102-550: A solar equinox is a moment in time when the Sun crosses the Earth's equator , which is to say, appears directly above the equator, rather than north or south of the equator. On the day of the equinox, the Sun appears to rise "due east" and set "due west". This occurs twice each year, around 20 March and 23 September . More precisely, an equinox is traditionally defined as the time when
204-515: A distance of one astronomical unit (AU) from the Sun (that is, at or near Earth's orbit). Sunlight on the surface of Earth is attenuated by Earth's atmosphere , so that less power arrives at the surface (closer to 1,000 W/m ) in clear conditions when the Sun is near the zenith . Sunlight at the top of Earth's atmosphere is composed (by total energy) of about 50% infrared light, 40% visible light, and 10% ultraviolet light. The atmosphere filters out over 70% of solar ultraviolet, especially at
306-403: A fairly small amount of power being generated per cubic metre . Theoretical models of the Sun's interior indicate a maximum power density, or energy production, of approximately 276.5 watts per cubic metre at the center of the core, which, according to Karl Kruszelnicki , is about the same power density inside a compost pile . The fusion rate in the core is in a self-correcting equilibrium:
408-414: A few millimeters. Re-emission happens in a random direction and usually at slightly lower energy. With this sequence of emissions and absorptions, it takes a long time for radiation to reach the Sun's surface. Estimates of the photon travel time range between 10,000 and 170,000 years. In contrast, it takes only 2.3 seconds for neutrinos , which account for about 2% of the total energy production of
510-402: A few minutes to an hour. (For a given frequency band, a larger antenna has a narrower beam-width and hence experiences shorter duration "Sun outage" windows.) Satellites in geostationary orbit also experience difficulties maintaining power during the equinox because they have to travel through Earth's shadow and rely only on battery power. Usually, a satellite travels either north or south of
612-401: A granular appearance called the solar granulation at the smallest scale and supergranulation at larger scales. Turbulent convection in this outer part of the solar interior sustains "small-scale" dynamo action over the near-surface volume of the Sun. The Sun's thermal columns are Bénard cells and take the shape of roughly hexagonal prisms. The visible surface of the Sun, the photosphere,
714-423: A horizontal plane through the eye of the observer. These effects make the day about 14 minutes longer than the night at the equator and longer still towards the poles. The real equality of day and night only happens in places far enough from the equator to have a seasonal difference in day length of at least 7 minutes, actually occurring a few days towards the winter side of each equinox. One result of this
816-520: A period known as the Maunder minimum . This coincided in time with the era of the Little Ice Age , when Europe experienced unusually cold temperatures. Earlier extended minima have been discovered through analysis of tree rings and appear to have coincided with lower-than-average global temperatures. The temperature of the photosphere is approximately 6,000 K, whereas the temperature of
918-485: A phenomenon described by Hale's law . During the solar cycle's declining phase, energy shifts from the internal toroidal magnetic field to the external poloidal field, and sunspots diminish in number and size. At solar-cycle minimum, the toroidal field is, correspondingly, at minimum strength, sunspots are relatively rare, and the poloidal field is at its maximum strength. With the rise of the next 11-year sunspot cycle, differential rotation shifts magnetic energy back from
1020-473: A result, the outward-flowing solar wind stretches the interplanetary magnetic field outward, forcing it into a roughly radial structure. For a simple dipolar solar magnetic field, with opposite hemispherical polarities on either side of the solar magnetic equator, a thin current sheet is formed in the solar wind. At great distances, the rotation of the Sun twists the dipolar magnetic field and corresponding current sheet into an Archimedean spiral structure called
1122-410: A slightly higher rate of fusion would cause the core to heat up more and expand slightly against the weight of the outer layers, reducing the density and hence the fusion rate and correcting the perturbation ; and a slightly lower rate would cause the core to cool and shrink slightly, increasing the density and increasing the fusion rate and again reverting it to its present rate. The radiative zone
SECTION 10
#17327799499381224-406: A transition layer, the tachocline . This is a region where the sharp regime change between the uniform rotation of the radiative zone and the differential rotation of the convection zone results in a large shear between the two—a condition where successive horizontal layers slide past one another. Presently, it is hypothesized that a magnetic dynamo, or solar dynamo , within this layer generates
1326-570: Is 1 astronomical unit ( 1.496 × 10 km ) or about 8 light-minutes away. Its diameter is about 1,391,400 km ( 864,600 mi ), 109 times that of Earth. Its mass is about 330,000 times that of Earth, making up about 99.86% of the total mass of the Solar System. Roughly three-quarters of the Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%), with much smaller quantities of heavier elements, including oxygen , carbon , neon , and iron . The Sun
1428-494: Is a G-type main-sequence star (G2V), informally called a yellow dwarf , though its light is actually white. It formed approximately 4.6 billion years ago from the gravitational collapse of matter within a region of a large molecular cloud . Most of this matter gathered in the center, whereas the rest flattened into an orbiting disk that became the Solar System . The central mass became so hot and dense that it eventually initiated nuclear fusion in its core . Every second,
1530-591: Is by far the brightest object in the Earth's sky , with an apparent magnitude of −26.74. This is about 13 billion times brighter than the next brightest star, Sirius , which has an apparent magnitude of −1.46. One astronomical unit (about 150 million kilometres; 93 million miles) is defined as the mean distance between the centres of the Sun and the Earth. The instantaneous distance varies by about ± 2.5 million km or 1.55 million miles as Earth moves from perihelion on ~ January 3rd to aphelion on ~ July 4th. At its average distance, light travels from
1632-436: Is defined to begin at the distance where the flow of the solar wind becomes superalfvénic —that is, where the flow becomes faster than the speed of Alfvén waves, at approximately 20 solar radii ( 0.1 AU ). Turbulence and dynamic forces in the heliosphere cannot affect the shape of the solar corona within, because the information can only travel at the speed of Alfvén waves. The solar wind travels outward continuously through
1734-402: Is facilitated by the full ionization of helium in the transition region, which significantly reduces radiative cooling of the plasma. The transition region does not occur at a well-defined altitude, but forms a kind of nimbus around chromospheric features such as spicules and filaments , and is in constant, chaotic motion. The transition region is not easily visible from Earth's surface, but
1836-493: Is increasing at the fastest at the vernal equinox and decreasing at the fastest at the autumnal equinox. Systematically observing the sunrise , people discovered that it occurs between two extreme locations at the horizon and eventually noted the midpoint between the two. Later it was realized that this happens on a day when the duration of the day and the night are practically equal and the word "equinox" comes from Latin aequus , meaning "equal", and nox , meaning "night". In
1938-409: Is only 84% of what it was in the protostellar phase (before nuclear fusion in the core started). In the future, helium will continue to accumulate in the core, and in about 5 billion years this gradual build-up will eventually cause the Sun to exit the main sequence and become a red giant . The chemical composition of the photosphere is normally considered representative of the composition of
2040-441: Is readily observable from space by instruments sensitive to extreme ultraviolet . The corona is the next layer of the Sun. The low corona, near the surface of the Sun, has a particle density around 10 m to 10 m . The average temperature of the corona and solar wind is about 1,000,000–2,000,000 K; however, in the hottest regions it is 8,000,000–20,000,000 K. Although no complete theory yet exists to account for
2142-410: Is strongly attenuated by Earth's ozone layer , so that the amount of UV varies greatly with latitude and has been partially responsible for many biological adaptations, including variations in human skin color . High-energy gamma ray photons initially released with fusion reactions in the core are almost immediately absorbed by the solar plasma of the radiative zone, usually after traveling only
SECTION 20
#17327799499382244-422: Is suggested by a high abundance of heavy elements in the Solar System, such as gold and uranium , relative to the abundances of these elements in so-called Population II , heavy-element-poor, stars. The heavy elements could most plausibly have been produced by endothermic nuclear reactions during a supernova, or by transmutation through neutron absorption within a massive second-generation star. The Sun
2346-470: Is tens to hundreds of kilometers thick, and is slightly less opaque than air on Earth. Because the upper part of the photosphere is cooler than the lower part, an image of the Sun appears brighter in the center than on the edge or limb of the solar disk, in a phenomenon known as limb darkening . The spectrum of sunlight has approximately the spectrum of a black-body radiating at 5,772 K (9,930 °F), interspersed with atomic absorption lines from
2448-419: Is that, at latitudes below ±2.0 degrees, all the days of the year are longer than the nights. The times of sunset and sunrise vary with the observer's location ( longitude and latitude ), so the dates when day and night are equal also depend upon the observer's location. A third correction for the visual observation of a sunrise (or sunset) is the angle between the apparent horizon as seen by an observer and
2550-437: Is the layer below which the Sun becomes opaque to visible light. Photons produced in this layer escape the Sun through the transparent solar atmosphere above it and become solar radiation, sunlight. The change in opacity is due to the decreasing amount of H ions , which absorb visible light easily. Conversely, the visible light perceived is produced as electrons react with hydrogen atoms to produce H ions. The photosphere
2652-424: Is the most prominent variation in which the number and size of sunspots waxes and wanes. The solar magnetic field extends well beyond the Sun itself. The electrically conducting solar wind plasma carries the Sun's magnetic field into space, forming what is called the interplanetary magnetic field . In an approximation known as ideal magnetohydrodynamics , plasma particles only move along magnetic field lines. As
2754-531: Is the only region of the Sun that produces an appreciable amount of thermal energy through fusion; 99% of the Sun's power is generated in the innermost 24% of its radius, and almost no fusion occurs beyond 30% of the radius. The rest of the Sun is heated by this energy as it is transferred outward through many successive layers, finally to the solar photosphere where it escapes into space through radiation (photons) or advection (massive particles). The proton–proton chain occurs around 9.2 × 10 times each second in
2856-420: Is the thickest layer of the Sun, at 0.45 solar radii. From the core out to about 0.7 solar radii , thermal radiation is the primary means of energy transfer. The temperature drops from approximately 7 million to 2 million kelvins with increasing distance from the core. This temperature gradient is less than the value of the adiabatic lapse rate and hence cannot drive convection, which explains why
2958-444: Is theorized to become a super dense black dwarf , giving off negligible energy. The English word sun developed from Old English sunne . Cognates appear in other Germanic languages , including West Frisian sinne , Dutch zon , Low German Sünn , Standard German Sonne , Bavarian Sunna , Old Norse sunna , and Gothic sunnō . All these words stem from Proto-Germanic * sunnōn . This
3060-538: Is ultimately related to the word for sun in other branches of the Indo-European language family, though in most cases a nominative stem with an l is found, rather than the genitive stem in n , as for example in Latin sōl , ancient Greek ἥλιος ( hēlios ), Welsh haul and Czech slunce , as well as (with *l > r ) Sanskrit स्वर् ( svár ) and Persian خور ( xvar ). Indeed,
3162-402: Is wave heating, in which sound, gravitational or magnetohydrodynamic waves are produced by turbulence in the convection zone. These waves travel upward and dissipate in the corona, depositing their energy in the ambient matter in the form of heat. The other is magnetic heating, in which magnetic energy is continuously built up by photospheric motion and released through magnetic reconnection in
Equinox - Misplaced Pages Continue
3264-547: The Alfvén surface , the boundary separating the corona from the solar wind, defined as where the coronal plasma's Alfvén speed and the large-scale solar wind speed are equal. During the flyby, Parker Solar Probe passed into and out of the corona several times. This proved the predictions that the Alfvén critical surface is not shaped like a smooth ball, but has spikes and valleys that wrinkle its surface. The Sun emits light across
3366-524: The Parker spiral . Sunspots are visible as dark patches on the Sun's photosphere and correspond to concentrations of magnetic field where convective transport of heat is inhibited from the solar interior to the surface. As a result, sunspots are slightly cooler than the surrounding photosphere, so they appear dark. At a typical solar minimum , few sunspots are visible, and occasionally none can be seen at all. Those that do appear are at high solar latitudes. As
3468-410: The corona , and the heliosphere . The coolest layer of the Sun is a temperature minimum region extending to about 500 km above the photosphere, and has a temperature of about 4,100 K . This part of the Sun is cool enough to allow for the existence of simple molecules such as carbon monoxide and water. The chromosphere, transition region, and corona are much hotter than the surface of
3570-614: The l -stem survived in Proto-Germanic as well, as * sōwelan , which gave rise to Gothic sauil (alongside sunnō ) and Old Norse prosaic sól (alongside poetic sunna ), and through it the words for sun in the modern Scandinavian languages: Swedish and Danish sol , Icelandic sól , etc. The principal adjectives for the Sun in English are sunny for sunlight and, in technical contexts, solar ( / ˈ s oʊ l ər / ), from Latin sol . From
3672-428: The photosphere . For the purpose of measurement, the Sun's radius is considered to be the distance from its center to the edge of the photosphere, the apparent visible surface of the Sun. By this measure, the Sun is a near-perfect sphere with an oblateness estimated at 9 millionths, which means that its polar diameter differs from its equatorial diameter by only 10 kilometers (6.2 mi). The tidal effect of
3774-444: The visible spectrum , so its color is white , with a CIE color-space index near (0.3, 0.3), when viewed from space or when the Sun is high in the sky. The Solar radiance per wavelength peaks in the green portion of the spectrum when viewed from space. When the Sun is very low in the sky, atmospheric scattering renders the Sun yellow, red, orange, or magenta, and in rare occasions even green or blue . Some cultures mentally picture
3876-478: The Earth's shadow because Earth's axis is not directly perpendicular to a line from the Earth to the Sun at other times. During the equinox, since geostationary satellites are situated above the Equator, they are in Earth's shadow for the longest duration all year. Equinoxes are defined on any planet with a tilted rotational axis. A dramatic example is Saturn, where the equinox places its ring system edge-on facing
3978-421: The Earth, so night and day are about the same length. Sunrise and sunset can be defined in several ways, but a widespread definition is the time that the top limb of the Sun is level with the horizon. With this definition, the day is longer than the night at the equinoxes: In sunrise/sunset tables, the atmospheric refraction is assumed to be 34 arcminutes, and the assumed semidiameter (apparent radius ) of
4080-465: The Greek helios comes the rare adjective heliac ( / ˈ h iː l i æ k / ). In English, the Greek and Latin words occur in poetry as personifications of the Sun, Helios ( / ˈ h iː l i ə s / ) and Sol ( / ˈ s ɒ l / ), while in science fiction Sol may be used to distinguish the Sun from other stars. The term sol with a lowercase s is used by planetary astronomers for
4182-531: The North Pole is 18 March 07:09 UTC, and sunset on the South Pole is 22 March 13:08 UTC. Also in 2021, sunrise on the South Pole is 20 September 16:08 UTC, and sunset on the North Pole is 24 September 22:30 UTC. In other words, the equinoxes are the only times when the subsolar point is on the equator, meaning that the Sun is exactly overhead at a point on the equatorial line. The subsolar point crosses
Equinox - Misplaced Pages Continue
4284-446: The Solar System . Long-term secular change in sunspot number is thought, by some scientists, to be correlated with long-term change in solar irradiance, which, in turn, might influence Earth's long-term climate. The solar cycle influences space weather conditions, including those surrounding Earth. For example, in the 17th century, the solar cycle appeared to have stopped entirely for several decades; few sunspots were observed during
4386-443: The Sun as yellow and some even red; the cultural reasons for this are debated. The Sun is classed as a G2 star, meaning it is a G-type star , with 2 indicating its surface temperature is in the second range of the G class. The solar constant is the amount of power that the Sun deposits per unit area that is directly exposed to sunlight. The solar constant is equal to approximately 1,368 W/m (watts per square meter) at
4488-424: The Sun extends from the center to about 20–25% of the solar radius. It has a density of up to 150 g/cm (about 150 times the density of water) and a temperature of close to 15.7 million kelvin (K). By contrast, the Sun's surface temperature is about 5800 K . Recent analysis of SOHO mission data favors the idea that the core is rotating faster than the radiative zone outside it. Through most of
4590-438: The Sun into a red giant . This process will make the Sun large enough to render Earth uninhabitable approximately five billion years from the present. After the red giant phase, models suggest the Sun will shed its outer layers and become a dense type of cooling star (a white dwarf ), and no longer produce energy by fusion, but will still glow and give off heat from its previous fusion for perhaps trillions of years. After that, it
4692-516: The Sun is 16 arcminutes . (The apparent radius varies slightly depending on time of year, slightly larger at perihelion in January than aphelion in July , but the difference is comparatively small.) Their combination means that when the upper limb of the Sun is on the visible horizon, its centre is 50 arcminutes below the geometric horizon, which is the intersection with the celestial sphere of
4794-413: The Sun's magnetic field . The Sun's convection zone extends from 0.7 solar radii (500,000 km) to near the surface. In this layer, the solar plasma is not dense or hot enough to transfer the heat energy of the interior outward via radiation. Instead, the density of the plasma is low enough to allow convective currents to develop and move the Sun's energy outward towards its surface. Material heated at
4896-398: The Sun's core by radiation rather than by convection (see Radiative zone below), so the fusion products are not lifted outward by heat; they remain in the core, and gradually an inner core of helium has begun to form that cannot be fused because presently the Sun's core is not hot or dense enough to fuse helium. In the current photosphere, the helium fraction is reduced, and the metallicity
4998-437: The Sun's core fuses about 600 billion kilograms (kg) of hydrogen into helium and converts 4 billion kg of matter into energy . About 4 to 7 billion years from now, when hydrogen fusion in the Sun's core diminishes to the point where the Sun is no longer in hydrostatic equilibrium , its core will undergo a marked increase in density and temperature which will cause its outer layers to expand, eventually transforming
5100-403: The Sun's horizon to Earth's horizon in about 8 minutes and 20 seconds, while light from the closest points of the Sun and Earth takes about two seconds less. The energy of this sunlight supports almost all life on Earth by photosynthesis , and drives Earth's climate and weather. The Sun does not have a definite boundary, but its density decreases exponentially with increasing height above
5202-499: The Sun's life, energy has been produced by nuclear fusion in the core region through the proton–proton chain ; this process converts hydrogen into helium. Currently, 0.8% of the energy generated in the Sun comes from another sequence of fusion reactions called the CNO cycle ; the proportion coming from the CNO cycle is expected to increase as the Sun becomes older and more luminous. The core
SECTION 50
#17327799499385304-551: The Sun's life, they account for 74.9% and 23.8%, respectively, of the mass of the Sun in the photosphere. All heavier elements, called metals in astronomy, account for less than 2% of the mass, with oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%) being the most abundant. The Sun's original chemical composition was inherited from the interstellar medium out of which it formed. Originally it would have been about 71.1% hydrogen, 27.4% helium, and 1.5% heavier elements. The hydrogen and most of
5406-405: The Sun's more regular ecliptic longitude rather than by its declination . The instants of the equinoxes are currently defined to be when the apparent geocentric longitude of the Sun is 0° and 180°. The word is derived from the Latin aequinoctium , from aequus (equal) and nox (night). On the day of an equinox, daytime and nighttime are of approximately equal duration all over
5508-438: The Sun, to reach the surface. Because energy transport in the Sun is a process that involves photons in thermodynamic equilibrium with matter , the time scale of energy transport in the Sun is longer, on the order of 30,000,000 years. This is the time it would take the Sun to return to a stable state if the rate of energy generation in its core were suddenly changed. Electron neutrinos are released by fusion reactions in
5610-402: The Sun. The reason is not well understood, but evidence suggests that Alfvén waves may have enough energy to heat the corona. Above the temperature minimum layer is a layer about 2,000 km thick, dominated by a spectrum of emission and absorption lines. It is called the chromosphere from the Greek root chroma , meaning color, because the chromosphere is visible as a colored flash at
5712-454: The Sun. As a result, they are visible only as a thin line when seen from Earth. When seen from above – a view seen during an equinox for the first time from the Cassini space probe in 2009 – they receive very little sunshine ; indeed, they receive more planetshine than light from the Sun. This phenomenon occurs once every 14.7 years on average, and can last a few weeks before and after
5814-695: The astronomically defined event. As a consequence, according to a properly constructed and aligned sundial , the daytime duration is 12 hours. In the Northern Hemisphere , the March equinox is called the vernal or spring equinox while the September equinox is called the autumnal or fall equinox. In the Southern Hemisphere , the reverse is true. During the year, equinoxes alternate with solstices . Leap years and other factors cause
5916-486: The beginning and end of total solar eclipses. The temperature of the chromosphere increases gradually with altitude, ranging up to around 20,000 K near the top. In the upper part of the chromosphere helium becomes partially ionized . Above the chromosphere, in a thin (about 200 km ) transition region, the temperature rises rapidly from around 20,000 K in the upper chromosphere to coronal temperatures closer to 1,000,000 K . The temperature increase
6018-504: The calendar "drifted" with respect to the two equinoxes – so that in 300 AD the spring equinox occurred on about 21 March, and by the 1580s AD it had drifted backwards to 11 March. This drift induced Pope Gregory XIII to establish the modern Gregorian calendar . The Pope wanted to continue to conform with the edicts of the Council of Nicaea in 325 AD concerning the date of Easter , which means he wanted to move
6120-460: The core, but, unlike photons, they rarely interact with matter, so almost all are able to escape the Sun immediately. However, measurements of the number of these neutrinos produced in the Sun are lower than theories predict by a factor of 3. In 2001, the discovery of neutrino oscillation resolved the discrepancy: the Sun emits the number of electron neutrinos predicted by the theory, but neutrino detectors were missing 2 ⁄ 3 of them because
6222-501: The core, converting about 3.7 × 10 protons into alpha particles (helium nuclei) every second (out of a total of ~8.9 × 10 free protons in the Sun), or about 6.2 × 10 kg/s . However, each proton (on average) takes around 9 billion years to fuse with another using the PP chain. Fusing four free protons (hydrogen nuclei) into a single alpha particle (helium nucleus) releases around 0.7% of
SECTION 60
#17327799499386324-401: The corona reaches 1,000,000–2,000,000 K . The high temperature of the corona shows that it is heated by something other than direct heat conduction from the photosphere. It is thought that the energy necessary to heat the corona is provided by turbulent motion in the convection zone below the photosphere, and two main mechanisms have been proposed to explain coronal heating. The first
6426-408: The dates of both events to vary slightly. Hemisphere-neutral names are northward equinox for the March equinox , indicating that at that moment the solar declination is crossing the celestial equator in a northward direction, and southward equinox for the September equinox , indicating that at that moment the solar declination is crossing the celestial equator in a southward direction. Daytime
6528-444: The day and night are exactly the same is known as an equilux ; the neologism , believed to have been coined in the 1980s, achieved more widespread recognition in the 21st century. At the most precise measurements, a true equilux is rare, because the lengths of day and night change more rapidly than any other time of the year around the equinoxes. In the mid-latitudes, daylight increases or decreases by about three minutes per day at
6630-476: The distribution of 24 hour centurial leap-days causes large jumps (see Gregorian calendar leap solstice ). The dates of the equinoxes change progressively during the leap-year cycle, because the Gregorian calendar year is not commensurate with the period of the Earth's revolution about the Sun. It is only after a complete Gregorian leap-year cycle of 400 years that the seasons commence at approximately
6732-400: The duration of a solar day on another planet such as Mars . The astronomical symbol for the Sun is a circle with a center dot, [REDACTED] . It is used for such units as M ☉ ( Solar mass ), R ☉ ( Solar radius ) and L ☉ ( Solar luminosity ). The scientific study of the Sun is called heliology . The Sun is a G-type main-sequence star that makes up about 99.86% of
6834-491: The energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies. It is by far the most important source of energy for life on Earth . The Sun has been an object of veneration in many cultures. It has been a central subject for astronomical research since antiquity . The Sun orbits the Galactic Center at a distance of 24,000 to 28,000 light-years . From Earth, it
6936-701: The equator moving northward at the March equinox and southward at the September equinox. When Julius Caesar established the Julian calendar in 45 BC, he set 25 March as the date of the spring equinox; this was already the starting day of the year in the Persian and Indian calendars. Because the Julian year is longer than the tropical year by about 11.3 minutes on average (or 1 day in 128 years),
7038-429: The equinox when the Sun goes directly behind the satellite relative to Earth (i.e. within the beam-width of the ground-station antenna) for a short period each day. The Sun's immense power and broad radiation spectrum overload the Earth station's reception circuits with noise and, depending on antenna size and other factors, temporarily disrupt or degrade the circuit. The duration of those effects varies but can range from
7140-503: The equinoxes and solstices. The equinoxes are the only times when the solar terminator (the "edge" between night and day) is perpendicular to the equator. As a result, the northern and southern hemispheres are equally illuminated. For the same reason, this is also the time when the Sun rises for an observer at one of Earth's rotational poles and sets at the other. For a brief period lasting approximately four days, both North and South Poles are in daylight. For example, in 2021 sunrise on
7242-419: The equinoxes, and thus adjacent days and nights only reach within one minute of each other. The date of the closest approximation of the equilux varies slightly by latitude; in the mid-latitudes, it occurs a few days before the spring equinox and after the fall equinox in each respective hemisphere. Mirror-image conjugate auroras have been observed during the equinoxes. The equinoxes are sometimes regarded as
7344-525: The exact equinox. Saturn's most recent equinox was on 11 August 2009, and its next will take place on 6 May 2025. Mars's most recent equinoxes were on 12 January 2024 (northern autumn), and on 26 December 2022 (northern spring). Sun The Sun is the star at the center of the Solar System . It is a massive, nearly perfect sphere of hot plasma , heated to incandescence by nuclear fusion reactions in its core, radiating
7446-563: The external poloidal dipolar magnetic field is near its dynamo-cycle minimum strength; but an internal toroidal quadrupolar field, generated through differential rotation within the tachocline, is near its maximum strength. At this point in the dynamo cycle, buoyant upwelling within the convective zone forces emergence of the toroidal magnetic field through the photosphere, giving rise to pairs of sunspots, roughly aligned east–west and having footprints with opposite magnetic polarities. The magnetic polarity of sunspot pairs alternates every solar cycle,
7548-428: The form of large solar flares and myriad similar but smaller events— nanoflares . Currently, it is unclear whether waves are an efficient heating mechanism. All waves except Alfvén waves have been found to dissipate or refract before reaching the corona. In addition, Alfvén waves do not easily dissipate in the corona. Current research focus has therefore shifted towards flare heating mechanisms. Hemispheres of
7650-404: The fused mass as energy, so the Sun releases energy at the mass–energy conversion rate of 4.26 billion kg/s (which requires 600 billion kg of hydrogen ), for 384.6 yottawatts ( 3.846 × 10 W ), or 9.192 × 10 megatons of TNT per second. The large power output of the Sun is mainly due to the huge size and density of its core (compared to Earth and objects on Earth), with only
7752-435: The geometric (or sensible) horizon. This is known as the dip of the horizon and varies from 3 arcminutes for a viewer standing on the sea shore to 160 arcminutes for a mountaineer on Everest. The effect of a larger dip on taller objects (reaching over 2½° of arc on Everest) accounts for the phenomenon of snow on a mountain peak turning gold in the sunlight long before the lower slopes are illuminated. The date on which
7854-482: The heliosphere, forming the solar magnetic field into a spiral shape, until it impacts the heliopause more than 50 AU from the Sun. In December 2004, the Voyager 1 probe passed through a shock front that is thought to be part of the heliopause. In late 2012, Voyager 1 recorded a marked increase in cosmic ray collisions and a sharp drop in lower energy particles from the solar wind, which suggested that
7956-432: The helium in the Sun would have been produced by Big Bang nucleosynthesis in the first 20 minutes of the universe, and the heavier elements were produced by previous generations of stars before the Sun was formed, and spread into the interstellar medium during the final stages of stellar life and by events such as supernovae . Since the Sun formed, the main fusion process has involved fusing hydrogen into helium. Over
8058-505: The mass of the Solar System. It has an absolute magnitude of +4.83, estimated to be brighter than about 85% of the stars in the Milky Way , most of which are red dwarfs . It is more massive than 95% of the stars within 7 pc (23 ly). The Sun is a Population I , or heavy-element-rich, star. Its formation approximately 4.6 billion years ago may have been triggered by shockwaves from one or more nearby supernovae . This
8160-444: The neutrinos had changed flavor by the time they were detected. The Sun has a stellar magnetic field that varies across its surface. Its polar field is 1–2 gauss (0.0001–0.0002 T ), whereas the field is typically 3,000 gauss (0.3 T) in features on the Sun called sunspots and 10–100 gauss (0.001–0.01 T) in solar prominences . The magnetic field varies in time and location. The quasi-periodic 11-year solar cycle
8262-578: The northern hemisphere, the vernal equinox (March) conventionally marks the beginning of spring in most cultures and is considered the start of the New Year in the Assyrian calendar , Hindu, and the Persian or Iranian calendars , while the autumnal equinox (September) marks the beginning of autumn. Ancient Greek calendars too had the beginning of the year either at the autumnal or vernal equinox and some at solstices. The Antikythera mechanism predicts
8364-419: The past 4.6 billion years, the amount of helium and its location within the Sun has gradually changed. The proportion of helium within the core has increased from about 24% to about 60% due to fusion, and some of the helium and heavy elements have settled from the photosphere toward the center of the Sun because of gravity . The proportions of heavier elements are unchanged. Heat is transferred outward from
8466-414: The photospheric surface. Both coronal mass ejections and high-speed streams of solar wind carry plasma and the interplanetary magnetic field outward into the Solar System. The effects of solar activity on Earth include auroras at moderate to high latitudes and the disruption of radio communications and electric power . Solar activity is thought to have played a large role in the formation and evolution of
8568-529: The plane of Earth 's equator passes through the geometric center of the Sun 's disk. Equivalently, this is the moment when Earth's rotation axis is directly perpendicular to the Sun-Earth line, tilting neither toward nor away from the Sun. In modern times, since the Moon (and to a lesser extent the planets) causes Earth's orbit to vary slightly from a perfect ellipse , the equinox is officially defined by
8670-410: The planet. Contrary to popular belief, they are not exactly equal because of the angular size of the Sun, atmospheric refraction , and the rapidly changing duration of the length of day that occurs at most latitudes around the equinoxes. Long before conceiving this equality, equatorial cultures noted the day when the Sun rises due east and sets due west , and indeed this happens on the day closest to
8772-455: The planets is weak and does not significantly affect the shape of the Sun. The Sun rotates faster at its equator than at its poles . This differential rotation is caused by convective motion due to heat transport and the Coriolis force due to the Sun's rotation. In a frame of reference defined by the stars, the rotational period is approximately 25.6 days at the equator and 33.5 days at
8874-473: The poles. Viewed from Earth as it orbits the Sun, the apparent rotational period of the Sun at its equator is about 28 days. Viewed from a vantage point above its north pole, the Sun rotates counterclockwise around its axis of spin. A survey of solar analogs suggest the early Sun was rotating up to ten times faster than it does today. This would have made the surface much more active, with greater X-ray and UV emission. Sun spots would have covered 5–30% of
8976-557: The poloidal to the toroidal field, but with a polarity that is opposite to the previous cycle. The process carries on continuously, and in an idealized, simplified scenario, each 11-year sunspot cycle corresponds to a change, then, in the overall polarity of the Sun's large-scale magnetic field. The Sun's magnetic field leads to many effects that are collectively called solar activity . Solar flares and coronal mass ejections tend to occur at sunspot groups. Slowly changing high-speed streams of solar wind are emitted from coronal holes at
9078-448: The primordial Solar System. Typically, the solar heavy-element abundances described above are measured both by using spectroscopy of the Sun's photosphere and by measuring abundances in meteorites that have never been heated to melting temperatures. These meteorites are thought to retain the composition of the protostellar Sun and are thus not affected by the settling of heavy elements. The two methods generally agree well. The core of
9180-470: The probe had passed through the heliopause and entered the interstellar medium , and indeed did so on August 25, 2012, at approximately 122 astronomical units (18 Tm) from the Sun. The heliosphere has a heliotail which stretches out behind it due to the Sun's peculiar motion through the galaxy. On April 28, 2021, NASA's Parker Solar Probe encountered the specific magnetic and particle conditions at 18.8 solar radii that indicated that it penetrated
9282-400: The same time. In the 21st century the earliest March equinox will be 19 March 2096, while the latest was 21 March 2003. The earliest September equinox will be 21 September 2096 while the latest was 23 September 2003 ( Universal Time ). On the date of the equinox, the center of the Sun spends a roughly equal amount of time above and below the horizon at every location on
9384-437: The shorter wavelengths. Solar ultraviolet radiation ionizes Earth's dayside upper atmosphere, creating the electrically conducting ionosphere . Ultraviolet light from the Sun has antiseptic properties and can be used to sanitize tools and water. This radiation causes sunburn , and has other biological effects such as the production of vitamin D and sun tanning . It is the main cause of skin cancer . Ultraviolet light
9486-425: The solar cycle progresses toward its maximum , sunspots tend to form closer to the solar equator, a phenomenon known as Spörer's law . The largest sunspots can be tens of thousands of kilometers across. An 11-year sunspot cycle is half of a 22-year Babcock –Leighton dynamo cycle, which corresponds to an oscillatory exchange of energy between toroidal and poloidal solar magnetic fields. At solar-cycle maximum,
9588-533: The start of spring and autumn. A number of traditional harvest festivals are celebrated on the date of the equinoxes. People in countries including Iran, Afghanistan, Tajikistan celebrate Nowruz which is spring equinox in northern hemisphere. This day marks the new year in Solar Hijri calendar . Religious architecture is often determined by the equinox; the Angkor Wat Equinox during which
9690-466: The sun rises in a perfect alignment over Angkor Wat in Cambodia is one such example. Catholic churches , since the recommendations of Charles Borromeo , have often chosen the equinox as their reference point for the orientation of churches . One effect of equinoctial periods is the temporary disruption of communications satellites . For all geostationary satellites, there are a few days around
9792-417: The surface. The rotation rate was gradually slowed by magnetic braking , as the Sun's magnetic field interacted with the outflowing solar wind. A vestige of this rapid primordial rotation still survives at the Sun's core, which has been found to be rotating at a rate of once per week; four times the mean surface rotation rate. The Sun consists mainly of the elements hydrogen and helium . At this time in
9894-431: The tachocline picks up heat and expands, thereby reducing its density and allowing it to rise. As a result, an orderly motion of the mass develops into thermal cells that carry most of the heat outward to the Sun's photosphere above. Once the material diffusively and radiatively cools just beneath the photospheric surface, its density increases, and it sinks to the base of the convection zone, where it again picks up heat from
9996-424: The temperature of the corona, at least some of its heat is known to be from magnetic reconnection . The corona is the extended atmosphere of the Sun, which has a volume much larger than the volume enclosed by the Sun's photosphere. A flow of plasma outward from the Sun into interplanetary space is the solar wind . The heliosphere, the tenuous outermost atmosphere of the Sun, is filled with solar wind plasma and
10098-422: The tenuous layers above the photosphere. The photosphere has a particle density of ~10 m (about 0.37% of the particle number per volume of Earth's atmosphere at sea level). The photosphere is not fully ionized—the extent of ionization is about 3%, leaving almost all of the hydrogen in atomic form. The Sun's atmosphere is composed of five layers: the photosphere, the chromosphere , the transition region ,
10200-404: The top of the radiative zone and the convective cycle continues. At the photosphere, the temperature has dropped 350-fold to 5,700 K (9,800 °F) and the density to only 0.2 g/m (about 1/10,000 the density of air at sea level, and 1 millionth that of the inner layer of the convective zone). The thermal columns of the convection zone form an imprint on the surface of the Sun giving it
10302-418: The transfer of energy through this zone is by radiation instead of thermal convection. Ions of hydrogen and helium emit photons, which travel only a brief distance before being reabsorbed by other ions. The density drops a hundredfold (from 20 000 kg/m to 200 kg/m ) between 0.25 solar radii and 0.7 radii, the top of the radiative zone. The radiative zone and the convective zone are separated by
10404-510: The vernal equinox to the date on which it fell at that time (21 March is the day allocated to it in the Easter table of the Julian calendar), and to maintain it at around that date in the future, which he achieved by reducing the number of leap years from 100 to 97 every 400 years. However, there remained a small residual variation in the date and time of the vernal equinox of about ±27 hours from its mean position, virtually all because
#937062