Misplaced Pages

Ellesmerocerida

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#575424

91-459: See text . The Ellesmerocerida is an order of primitive cephalopods belonging to the subclass Nautiloidea with a widespread distribution that lived during the Late Cambrian and Ordovician . The Ellesmerocerida are characterized by shells that are typically small, some even tiny, with close-spaced septa and relatively large ventral siphuncles. In some genera (e.g. Paleoceras ),

182-810: A superorder instead. Rousseau Flower rejected this separation on the grounds that endocerids were no more diverse or complex than any other order. He considered them to be simply another order within the Nautiloidea. Flower (1958) divided the Endocerida into two suborders, the Proterocamerocerina and the Endocerina. As he defined the two suborders, Proterocamerocerina included the Proterocameroceratidae , Manchuroceratidae , and Emmonsoceratidae , while Endocerina included

273-427: A "shell vestige" or "gladius". The Incirrina have either a pair of rod-shaped stylets or no vestige of an internal shell, and some squid also lack a gladius. The shelled coleoids do not form a clade or even a paraphyletic group. The Spirula shell begins as an organic structure, and is then very rapidly mineralized. Shells that are "lost" may be lost by resorption of the calcium carbonate component. Females of

364-399: A cloud of dark ink to confuse predators . This sac is a muscular bag which originated as an extension of the hindgut. It lies beneath the gut and opens into the anus, into which its contents – almost pure melanin – can be squirted; its proximity to the base of the funnel means the ink can be distributed by ejected water as the cephalopod uses its jet propulsion. The ejected cloud of melanin

455-451: A diversity of backgrounds. Experiments done in Dwarf chameleons testing these hypotheses showed that chameleon taxa with greater capacity for color change had more visually conspicuous social signals but did not come from more visually diverse habitats, suggesting that color change ability likely evolved to facilitate social signaling, while camouflage is a useful byproduct. Because camouflage

546-693: A dozen cephalopod orders that appeared in the Lower Ordovician. They reached their greatest diversity during the Lower to Mid-Ordovician, but were already in decline by the middle of this period with most genera becoming extinct by the end of the Sandbian (late Ordovician), while some rare hangers on lasted into the Silurian . In any case, the endocerid lineage became completely extinct relatively early on in cephalopod history. Endocerids evolved from

637-529: A flat fan shape with a mucus film between the individual tentacles, while another, Sepioteuthis sepioidea , has been observed putting the tentacles in a circular arrangement. Cephalopods have advanced vision, can detect gravity with statocysts , and have a variety of chemical sense organs. Octopuses use their arms to explore their environment and can use them for depth perception. Most cephalopods rely on vision to detect predators and prey and to communicate with one another. Consequently, cephalopod vision

728-652: A gunshot-like popping noise, thought to function to frighten away potential predators. Cephalopods employ a similar method of propulsion despite their increasing size (as they grow) changing the dynamics of the water in which they find themselves. Thus their paralarvae do not extensively use their fins (which are less efficient at low Reynolds numbers ) and primarily use their jets to propel themselves upwards, whereas large adult cephalopods tend to swim less efficiently and with more reliance on their fins. Early cephalopods are thought to have produced jets by drawing their body into their shells, as Nautilus does today. Nautilus

819-453: A jet as a propulsion mechanism. Squids do not have the longitudinal muscles that octopus do. Instead, they have a tunic. This tunic is made of layers of collagen and it surrounds the top and the bottom of the mantle. Because they are made of collagen and not muscle, the tunics are rigid bodies that are much stronger than the muscle counterparts. This provides the squids some advantages for jet propulsion swimming. The stiffness means that there

910-406: A length of 8 metres. They may terminate in a broadened, sucker-coated club. The shorter four pairs are termed arms , and are involved in holding and manipulating the captured organism. They too have suckers, on the side closest to the mouth; these help to hold onto the prey. Octopods only have four pairs of sucker-coated arms, as the name suggests, though developmental abnormalities can modify

1001-474: A muscle, which is why they can change their skin hue as rapidly as they do. Coloration is typically stronger in near-shore species than those living in the open ocean, whose functions tend to be restricted to disruptive camouflage . These chromatophores are found throughout the body of the octopus, however, they are controlled by the same part of the brain that controls elongation during jet propulsion to reduce drag. As such, jetting octopuses can turn pale because

SECTION 10

#1732791192576

1092-512: A novel mechanism for spectral discrimination in cephalopods was described. This relies on the exploitation of chromatic aberration (wavelength-dependence of focal length). Numerical modeling shows that chromatic aberration can yield useful chromatic information through the dependence of image acuity on accommodation. The unusual off-axis slit and annular pupil shapes in cephalopods enhance this ability by acting as prisms which are scattering white light in all directions. In 2015, molecular evidence

1183-667: A prominent head, and a set of arms or tentacles ( muscular hydrostats ) modified from the primitive molluscan foot. Fishers sometimes call cephalopods " inkfish ", referring to their common ability to squirt ink . The study of cephalopods is a branch of malacology known as teuthology . Cephalopods became dominant during the Ordovician period, represented by primitive nautiloids . The class now contains two, only distantly related, extant subclasses: Coleoidea , which includes octopuses , squid , and cuttlefish ; and Nautiloidea , represented by Nautilus and Allonautilus . In

1274-471: A rare form of physiological color change which utilizes neural control of muscles to change the morphology of their chromatophores. This neural control of chromatophores has evolved convergently in both cephalopods and teleosts fishes. With the exception of the Nautilidae and the species of octopus belonging to the suborder Cirrina , all known cephalopods have an ink sac, which can be used to expel

1365-429: A shell-less subclass of cephalopods (squid, cuttlefish, and octopuses), have complex pigment containing cells called chromatophores which are capable of producing rapidly changing color patterns. These cells store pigment within an elastic sac which produces the color seen from these cells. Coleoids can change the shape of this sac, called the cytoelastic sacculus, which then causes changes in the translucency and opacity of

1456-620: A startling array of fashions. As well as providing camouflage with their background, some cephalopods bioluminesce, shining light downwards to disguise their shadows from any predators that may lurk below. The bioluminescence is produced by bacterial symbionts; the host cephalopod is able to detect the light produced by these organisms. Bioluminescence may also be used to entice prey, and some species use colorful displays to impress mates, startle predators, or even communicate with one another. Cephalopods can change their colors and patterns in milliseconds, whether for signalling (both within

1547-400: Is a notable partial exception in that it tolerates brackish water . Cephalopods are thought to be unable to live in fresh water due to multiple biochemical constraints, and in their >400 million year existence have never ventured into fully freshwater habitats. Cephalopods occupy most of the depth of the ocean, from the abyssal plains to the sea surface, and have also been found in

1638-516: Is acute: training experiments have shown that the common octopus can distinguish the brightness, size, shape, and horizontal or vertical orientation of objects. The morphological construction gives cephalopod eyes the same performance as shark eyes; however, their construction differs, as cephalopods lack a cornea and have an everted retina. Cephalopods' eyes are also sensitive to the plane of polarization of light. Unlike many other cephalopods, nautiluses do not have good vision; their eye structure

1729-463: Is also capable of creating a jet by undulations of its funnel; this slower flow of water is more suited to the extraction of oxygen from the water. When motionless, Nautilus can only extract 20% of oxygen from the water. The jet velocity in Nautilus is much slower than in coleoids , but less musculature and energy is involved in its production. Jet thrust in cephalopods is controlled primarily by

1820-435: Is anecdotally reported to have reached lengths approaching 9 metres (30 ft), but these claims are problematic. The overwhelming majority of endocerids and nautiloids in general are much smaller, usually less than a meter long when fully grown. Endocerids had a relatively small body chamber as well as a proportionally large siphuncle , which in some genera reached nearly half the shell diameter. This suggests that much of

1911-570: Is aragonite. As for other mollusc shells or coral skeletons, the smallest visible units are irregular rounded granules. Cephalopods, as the name implies, have muscular appendages extending from their heads and surrounding their mouths. These are used in feeding, mobility, and even reproduction. In coleoids they number eight or ten. Decapods such as cuttlefish and squid have five pairs. The longer two, termed tentacles , are actively involved in capturing prey; they can lengthen rapidly (in as little as 15 milliseconds ). In giant squid they may reach

SECTION 20

#1732791192576

2002-507: Is debated. Endocerids may have been the apex predators of the Ordovician, probably living close to the sea floor, and preying on trilobites , molluscs, brachiopods and other bottom-dwelling organisms. They were probably not active nektonic swimmers, but rather crawled over the floor of epicontinental seas or lay there in ambush. Although there is study that supports filter feeding ecology, according to hydrostatic properties, it

2093-427: Is highly developed, but lacks a solid lens . They have a simple " pinhole " eye through which water can pass. Instead of vision, the animal is thought to use olfaction as the primary sense for foraging , as well as locating or identifying potential mates. All octopuses and most cephalopods are considered to be color blind . Coleoid cephalopods (octopus, squid, cuttlefish) have a single photoreceptor type and lack

2184-418: Is more efficient, but in environments with little oxygen and in low temperatures, hemocyanin has the upper hand. The hemocyanin molecule is much larger than the hemoglobin molecule, allowing it to bond with 96 O 2 or CO 2 molecules, instead of the hemoglobin's just four. But unlike hemoglobin, which are attached in millions on the surface of a single red blood cell, hemocyanin molecules float freely in

2275-403: Is needed, compensating for their small size. However, organisms which spend most of their time moving slowly along the bottom do not naturally pass much water through their cavity for locomotion; thus they have larger gills, along with complex systems to ensure that water is constantly washing through their gills, even when the organism is stationary. The water flow is controlled by contractions of

2366-439: Is no necessary muscle flexing to keep the mantle the same size. In addition, tunics take up only 1% of the squid mantle's wall thickness, whereas the longitudinal muscle fibers take up to 20% of the mantle wall thickness in octopuses. Also because of the rigidity of the tunic, the radial muscles in squid can contract more forcefully. The mantle is not the only place where squids have collagen. Collagen fibers are located throughout

2457-415: Is not likely and still supports benthic predators. Endocerids laid relatively large eggs, and hatched at a relatively large body size. It is likely that endocerids were demersal after hatching, as large eggs would make an easy target for predators in the pelagic zone. Endocerids may have migrated from their habitat in the open ocean to shallower water to lay their eggs. Endocerids were among some half

2548-457: Is referred to as a pseudomorph ). This strategy often results in the predator attacking the pseudomorph, rather than its rapidly departing prey. For more information, see Inking behaviors . The ink sac of cephalopods has led to a common name of "inkfish", formerly the pen-and-ink fish. Cephalopods are the only molluscs with a closed circulatory system. Coleoids have two gill hearts (also known as branchial hearts ) that move blood through

2639-413: Is supplemented with fin motion; in the squid, the fins flap each time that a jet is released, amplifying the thrust; they are then extended between jets (presumably to avoid sinking). Oxygenated water is taken into the mantle cavity to the gills and through muscular contraction of this cavity, the spent water is expelled through the hyponome , created by a fold in the mantle. The size difference between

2730-553: Is the first evidence that cephalopod dermal tissues may possess the required combination of molecules to respond to light. Some squids have been shown to detect sound using their statocysts , but, in general, cephalopods are deaf. Most cephalopods possess an assemblage of skin components that interact with light. These may include iridophores, leucophores , chromatophores and (in some species) photophores . Chromatophores are colored pigment cells that expand and contract in accordance to produce color and pattern which they can use in

2821-426: Is unknown, but chromatophores are under the control of neural pathways, allowing the cephalopod to coordinate elaborate displays. Together, chromatophores and iridophores are able to produce a large range of colors and pattern displays. Cephalopods utilize chromatophores' color changing ability in order to camouflage themselves. Chromatophores allow Coleoids to blend into many different environments, from coral reefs to

Ellesmerocerida - Misplaced Pages Continue

2912-400: Is used for multiple adaptive purposes in cephalopods, color change could have evolved for one use and the other developed later, or it evolved to regulate trade offs within both. Color change is widespread in ectotherms including anoles, frogs, mollusks, many fish, insects, and spiders. The mechanism behind this color change can be either morphological or physiological. Morphological change is

3003-417: Is usually mixed, upon expulsion, with mucus , produced elsewhere in the mantle, and therefore forms a thick cloud, resulting in visual (and possibly chemosensory) impairment of the predator, like a smokescreen . However, a more sophisticated behavior has been observed, in which the cephalopod releases a cloud, with a greater mucus content, that approximately resembles the cephalopod that released it (this decoy

3094-689: The Ellesmerocerida as containing all archaic, ancestral cephalopods and established three suborders within: the Plectronoceratina, Ellesmeroceratina, and Cyrtocerinina. Furnish and Glenister, in the Treatise on Invertebrate Paleontology , Part K, essentially followed suit with minor differences at the family level. Mary Wade (1988) included the Ellesmerocerida in the superorder Plectonoceratoidea, which she defined as containing

3185-738: The Piloceratidae and Endoceratidae . Endocerid classification since then has relied on a dichotomy between short-shelled forms with complex endocones and long-shelled forms with simple endocones. Endocerid relationships have been difficult to establish both within the order and relative to other nautiloids. Their generally orthoconic shell shape and dorsomyarian muscle scars are similar to the subclass Orthoceratoidea , which are ancestral to ammonoids (ammonites) and coleoids (squid, octopus, etc.). However, their nautilosiphonate connecting ring structure and lack of cameral deposits are more similar to living nautilus and their proposed ancestors,

3276-416: The hadal zone . Their diversity is greatest near the equator (~40 species retrieved in nets at 11°N by a diversity study) and decreases towards the poles (~5 species captured at 60°N). Cephalopods are widely regarded as the most intelligent of the invertebrates and have well developed senses and large brains (larger than those of gastropods ). The nervous system of cephalopods is the most complex of

3367-583: The sparkling enope squid ( Watasenia scintillans ). It achieves color vision with three photoreceptors , which are based on the same opsin , but use distinct retinal molecules as chromophores: A1 (retinal), A3 (3-dehydroretinal), and A4 (4-hydroxyretinal). The A1-photoreceptor is most sensitive to green-blue (484 nm), the A2-photoreceptor to blue-green (500 nm), and the A4-photoreceptor to blue (470 nm) light. In 2015,

3458-552: The Coleoidea, the molluscan shell has been internalized or is absent, whereas in the Nautiloidea, the external shell remains. About 800 living species of cephalopods have been identified. Two important extinct taxa are the Ammonoidea (ammonites) and Belemnoidea (belemnites). Extant cephalopods range in size from the 10 mm (0.3 in) Idiosepius thailandicus to the 700 kilograms (1,500 lb) heavy Colossal squid ,

3549-489: The Orthocerida and Actinocerida . Endocerids reached enormous body sizes. The largest confirmed specimen, belonging to Endoceras giganteum , is 3 metres (9.8 ft) long as preserved, but is missing a substantial portion of its aboral end. The reconstructed length of the shell is nearly 6 metres (20 ft). An alleged endocerid specimen 30 feet (9.1 m) long is unconfirmed. The mode of life of endocerids

3640-579: The Plectronocerida, Ellesmerocerida and two orders introduced by Chen and Teichert in 1983, the Cambrian Yanhecerida and Protactinocerida. The Plectronocerida, also Cambrian, includes forms once included in the suborder Plectronoceratina, now elevated in rank. The Ellesmerocerida have been revised to include only primitive nautiloid cephalopods with thick connecting rings and siphuncle segments that are concave in outline. Accordingly,

3731-846: The Protocycloceratidae, all which have thin tubular or expanded siphuncles, are now excluded. The Apocrinoceratidae , once included, is now assigned to the Discosorida The Ellesmerocerida are derived from the Plectronocerida , having first appeared early in the Trempealeauan Stage of the Late Cambrian and quickly diversifying into four families, only one of which, the Ellesmeroceratidae , continued by means of

Ellesmerocerida - Misplaced Pages Continue

3822-556: The ability to determine color by comparing detected photon intensity across multiple spectral channels. When camouflaging themselves, they use their chromatophores to change brightness and pattern according to the background they see, but their ability to match the specific color of a background may come from cells such as iridophores and leucophores that reflect light from the environment. They also produce visual pigments throughout their body and may sense light levels directly from their body. Evidence of color vision has been found in

3913-452: The acidity of the organic shell matrix (see Mollusc shell ); shell-forming cephalopods have an acidic matrix, whereas the gladius of squid has a basic matrix. The basic arrangement of the cephalopod outer wall is: an outer (spherulitic) prismatic layer, a laminar (nacreous) layer and an inner prismatic layer. The thickness of every layer depends on the taxa. In modern cephalopods, the Ca carbonate

4004-434: The air for distances of up to 50 metres (160 ft). While cephalopods are not particularly aerodynamic, they achieve these impressive ranges by jet-propulsion; water continues to be expelled from the funnel while the organism is in the air. The animals spread their fins and tentacles to form wings and actively control lift force with body posture. One species, Todarodes pacificus , has been observed spreading tentacles in

4095-454: The appearance of their surroundings is notable given that cephalopods' vision is monochromatic. Cephalopods also use their fine control of body coloration and patterning to perform complex signaling displays for both conspecific and intraspecific communication. Coloration is used in concert with locomotion and texture to send signals to other organisms. Intraspecifically this can serve as a warning display to potential predators. For example, when

4186-403: The bloodstream. Cephalopods exchange gases with the seawater by forcing water through their gills, which are attached to the roof of the organism. Water enters the mantle cavity on the outside of the gills, and the entrance of the mantle cavity closes. When the mantle contracts, water is forced through the gills, which lie between the mantle cavity and the funnel. The water's expulsion through

4277-517: The body cavity; others, like some fish, accumulate oils in the liver; and some octopuses have a gelatinous body with lighter chloride ions replacing sulfate in the body chemistry. Squids are the primary sufferers of negative buoyancy in cephalopods. The negative buoyancy means that some squids, especially those whose habitat depths are rather shallow, have to actively regulate their vertical positions. This means that they must expend energy, often through jetting or undulations, in order to maintain

4368-527: The brain is unable to achieve both controlling elongation and controlling the chromatophores. Most octopuses mimic select structures in their field of view rather than becoming a composite color of their full background. Evidence of original coloration has been detected in cephalopod fossils dating as far back as the Silurian ; these orthoconic individuals bore concentric stripes, which are thought to have served as camouflage. Devonian cephalopods bear more complex color patterns, of unknown function. Coleoids,

4459-401: The capillaries of the gills . A single systemic heart then pumps the oxygenated blood through the rest of the body. Like most molluscs, cephalopods use hemocyanin , a copper-containing protein, rather than hemoglobin , to transport oxygen. As a result, their blood is colorless when deoxygenated and turns blue when bonded to oxygen. In oxygen-rich environments and in acidic water, hemoglobin

4550-436: The cavity by entering not only through the orifices, but also through the funnel. Squid can expel up to 94% of the fluid within their cavity in a single jet thrust. To accommodate the rapid changes in water intake and expulsion, the orifices are highly flexible and can change their size by a factor of twenty; the funnel radius, conversely, changes only by a factor of around 1.5. Some octopus species are also able to walk along

4641-561: The cell. By rapidly changing multiple chromatophores of different colors, cephalopods are able to change the color of their skin at astonishing speeds, an adaptation that is especially notable in an organism that sees in black and white. Chromatophores are known to only contain three pigments, red, yellow, and brown, which cannot create the full color spectrum. However, cephalopods also have cells called iridophores, thin, layered protein cells that reflect light in ways that can produce colors chromatophores cannot. The mechanism of iridophore control

SECTION 50

#1732791192576

4732-399: The cephalopod mantle have been widely used for many years as experimental material in neurophysiology ; their large diameter (due to lack of myelination ) makes them relatively easy to study compared with other animals. Many cephalopods are social creatures; when isolated from their own kind, some species have been observed shoaling with fish. Some cephalopods are able to fly through

4823-474: The earlier ellesmerocerids , most likely from a genus similar to Pachendoceras . This ellesmerocerid gave rise to Proendoceras , the earliest representative of the Proterocameroceratidae and hence of the Endocerida. Endocerids evolved from ellesmerocerids by reduction of siphuncle diaphragms and the development of endocones. In the early part of the mid-Lower Ordovician, the Endocerida quickly diversified into many different families. In true endocerids, there

4914-406: The end of the Ordovician. Cephalopoda A cephalopod / ˈ s ɛ f ə l ə p ɒ d / is any member of the molluscan class Cephalopoda / s ɛ f ə ˈ l ɒ p ə d ə / ( Greek plural κεφαλόποδες , kephalópodes ; "head-feet") such as a squid , octopus , cuttlefish , or nautilus . These exclusively marine animals are characterized by bilateral body symmetry ,

5005-469: The expansion of the mantle at the end of the jet. In some tests, the collagen has been shown to be able to begin raising mantle pressure up to 50ms before muscle activity is initiated. These anatomical differences between squid and octopuses can help explain why squid can be found swimming comparably to fish while octopuses usually rely on other forms of locomotion on the sea floor such as bipedal walking, crawling, and non-jetting swimming. Nautiluses are

5096-413: The form of jetting. The composition of these mantles differs between the two families, however. In octopuses, the mantle is made up of three muscle types: longitudinal, radial, and circular. The longitudinal muscles run parallel to the length of the octopus and they are used in order to keep the mantle the same length throughout the jetting process. Given that they are muscles, it can be noted that this means

5187-456: The funnel can be used to power jet propulsion. If respiration is used concurrently with jet propulsion, large losses in speed or oxygen generation can be expected. The gills, which are much more efficient than those of other mollusks, are attached to the ventral surface of the mantle cavity. There is a trade-off with gill size regarding lifestyle. To achieve fast speeds, gills need to be small – water will be passed through them quickly when energy

5278-688: The genera Ectenolites and Clarkoceras into the Gasconadian in the Lower Ordovician. The other three, Acaroceratidae , Huaiheceratidae , and Xiaoshanoceratidae having perished in the extinction event that occurred late in the Trempealeauan, before the end of the Cambrian. The dominant family of Ordovician Ellesmerocerida is the Ellesmeroceriatidae which are distinguished from the generally similar Protocycloceratidae by

5369-400: The invertebrates and their brain-to-body-mass ratio falls between that of endothermic and ectothermic vertebrates. Captive cephalopods have also been known to climb out of their aquaria, maneuver a distance of the lab floor, enter another aquarium to feed on captive crabs, and return to their own aquarium. The brain is protected in a cartilaginous cranium. The giant nerve fibers of

5460-508: The largest extant invertebrate . There are over 800 extant species of cephalopod, although new species continue to be described. An estimated 11,000 extinct taxa have been described, although the soft-bodied nature of cephalopods means they are not easily fossilised. Cephalopods are found in all the oceans of Earth. None of them can tolerate fresh water , but the brief squid, Lolliguncula brevis , found in Chesapeake Bay ,

5551-472: The maximum diameter of the funnel orifice (or, perhaps, the average diameter of the funnel) and the diameter of the mantle cavity. Changes in the size of the orifice are used most at intermediate velocities. The absolute velocity achieved is limited by the cephalopod's requirement to inhale water for expulsion; this intake limits the maximum velocity to eight body-lengths per second, a speed which most cephalopods can attain after two funnel-blows. Water refills

SECTION 60

#1732791192576

5642-404: The non threatening herbivorous parrotfish to approach unaware prey. The octopus Thaumoctopus mimicus is known to mimic a number of different venomous organisms it cohabitates with to deter predators. While background matching, a cephalopod changes its appearance to resemble its surroundings, hiding from its predators or concealing itself from prey. The ability to both mimic other organisms and match

5733-882: The number of arms expressed. Endocerida † Cyrtendoceratidae † Endoceratidae † Proterocameroceratidae † Yorkoceratidae Endocerida is an extinct nautiloid order, a group of cephalopods from the Lower Paleozoic with cone-like deposits in their siphuncle . Endocerida was a diverse group of cephalopods that lived from the Early Ordovician possibly to the Late Silurian . Their shells were variable in form. Some were straight ( orthoconic ), others curved (cyrtoconic); some were long (longiconic), others short (breviconic). Some long-shelled forms like Endoceras attained shell lengths close to 6 metres (20 ft). The related Cameroceras

5824-413: The octopus Callistoctopus macropus is threatened, it will turn a bright red brown color speckled with white dots as a high contrast display to startle predators. Conspecifically, color change is used for both mating displays and social communication. Cuttlefish have intricate mating displays from males to females. There is also male to male signaling that occurs during competition over mates, all of which are

5915-443: The octopus genus Argonauta secrete a specialized paper-thin egg case in which they reside, and this is popularly regarded as a "shell", although it is not attached to the body of the animal and has a separate evolutionary origin. The largest group of shelled cephalopods, the ammonites , are extinct, but their shells are very common as fossils . The deposition of carbonate, leading to a mineralized shell, appears to be related to

6006-444: The octopus must actively flex the longitudinal muscles during jetting in order to keep the mantle at a constant length. The radial muscles run perpendicular to the longitudinal muscles and are used to thicken and thin the wall of the mantle. Finally, the circular muscles are used as the main activators in jetting. They are muscle bands that surround the mantle and expand/contract the cavity. All three muscle types work in unison to produce

6097-497: The only extant cephalopods with a true external shell. However, all molluscan shells are formed from the ectoderm (outer layer of the embryo); in cuttlefish ( Sepia spp.), for example, an invagination of the ectoderm forms during the embryonic period, resulting in a shell ( cuttlebone ) that is internal in the adult. The same is true of the chitinous gladius of squid and octopuses. Cirrate octopods have arch-shaped cartilaginous fin supports , which are sometimes referred to as

6188-596: The order includes the Ellesmeroceratidae , Protocycloceratidae , Cyclostomiceratidae , Bassleroceratidae , Eothinoceratidae , Bathmoceratidae , and Cyrtocerinidae . The Ellesmeroceratidae, Protocycloceratidae, Cyclostomiceratidae, Bassleroceratidae are found in Flower's basic Ellesmeroceratina. The Eothinoceratidae, Bathmoceratidae, and Cyrtocerinidae are combined in the Cyrtocerinina. The Schideleroceratidae, Apocrinoceratidae, Baltoceratidae and certain members of

6279-440: The other muscle fibers in the mantle. These collagen fibers act as elastics and are sometimes named "collagen springs". As the name implies, these fibers act as springs. When the radial and circular muscles in the mantle contract, they reach a point where the contraction is no longer efficient to the forward motion of the creature. In such cases, the excess contraction is stored in the collagen which then efficiently begins or aids in

6370-635: The others in that their connecting rings are greatly thickened inwardly as annular lobes. The Ellesmerocerida gave rise to the Endocerida through Pachendoceras and to the Tarphycerida and Oncocerida through Bassleroceras and is the source for the Orthocerida , Pseudorthocerida , Actinocerida , and Discosorida . The Ellesmerocerida mostly died out by the end of the early Ordovician (Arenigian), although some stragglers survived until

6461-442: The posterior and anterior ends of this organ control the speed of the jet the organism can produce. The velocity of the organism can be accurately predicted for a given mass and morphology of animal. Motion of the cephalopods is usually backward as water is forced out anteriorly through the hyponome, but direction can be controlled somewhat by pointing it in different directions. Some cephalopods accompany this expulsion of water with

6552-558: The presence of broad lateral lobes in the suture. Sutures in the Protocycloceratidae are straight and transverse. Both contain forms that are annunlate (transversally ribbed) as well as smooth. Other Ordovician families are the broad and beviconic Cyclostomiceratidae and exogastric Bassleroceratidae, rounding out the Ellesmeroceratina. Three families, the Bathmoceratidae, Cyrtocerinidae, and Eothinoceratidae differ from

6643-557: The previous septum. The siphuncle interior is commonly crossed by irregular partitions, known as diaphragms, but are otherwise free of internal deposits As soft parts are not prone to fossilization, little can be surmised as to their soft part anatomy. Preserved muscle attachment scars indicate that they may have had segmented muscles reminiscent of primitive monoplacophoran molluscs. As for arms or tentacles, little can be said except that eight or ten, retained in modern coleoids, seems to be Plesiomorphic in origin. Rousseau Flower defined

6734-407: The product of chromatophore coloration displays. There are two hypotheses about the evolution of color change in cephalopods. One hypothesis is that the ability to change color may have evolved for social, sexual, and signaling functions. Another explanation is that it first evolved because of selective pressures encouraging predator avoidance and stealth hunting. For color change to have evolved as

6825-431: The radial and circular mantle cavity muscles. The gills of cephalopods are supported by a skeleton of robust fibrous proteins; the lack of mucopolysaccharides distinguishes this matrix from cartilage. The gills are also thought to be involved in excretion, with NH 4 being swapped with K from the seawater. While most cephalopods can move by jet propulsion, this is a very energy-consuming way to travel compared to

6916-441: The result of a change in the density of pigment containing cells and tends to change over longer periods of time. Physiological change, the kind observed in cephalopod lineages, is typically the result of the movement of pigment within the chromatophore, changing where different pigments are localized within the cell. This physiological change typically occurs on much shorter timescales compared to morphological change. Cephalopods have

7007-439: The result of natural selection different parameters would have to be met. For one, you would need some phenotypic diversity in body patterning among the population. The species would also need to cohabitate with predators which rely on vision for prey identification. These predators should have a high range of visual sensitivity, detecting not just motion or contrast but also colors. The habitats they occupy would also need to display

7098-424: The result of social selection the environment of cephalopods' ancestors would have to fit a number of criteria. One, there would need to be some kind of mating ritual that involved signaling. Two, they would have to experience demonstrably high levels of sexual selection. And three, the ancestor would need to communicate using sexual signals that are visible to a conspecific receiver. For color change to have evolved as

7189-549: The same class. Octopuses are generally not seen as active swimmers; they are often found scavenging the sea floor instead of swimming long distances through the water. Squids, on the other hand, can be found to travel vast distances, with some moving as much as 2000 km in 2.5 months at an average pace of 0.9 body lengths per second. There is a major reason for the difference in movement type and efficiency: anatomy. Both octopuses and squids have mantles (referenced above) which function towards respiration and locomotion in

7280-399: The same depth. As such, the cost of transport of many squids are quite high. That being said, squid and other cephalopod that dwell in deep waters tend to be more neutrally buoyant which removes the need to regulate depth and increases their locomotory efficiency. The Macrotritopus defilippi , or the sand-dwelling octopus, was seen mimicking both the coloration and the swimming movements of

7371-452: The sand-dwelling flounder Bothus lunatus to avoid predators. The octopuses were able to flatten their bodies and put their arms back to appear the same as the flounders as well as move with the same speed and movements. Females of two species, Ocythoe tuberculata and Haliphron atlanticus , have evolved a true swim bladder . Two of the categories of cephalopods, octopus and squid, are vastly different in their movements despite being of

7462-446: The sandy sea floor. The color change of chromatophores works in concert with papillae, epithelial tissue which grows and deforms through hydrostatic motion to change skin texture. Chromatophores are able to perform two types of camouflage, mimicry and color matching. Mimicry is when an organism changes its appearance to appear like a different organism. The squid Sepioteuthis sepioide has been documented changing its appearance to appear as

7553-489: The seabed. Squids and cuttlefish can move short distances in any direction by rippling of a flap of muscle around the mantle. While most cephalopods float (i.e. are neutrally buoyant or nearly so; in fact most cephalopods are about 2–3% denser than seawater ), they achieve this in different ways. Some, such as Nautilus , allow gas to diffuse into the gap between the mantle and the shell; others allow purer water to ooze from their kidneys, forcing out denser salt water from

7644-617: The septa are uniformly spaced. Shells of ellesmerocerids are typically smooth and compressed and vary in form. They may be breviconic (short) or longiconic (elongate), straight (orthoconic) or curved (cyrtoconic). Cyrtoconic forms are usually endogastric, with longitudinally convex ventral margins. The apeces of straight forms typically have an endogastric curvature. Some may have grown to as much as 15 cm. Siphuncle segments are tubular or concave. Septal necks are short. Connecting rings which may appear layered are thick and typically wedge shaped with their maximum width at or near where they join

7735-440: The species and for warning ) or active camouflage , as their chromatophores are expanded or contracted. Although color changes appear to rely primarily on vision input, there is evidence that skin cells, specifically chromatophores , can detect light and adjust to light conditions independently of the eyes. The octopus changes skin color and texture during quiet and active sleep cycles. Cephalopods can use chromatophores like

7826-412: The subclass Multiceratoidea . Some studies have re-established Endoceratoidea to clarify that endocerids occupy a unique subclass of nautiloids. Restudy of piloceratid-like families with complex endocones has suggested that Endocerida in its broadest form is polyphyletic , with piloceratid-like and proterocameroceratid-like members having independent origins from ellesmerocerids. In light of this issue,

7917-459: The tail propulsion used by fish. The efficiency of a propeller -driven waterjet (i.e. Froude efficiency ) is greater than a rocket . The relative efficiency of jet propulsion decreases further as animal size increases; paralarvae are far more efficient than juvenile and adult individuals. Since the Paleozoic era , as competition with fish produced an environment where efficient motion

8008-495: The visceral mass may have been housed within the siphuncle itself rather than just in the body chamber as with other nautiloids (Teichert, 1964). Endocerids are primarily distinguished by the presence of conical calcareous deposits, known as endocones, found in the more apical portion of the siphuncle. They are thought to act as a counterweight for the animal’s body. The chambers ( camerae ) of endocerids are always free of organic deposits, unlike orthoceratoid cephalopod orders such as

8099-521: Was a trend of overall increasing size, eventually resulting in massive orthoconic genera such as Endoceras and Cameroceras . In another lineage (now known as Bisonocerida ), the siphuncle grew more complex, resulting in genera such as Chihlioceras and Allotrioceras . Citing its diversity, Curt Teichert (1964) placed the Endocerida in its own subclass called the Endoceroidea or Endoceratoidea (which some Russian paleontologists ranked as

8190-463: Was crucial to survival, jet propulsion has taken a back role, with fins and tentacles used to maintain a steady velocity. Whilst jet propulsion is never the sole mode of locomotion, the stop-start motion provided by the jets continues to be useful for providing bursts of high speed – not least when capturing prey or avoiding predators . Indeed, it makes cephalopods the fastest marine invertebrates, and they can out-accelerate most fish. The jet

8281-401: Was published indicating that cephalopod chromatophores are photosensitive; reverse transcription polymerase chain reactions (RT-PCR) revealed transcripts encoding rhodopsin and retinochrome within the retinas and skin of the longfin inshore squid ( Doryteuthis pealeii ), and the common cuttlefish ( Sepia officinalis ) and broadclub cuttlefish ( Sepia latimanus ). The authors claim this

#575424