply to arbitrarily small scales, as predicted by some proposed theories of quantum gravity . In 2009,
8855-707: The most energetic photons , having no defined lower limit to their wavelength. In astronomy they are valuable for studying high-energy objects or regions, however as with X-rays this can only be done with telescopes outside the Earth's atmosphere. Gamma rays are used experimentally by physicists for their penetrating ability and are produced by a number of radioisotopes . They are used for irradiation of foods and seeds for sterilization, and in medicine they are occasionally used in radiation cancer therapy . More commonly, gamma rays are used for diagnostic imaging in nuclear medicine , an example being PET scans . The wavelength of gamma rays can be measured with high accuracy through
8970-447: The observation of gamma-ray burst GRB 090510 found no evidence for a dependence of photon speed on energy, supporting tight constraints in specific models of spacetime quantization on how this speed is affected by photon energy for energies approaching the Planck scale . In a medium, light usually does not propagate at a speed equal to c ; further, different types of light wave will travel at different speeds. The speed at which
9085-421: The observer. This invariance of the speed of light was postulated by Einstein in 1905, after being motivated by Maxwell's theory of electromagnetism and the lack of evidence for motion against the luminiferous aether . It has since been consistently confirmed by many experiments. It is only possible to verify experimentally that the two-way speed of light (for example, from a source to a mirror and back again)
9200-550: The optical (visible) part of the electromagnetic spectrum; infrared (if it could be seen) would be located just beyond the red side of the rainbow whilst ultraviolet would appear just beyond the opposite violet end. Electromagnetic radiation with a wavelength between 380 nm and 760 nm (400–790 terahertz) is detected by the human eye and perceived as visible light. Other wavelengths, especially near infrared (longer than 760 nm) and ultraviolet (shorter than 380 nm) are also sometimes referred to as light, especially when
9315-408: The other hand, some techniques depend on the finite speed of light, for example in distance measurements. In computers , the speed of light imposes a limit on how quickly data can be sent between processors . If a processor operates at 1 gigahertz , a signal can travel only a maximum of about 30 centimetres (1 ft) in a single clock cycle – in practice, this distance is even shorter since
9430-439: The parameter c had relevance outside of the context of light and electromagnetism. Massless particles and field perturbations, such as gravitational waves , also travel at speed c in vacuum. Such particles and waves travel at c regardless of the motion of the source or the inertial reference frame of the observer . Particles with nonzero rest mass can be accelerated to approach c but can never reach it, regardless of
9545-420: The parameter c is ubiquitous in modern physics, appearing in many contexts that are unrelated to light. For example, general relativity predicts that c is also the speed of gravity and of gravitational waves , and observations of gravitational waves have been consistent with this prediction. In non-inertial frames of reference (gravitationally curved spacetime or accelerated reference frames ),
9660-403: The phase velocity is not the same for all the frequencies of the pulse) smears out over time, a process known as dispersion . Certain materials have an exceptionally low (or even zero) group velocity for light waves, a phenomenon called slow light . The opposite, group velocities exceeding c , was proposed theoretically in 1993 and achieved experimentally in 2000. It should even be possible for
9775-412: The photon has a mass have been considered. In such a theory, its speed would depend on its frequency, and the invariant speed c of special relativity would then be the upper limit of the speed of light in vacuum. No variation of the speed of light with frequency has been observed in rigorous testing, putting stringent limits on the mass of the photon. The limit obtained depends on the model used: if
9890-531: The properties of microwaves . These new types of waves paved the way for inventions such as the wireless telegraph and the radio . In 1895, Wilhelm Röntgen noticed a new type of radiation emitted during an experiment with an evacuated tube subjected to a high voltage . He called this radiation " x-rays " and found that they were able to travel through parts of the human body but were reflected or stopped by denser matter such as bones. Before long, many uses were found for this radiography . The last portion of
10005-521: The range was rarely studied and few sources existed for microwave energy in the so-called terahertz gap , but applications such as imaging and communications are now appearing. Scientists are also looking to apply terahertz technology in the armed forces, where high-frequency waves might be directed at enemy troops to incapacitate their electronic equipment. Terahertz radiation is strongly absorbed by atmospheric gases, making this frequency range useless for long-distance communication. The infrared part of
10120-411: The refractive index of glass is typically around 1.5, meaning that light in glass travels at c / 1.5 ≈ 200 000 km/s ( 124 000 mi/s) ; the refractive index of air for visible light is about 1.0003, so the speed of light in air is about 90 km/s (56 mi/s) slower than c . The speed of light in vacuum is usually denoted by a lowercase c , for "constant" or
10235-451: The second, one can thus establish a standard for the metre. As a dimensional physical constant , the numerical value of c is different for different unit systems. For example, in imperial units , the speed of light is approximately 186 282 miles per second, or roughly 1 foot per nanosecond. In branches of physics in which c appears often, such as in relativity, it is common to use systems of natural units of measurement or
10350-436: The size of atoms , whereas wavelengths on the opposite end of the spectrum can be indefinitely long. Photon energy is directly proportional to the wave frequency, so gamma ray photons have the highest energy (around a billion electron volts ), while radio wave photons have very low energy (around a femtoelectronvolt ). These relations are illustrated by the following equations: where: Whenever electromagnetic waves travel in
10465-402: The spectrum could appear to an observer moving at a substantial fraction of the speed of light with respect to the first to be in another part of the spectrum. For example, consider the cosmic microwave background . It was produced when matter and radiation decoupled, by the de- excitation of hydrogen atoms to the ground state . These photons were from Lyman series transitions, putting them in
10580-399: The spectrum, and technology can also manipulate a broad range of wavelengths. Optical fiber transmits light that, although not necessarily in the visible part of the spectrum (it is usually infrared), can carry information. The modulation is similar to that used with radio waves. Next in frequency comes ultraviolet (UV). In frequency (and thus energy), UV rays sit between the violet end of
10695-498: The spectrum, as though these were different types of radiation. Thus, although these "different kinds" of electromagnetic radiation form a quantitatively continuous spectrum of frequencies and wavelengths, the spectrum remains divided for practical reasons arising from these qualitative interaction differences. Radio waves are emitted and received by antennas , which consist of conductors such as metal rod resonators . In artificial generation of radio waves, an electronic device called
10810-421: The spectrum, noticed what he called "chemical rays" (invisible light rays that induced certain chemical reactions). These behaved similarly to visible violet light rays, but were beyond them in the spectrum. They were later renamed ultraviolet radiation. The study of electromagnetism began in 1820 when Hans Christian Ørsted discovered that electric currents produce magnetic fields ( Oersted's law ). Light
10925-424: The speed of light fixes the ultimate minimum communication delay . The speed of light can be used in time of flight measurements to measure large distances to extremely high precision. Ole Rømer first demonstrated in 1676 that light does not travel instantaneously by studying the apparent motion of Jupiter 's moon Io . Progressively more accurate measurements of its speed came over the following centuries. In
11040-470: The speed of light. A Global Positioning System (GPS) receiver measures its distance to GPS satellites based on how long it takes for a radio signal to arrive from each satellite, and from these distances calculates the receiver's position. Because light travels about 300 000 kilometres ( 186 000 miles ) in one second, these measurements of small fractions of a second must be very precise. The Lunar Laser Ranging experiment , radar astronomy and
11155-487: The speed of light. For many practical purposes, light and other electromagnetic waves will appear to propagate instantaneously, but for long distances and very sensitive measurements, their finite speed has noticeable effects. Much starlight viewed on Earth is from the distant past, allowing humans to study the history of the universe by viewing distant objects. When communicating with distant space probes , it can take minutes to hours for signals to travel. In computing ,
11270-509: The spot is delayed because of the time it takes light to get to the distant object at the speed c . However, the only physical entities that are moving are the laser and its emitted light, which travels at the speed c from the laser to the various positions of the spot. Similarly, a shadow projected onto a distant object can be made to move faster than c , after a delay in time. In neither case does any matter, energy, or information travel faster than light. The rate of change in
11385-444: The standard symbol for the speed of light. Sometimes c is used for the speed of waves in any material medium, and c 0 for the speed of light in vacuum. This subscripted notation, which is endorsed in official SI literature, has the same form as related electromagnetic constants: namely, μ 0 for the vacuum permeability or magnetic constant, ε 0 for the vacuum permittivity or electric constant, and Z 0 for
11500-503: The surface. This effect is used to heat food in microwave ovens , and for industrial heating and medical diathermy . Microwaves are the main wavelengths used in radar , and are used for satellite communication , and wireless networking technologies such as Wi-Fi . The copper cables ( transmission lines ) which are used to carry lower-frequency radio waves to antennas have excessive power losses at microwave frequencies, and metal pipes called waveguides are used to carry them. Although at
11615-471: The travel time increases when signals pass through electronic switches or signal regenerators. Although this distance is largely irrelevant for most applications, latency becomes important in fields such as high-frequency trading , where traders seek to gain minute advantages by delivering their trades to exchanges fractions of a second ahead of other traders. For example, traders have been switching to microwave communications between trading hubs, because of
11730-471: The ultraviolet (UV) part of the electromagnetic spectrum. Now this radiation has undergone enough cosmological red shift to put it into the microwave region of the spectrum for observers moving slowly (compared to the speed of light) with respect to the cosmos. Electromagnetic radiation interacts with matter in different ways across the spectrum. These types of interaction are so different that historically different names have been applied to different parts of
11845-404: The units commonly used to denote photon energy are the electronvolt (eV) and the joule (as well as its multiples, such as the microjoule). As one joule equals 6.24 × 10 eV , the larger units may be more useful in denoting the energy of photons with higher frequency and higher energy, such as gamma rays , as opposed to lower energy photons as in the optical and radio frequency regions of
11960-475: The units of space and time), and requiring that physical theories satisfy a special symmetry called Lorentz invariance , whose mathematical formulation contains the parameter c . Lorentz invariance is an almost universal assumption for modern physical theories, such as quantum electrodynamics , quantum chromodynamics , the Standard Model of particle physics , and general relativity . As such,
12075-481: The universe is understood to exceed the speed of light beyond a certain boundary . The speed at which light propagates through transparent materials , such as glass or air, is less than c ; similarly, the speed of electromagnetic waves in wire cables is slower than c . The ratio between c and the speed v at which light travels in a material is called the refractive index n of the material ( n = c / v ). For example, for visible light,
12190-529: The universe was less than a billion years old. The fact that more distant objects appear to be younger, due to the finite speed of light, allows astronomers to infer the evolution of stars , of galaxies , and of the universe itself. Astronomical distances are sometimes expressed in light-years , especially in popular science publications and media. A light-year is the distance light travels in one Julian year , around 9461 billion kilometres, 5879 billion miles, or 0.3066 parsecs . In round figures,
12305-436: The values of the electromagnetic constants ε 0 and μ 0 and using their relation to c . Historically, the most accurate results have been obtained by separately determining the frequency and wavelength of a light beam, with their product equalling c . This is described in more detail in the "Interferometry" section below. In 1983 the metre was defined as "the length of the path travelled by light in vacuum during
12420-421: The visibility to humans is not relevant. White light is a combination of lights of different wavelengths in the visible spectrum. Passing white light through a prism splits it up into the several colours of light observed in the visible spectrum between 400 nm and 780 nm. If radiation having a frequency in the visible region of the EM spectrum reflects off an object, say, a bowl of fruit, and then strikes
12535-431: The waves and was able to infer (by measuring their wavelength and multiplying it by their frequency) that they traveled at the speed of light. Hertz also demonstrated that the new radiation could be both reflected and refracted by various dielectric media , in the same manner as light. For example, Hertz was able to focus the waves using a lens made of tree resin . In a later experiment, Hertz similarly produced and measured
12650-414: Was a wave. In 1800, William Herschel discovered infrared radiation. He was studying the temperature of different colours by moving a thermometer through light split by a prism. He noticed that the highest temperature was beyond red. He theorized that this temperature change was due to "calorific rays", a type of light ray that could not be seen. The next year, Johann Ritter , working at the other end of
12765-498: Was farther away took longer to reach the Earth, the time between two successive observations corresponds to a longer time between the instants at which the light rays were emitted. A 2011 experiment where neutrinos were observed to travel faster than light turned out to be due to experimental error. In models of the expanding universe , the farther galaxies are from each other, the faster they drift apart. For example, galaxies far away from Earth are inferred to be moving away from
12880-423: Was first linked to electromagnetism in 1845, when Michael Faraday noticed that the polarization of light traveling through a transparent material responded to a magnetic field (see Faraday effect ). During the 1860s, James Clerk Maxwell developed four partial differential equations ( Maxwell's equations ) for the electromagnetic field . Two of these equations predicted the possibility and behavior of waves in
12995-442: Was intensively studied from the beginning of the 17th century leading to the invention of important instruments like the telescope and microscope . Isaac Newton was the first to use the term spectrum for the range of colours that white light could be split into with a prism . Starting in 1666, Newton showed that these colours were intrinsic to light and could be recombined into white light. A debate arose over whether light had
13110-578: Was rekindled in 1901 when Max Planck discovered that light is absorbed only in discrete " quanta ", now called photons , implying that light has a particle nature. This idea was made explicit by Albert Einstein in 1905, but never accepted by Planck and many other contemporaries. The modern position of science is that electromagnetic radiation has both a wave and a particle nature, the wave-particle duality . The contradictions arising from this position are still being debated by scientists and philosophers. Electromagnetic waves are typically described by any of
13225-507: Was the first indication of the existence of the entire electromagnetic spectrum. Maxwell's predicted waves included waves at very low frequencies compared to infrared, which in theory might be created by oscillating charges in an ordinary electrical circuit of a certain type. Attempting to prove Maxwell's equations and detect such low frequency electromagnetic radiation, in 1886, the physicist Heinrich Hertz built an apparatus to generate and detect what are now called radio waves . Hertz found
#11988