Fault blocks are very large blocks of rock, sometimes hundreds of kilometres in extent, created by tectonic and localized stresses in Earth's crust . Large areas of bedrock are broken up into blocks by faults . Blocks are characterized by relatively uniform lithology . The largest of these fault blocks are called crustal blocks . Large crustal blocks broken off from tectonic plates are called terranes . Those terranes which are the full thickness of the lithosphere are called microplates. Continent-sized blocks are called variously microcontinents, continental ribbons, H-blocks, extensional allochthons and outer highs.
99-546: Because most stresses relate to the tectonic activity of moving plates , most motion between blocks is horizontal, that is parallel to the Earth's crust by strike-slip faults . However vertical movement of blocks produces much more dramatic results. Landforms ( mountains , hills, ridges, lakes, valleys, etc.) are sometimes formed when the faults have a large vertical displacement. Adjacent raised blocks ( horsts ) and down-dropped blocks ( grabens ) can form high escarpments . Often
198-405: A decollement . Extensional decollements can grow to great dimensions and form detachment faults , which are low-angle normal faults with regional tectonic significance. Due to the curvature of the fault plane, the horizontal extensional displacement on a listric fault implies a geometric "gap" between the hanging and footwalls of the fault forms when the slip motion occurs. To accommodate into
297-860: A plate boundary. This class is related to an offset in a spreading center , such as a mid-ocean ridge , or, less common, within continental lithosphere , such as the Dead Sea Transform in the Middle East or the Alpine Fault in New Zealand. Transform faults are also referred to as "conservative" plate boundaries since the lithosphere is neither created nor destroyed. Dip-slip faults can be either normal (" extensional ") or reverse . The terminology of "normal" and "reverse" comes from coal mining in England, where normal faults are
396-439: A consequence, a powerful source generating plate motion is the excess density of the oceanic lithosphere sinking in subduction zones. When the new crust forms at mid-ocean ridges, this oceanic lithosphere is initially less dense than the underlying asthenosphere, but it becomes denser with age as it conductively cools and thickens. The greater density of old lithosphere relative to the underlying asthenosphere allows it to sink into
495-582: A fault hosting valuable porphyry copper deposits is northern Chile's Domeyko Fault with deposits at Chuquicamata , Collahuasi , El Abra , El Salvador , La Escondida and Potrerillos . Further south in Chile Los Bronces and El Teniente porphyry copper deposit lie each at the intersection of two fault systems. Faults may not always act as conduits to surface. It has been proposed that deep-seated "misoriented" faults may instead be zones where magmas forming porphyry copper stagnate achieving
594-500: A fault is locked, and when it reaches a level that exceeds the strength threshold, the fault ruptures and the accumulated strain energy is released in part as seismic waves , forming an earthquake . Strain occurs accumulatively or instantaneously, depending on the liquid state of the rock; the ductile lower crust and mantle accumulate deformation gradually via shearing , whereas the brittle upper crust reacts by fracture – instantaneous stress release – resulting in motion along
693-410: A fault often forms a discontinuity that may have a large influence on the mechanical behavior (strength, deformation, etc.) of soil and rock masses in, for example, tunnel , foundation , or slope construction. The level of a fault's activity can be critical for (1) locating buildings, tanks, and pipelines and (2) assessing the seismic shaking and tsunami hazard to infrastructure and people in
792-408: A fault's age by studying soil features seen in shallow excavations and geomorphology seen in aerial photographs. Subsurface clues include shears and their relationships to carbonate nodules , eroded clay, and iron oxide mineralization, in the case of older soil, and lack of such signs in the case of younger soil. Radiocarbon dating of organic material buried next to or over a fault shear
891-409: A fault. A fault trace or fault line is a place where the fault can be seen or mapped on the surface. A fault trace is also the line commonly plotted on geologic maps to represent a fault. A fault zone is a cluster of parallel faults. However, the term is also used for the zone of crushed rock along a single fault. Prolonged motion along closely spaced faults can blur the distinction, as
990-450: A few tens of millions of years. Armed with the knowledge of a new heat source, scientists realized that Earth would be much older, and that its core was still sufficiently hot to be liquid. By 1915, after having published a first article in 1912, Alfred Wegener was making serious arguments for the idea of continental drift in the first edition of The Origin of Continents and Oceans . In that book (re-issued in four successive editions up to
1089-822: A horst forming a massive anticline situated between the complex graben valleys of Struma and that of Mesta . Tilted type block mountains have one gently sloping side and one steep side with an exposed scarp, and are common in the Basin and Range region of the western United States. An example of a graben is the basin of the Narmada River in India , between the Vindhya and Satpura horsts. Plate tectonics Plate tectonics (from Latin tectonicus , from Ancient Greek τεκτονικός ( tektonikós ) 'pertaining to building')
SECTION 10
#17327646865651188-579: A layer of basalt (sial) underlies the continental rocks. However, based on abnormalities in plumb line deflection by the Andes in Peru, Pierre Bouguer had deduced that less-dense mountains must have a downward projection into the denser layer underneath. The concept that mountains had "roots" was confirmed by George B. Airy a hundred years later, during study of Himalayan gravitation, and seismic studies detected corresponding density variations. Therefore, by
1287-400: A misnomer as there is no force "pushing" horizontally, indeed tensional features are dominant along ridges. It is more accurate to refer to this mechanism as "gravitational sliding", since the topography across the whole plate can vary considerably and spreading ridges are only the most prominent feature. Other mechanisms generating this gravitational secondary force include flexural bulging of
1386-558: A secondary phenomenon of this basically vertically oriented mechanism. It finds its roots in the Undation Model of van Bemmelen . This can act on various scales, from the small scale of one island arc up to the larger scale of an entire ocean basin. Alfred Wegener , being a meteorologist , had proposed tidal forces and centrifugal forces as the main driving mechanisms behind continental drift ; however, these forces were considered far too small to cause continental motion as
1485-407: A solid crust and mantle and a liquid core, but there seemed to be no way that portions of the crust could move around. Many distinguished scientists of the time, such as Harold Jeffreys and Charles Schuchert , were outspoken critics of continental drift. Despite much opposition, the view of continental drift gained support and a lively debate started between "drifters" or "mobilists" (proponents of
1584-478: A static Earth without moving continents up until the major breakthroughs of the early sixties. Two- and three-dimensional imaging of Earth's interior ( seismic tomography ) shows a varying lateral density distribution throughout the mantle. Such density variations can be material (from rock chemistry), mineral (from variations in mineral structures), or thermal (through thermal expansion and contraction from heat energy). The manifestation of this varying lateral density
1683-438: Is mantle convection from buoyancy forces. How mantle convection directly and indirectly relates to plate motion is a matter of ongoing study and discussion in geodynamics. Somehow, this energy must be transferred to the lithosphere for tectonic plates to move. There are essentially two main types of mechanisms that are thought to exist related to the dynamics of the mantle that influence plate motion which are primary (through
1782-527: Is based on their modes of formation. Oceanic crust is formed at sea-floor spreading centers. Continental crust is formed through arc volcanism and accretion of terranes through plate tectonic processes. Oceanic crust is denser than continental crust because it has less silicon and more of the heavier elements than continental crust . As a result of this density difference, oceanic crust generally lies below sea level , while continental crust buoyantly projects above sea level. Average oceanic lithosphere
1881-461: Is called a plate boundary . Plate boundaries are where geological events occur, such as earthquakes and the creation of topographic features such as mountains , volcanoes , mid-ocean ridges , and oceanic trenches . The vast majority of the world's active volcanoes occur along plate boundaries, with the Pacific plate's Ring of Fire being the most active and widely known. Some volcanoes occur in
1980-533: Is called the geosynclinal theory . Generally, this was placed in the context of a contracting planet Earth due to heat loss in the course of a relatively short geological time. It was observed as early as 1596 that the opposite coasts of the Atlantic Ocean—or, more precisely, the edges of the continental shelves —have similar shapes and seem to have once fitted together. Since that time many theories were proposed to explain this apparent complementarity, but
2079-492: Is in motion, presents a problem. The same holds for the African, Eurasian , and Antarctic plates. Gravitational sliding away from mantle doming: According to older theories, one of the driving mechanisms of the plates is the existence of large scale asthenosphere/mantle domes which cause the gravitational sliding of lithosphere plates away from them (see the paragraph on Mantle Mechanisms). This gravitational sliding represents
SECTION 20
#17327646865652178-408: Is invoked as the major driving force, through slab pull along subduction zones. Gravitational sliding away from a spreading ridge is one of the proposed driving forces, it proposes plate motion is driven by the higher elevation of plates at ocean ridges. As oceanic lithosphere is formed at spreading ridges from hot mantle material, it gradually cools and thickens with age (and thus adds distance from
2277-543: Is often critical in distinguishing active from inactive faults. From such relationships, paleoseismologists can estimate the sizes of past earthquakes over the past several hundred years, and develop rough projections of future fault activity. Many ore deposits lie on or are associated with faults. This is because the fractured rock associated with fault zones allow for magma ascent or the circulation of mineral-bearing fluids. Intersections of near-vertical faults are often locations of significant ore deposits. An example of
2376-415: Is still advocated to explain the break-up of supercontinents during specific geological epochs. It has followers amongst the scientists involved in the theory of Earth expansion . Another theory is that the mantle flows neither in cells nor large plumes but rather as a series of channels just below Earth's crust, which then provide basal friction to the lithosphere. This theory, called "surge tectonics",
2475-576: Is the scientific theory that Earth 's lithosphere comprises a number of large tectonic plates , which have been slowly moving since 3–4 billion years ago. The model builds on the concept of continental drift , an idea developed during the first decades of the 20th century. Plate tectonics came to be accepted by geoscientists after seafloor spreading was validated in the mid-to-late 1960s. The processes that result in plates and shape Earth's crust are called tectonics . Tectonic plates also occur in other planets and moons. Earth's lithosphere,
2574-488: Is to consider the relative rate at which each plate is moving as well as the evidence related to the significance of each process to the overall driving force on the plate. One of the most significant correlations discovered to date is that lithospheric plates attached to downgoing (subducting) plates move much faster than other types of plates. The Pacific plate, for instance, is essentially surrounded by zones of subduction (the so-called Ring of Fire) and moves much faster than
2673-407: Is typically 100 km (62 mi) thick. Its thickness is a function of its age. As time passes, it cools by conducting heat from below, and releasing it raditively into space. The adjacent mantle below is cooled by this process and added to its base. Because it is formed at mid-ocean ridges and spreads outwards, its thickness is therefore a function of its distance from the mid-ocean ridge where it
2772-435: Is used. It asserts that super plumes rise from the deeper mantle and are the drivers or substitutes of the major convection cells. These ideas find their roots in the early 1930s in the works of Beloussov and van Bemmelen , which were initially opposed to plate tectonics and placed the mechanism in a fixed frame of vertical movements. Van Bemmelen later modified the concept in his "Undation Models" and used "Mantle Blisters" as
2871-567: The Appalachian Mountains of North America are very similar in structure and lithology . However, his ideas were not taken seriously by many geologists, who pointed out that there was no apparent mechanism for continental drift. Specifically, they did not see how continental rock could plow through the much denser rock that makes up oceanic crust. Wegener could not explain the force that drove continental drift, and his vindication did not come until after his death in 1930. As it
2970-463: The Chesapeake Bay impact crater . Ring faults are the result of a series of overlapping normal faults, forming a circular outline. Fractures created by ring faults may be filled by ring dikes . Synthetic and antithetic are terms used to describe minor faults associated with a major fault. Synthetic faults dip in the same direction as the major fault while the antithetic faults dip in
3069-422: The chemical subdivision of these same layers into the mantle (comprising both the asthenosphere and the mantle portion of the lithosphere) and the crust: a given piece of mantle may be part of the lithosphere or the asthenosphere at different times depending on its temperature and pressure. The key principle of plate tectonics is that the lithosphere exists as separate and distinct tectonic plates , which ride on
Fault block - Misplaced Pages Continue
3168-736: The fluid-like solid the asthenosphere . Plate motions range from 10 to 40 millimetres per year (0.4 to 1.6 in/year) at the Mid-Atlantic Ridge (about as fast as fingernails grow), to about 160 millimetres per year (6.3 in/year) for the Nazca plate (about as fast as hair grows). Tectonic lithosphere plates consist of lithospheric mantle overlain by one or two types of crustal material: oceanic crust (in older texts called sima from silicon and magnesium ) and continental crust ( sial from silicon and aluminium ). The distinction between oceanic crust and continental crust
3267-801: The horst and graben terrain seen in various parts of Europe including the Upper Rhine valley, a graben between two horsts – the Vosges mountains (in France ) and the Black Forest (in Germany ), and also the Rila – Rhodope Massif in Bulgaria , Southeast Europe , including the well defined horsts of Belasitsa (linear horst), Rila mountain (vaulted domed shaped horst) and Pirin mountain –
3366-473: The lithosphere and asthenosphere . The division is based on differences in mechanical properties and in the method for the transfer of heat . The lithosphere is cooler and more rigid, while the asthenosphere is hotter and flows more easily. In terms of heat transfer, the lithosphere loses heat by conduction , whereas the asthenosphere also transfers heat by convection and has a nearly adiabatic temperature gradient. This division should not be confused with
3465-546: The Earth's rotation and the Moon as main driving forces for the plates. The vector of a plate's motion is a function of all the forces acting on the plate; however, therein lies the problem regarding the degree to which each process contributes to the overall motion of each tectonic plate. The diversity of geodynamic settings and the properties of each plate result from the impact of the various processes actively driving each individual plate. One method of dealing with this problem
3564-403: The action of plate tectonic forces, with the largest forming the boundaries between the plates, such as the megathrust faults of subduction zones or transform faults . Energy release associated with rapid movement on active faults is the cause of most earthquakes . Faults may also displace slowly, by aseismic creep . A fault plane is the plane that represents the fracture surface of
3663-541: The actual motions of the Pacific plate and other plates associated with the East Pacific Rise do not correlate mainly with either slab pull or slab push, but rather with a mantle convection upwelling whose horizontal spreading along the bases of the various plates drives them along via viscosity-related traction forces. The driving forces of plate motion continue to be active subjects of on-going research within geophysics and tectonophysics . The development of
3762-478: The assumption of a solid Earth made these various proposals difficult to accept. The discovery of radioactivity and its associated heating properties in 1895 prompted a re-examination of the apparent age of Earth . This had previously been estimated by its cooling rate under the assumption that Earth's surface radiated like a black body . Those calculations had implied that, even if it started at red heat , Earth would have dropped to its present temperature in
3861-399: The asthenosphere. This theory was launched by Arthur Holmes and some forerunners in the 1930s and was immediately recognized as the solution for the acceptance of the theory as originally discussed in the papers of Alfred Wegener in the early years of the 20th century. However, despite its acceptance, it was long debated in the scientific community because the leading theory still envisaged
3960-476: The base of the lithosphere. Slab pull is therefore most widely thought to be the greatest force acting on the plates. In this understanding, plate motion is mostly driven by the weight of cold, dense plates sinking into the mantle at trenches. Recent models indicate that trench suction plays an important role as well. However, the fact that the North American plate is nowhere being subducted, although it
4059-495: The bathymetry of the deep ocean floors and the nature of the oceanic crust such as magnetic properties and, more generally, with the development of marine geology which gave evidence for the association of seafloor spreading along the mid-oceanic ridges and magnetic field reversals , published between 1959 and 1963 by Heezen, Dietz, Hess, Mason, Vine & Matthews, and Morley. Simultaneous advances in early seismic imaging techniques in and around Wadati–Benioff zones along
Fault block - Misplaced Pages Continue
4158-413: The concept was of continents plowing through oceanic crust. Therefore, Wegener later changed his position and asserted that convection currents are the main driving force of plate tectonics in the last edition of his book in 1929. However, in the plate tectonics context (accepted since the seafloor spreading proposals of Heezen, Hess, Dietz, Morley, Vine, and Matthews (see below) during the early 1960s),
4257-414: The crust. A thrust fault has the same sense of motion as a reverse fault, but with the dip of the fault plane at less than 45°. Thrust faults typically form ramps, flats and fault-bend (hanging wall and footwall) folds. A section of a hanging wall or foot wall where a thrust fault formed along a relatively weak bedding plane is known as a flat and a section where the thrust fault cut upward through
4356-415: The deep mantle at subduction zones, providing most of the driving force for plate movement. The weakness of the asthenosphere allows the tectonic plates to move easily towards a subduction zone. For much of the first quarter of the 20th century, the leading theory of the driving force behind tectonic plate motions envisaged large scale convection currents in the upper mantle, which can be transmitted through
4455-433: The direction of extension or shortening changes during the deformation but the earlier formed faults remain active. The hade angle is defined as the complement of the dip angle; it is the angle between the fault plane and a vertical plane that strikes parallel to the fault. Ring faults , also known as caldera faults , are faults that occur within collapsed volcanic calderas and the sites of bolide strikes, such as
4554-534: The discussions treated in this section) or proposed as minor modulations within the overall plate tectonics model. In 1973, George W. Moore of the USGS and R. C. Bostrom presented evidence for a general westward drift of Earth's lithosphere with respect to the mantle, based on the steepness of the subduction zones (shallow dipping towards the east, steeply dipping towards the west). They concluded that tidal forces (the tidal lag or "friction") caused by Earth's rotation and
4653-466: The driving force for horizontal movements, invoking gravitational forces away from the regional crustal doming. The theories find resonance in the modern theories which envisage hot spots or mantle plumes which remain fixed and are overridden by oceanic and continental lithosphere plates over time and leave their traces in the geological record (though these phenomena are not invoked as real driving mechanisms, but rather as modulators). The mechanism
4752-409: The fault (called a piercing point ). In practice, it is usually only possible to find the slip direction of faults, and an approximation of the heave and throw vector. The two sides of a non-vertical fault are known as the hanging wall and footwall . The hanging wall occurs above the fault plane and the footwall occurs below it. This terminology comes from mining: when working a tabular ore body,
4851-532: The fault is the vertical component of the separation and the heave of the fault is the horizontal component, as in "Throw up and heave out". The vector of slip can be qualitatively assessed by studying any drag folding of strata, which may be visible on either side of the fault. Drag folding is a zone of folding close to a fault that likely arises from frictional resistance to movement on the fault. The direction and magnitude of heave and throw can be measured only by finding common intersection points on either side of
4950-413: The fault movement. Faults are mainly classified in terms of the angle that the fault plane makes with the Earth's surface, known as the dip , and the direction of slip along the fault plane. Based on the direction of slip, faults can be categorized as: In a strike-slip fault (also known as a wrench fault , tear fault or transcurrent fault ), the fault surface (plane) is usually near vertical, and
5049-406: The fault. A fault in ductile rocks can also release instantaneously when the strain rate is too great. Slip is defined as the relative movement of geological features present on either side of a fault plane. A fault's sense of slip is defined as the relative motion of the rock on each side of the fault concerning the other side. In measuring the horizontal or vertical separation, the throw of
SECTION 50
#17327646865655148-473: The final one in 1936), he noted how the east coast of South America and the west coast of Africa looked as if they were once attached. Wegener was not the first to note this ( Abraham Ortelius , Antonio Snider-Pellegrini , Eduard Suess , Roberto Mantovani and Frank Bursley Taylor preceded him just to mention a few), but he was the first to marshal significant fossil and paleo-topographical and climatological evidence to support this simple observation (and
5247-428: The footwall moves laterally either left or right with very little vertical motion. Strike-slip faults with left-lateral motion are also known as sinistral faults and those with right-lateral motion as dextral faults. Each is defined by the direction of movement of the ground as would be seen by an observer on the opposite side of the fault. A special class of strike-slip fault is the transform fault when it forms
5346-531: The footwall. The dip of most normal faults is at least 60 degrees but some normal faults dip at less than 45 degrees. A downthrown block between two normal faults dipping towards each other is a graben . A block stranded between two grabens, and therefore two normal faults dipping away from each other, is a horst . A sequence of grabens and horsts on the surface of the Earth produces a characteristic basin and range topography . Normal faults can evolve into listric faults, with their plane dip being steeper near
5445-695: The forces acting upon it by the Moon are a driving force for plate tectonics. As Earth spins eastward beneath the Moon, the Moon's gravity ever so slightly pulls Earth's surface layer back westward, just as proposed by Alfred Wegener (see above). Since 1990 this theory is mainly advocated by Doglioni and co-workers ( Doglioni 1990 ), such as in a more recent 2006 study, where scientists reviewed and advocated these ideas. It has been suggested in Lovett (2006) that this observation may also explain why Venus and Mars have no plate tectonics, as Venus has no moon and Mars' moons are too small to have significant tidal effects on
5544-588: The geographical latitudinal and longitudinal grid of Earth itself. These systematic relations studies in the second half of the nineteenth century and the first half of the twentieth century underline exactly the opposite: that the plates had not moved in time, that the deformation grid was fixed with respect to Earth's equator and axis, and that gravitational driving forces were generally acting vertically and caused only local horizontal movements (the so-called pre-plate tectonic, "fixist theories"). Later studies (discussed below on this page), therefore, invoked many of
5643-429: The geometric gap, and depending on its rheology , the hanging wall might fold and slide downwards into the gap and produce rollover folding , or break into further faults and blocks which fil in the gap. If faults form, imbrication fans or domino faulting may form. A reverse fault is the opposite of a normal fault—the hanging wall moves up relative to the footwall. Reverse faults indicate compressive shortening of
5742-491: The implied mechanism of deformation. A fault that passes through different levels of the lithosphere will have many different types of fault rock developed along its surface. Continued dip-slip displacement tends to juxtapose fault rocks characteristic of different crustal levels, with varying degrees of overprinting. This effect is particularly clear in the case of detachment faults and major thrust faults . The main types of fault rock include: In geotechnical engineering ,
5841-718: The interiors of plates, and these have been variously attributed to internal plate deformation and to mantle plumes. Tectonic plates may include continental crust or oceanic crust, or both. For example, the African plate includes the continent and parts of the floor of the Atlantic and Indian Oceans. Some pieces of oceanic crust, known as ophiolites , failed to be subducted under continental crust at destructive plate boundaries; instead these oceanic crustal fragments were pushed upward and were preserved within continental crust. Three types of plate boundaries exist, characterized by
5940-412: The large scale convection cells) or secondary. The secondary mechanisms view plate motion driven by friction between the convection currents in the asthenosphere and the more rigid overlying lithosphere. This is due to the inflow of mantle material related to the downward pull on plates in subduction zones at ocean trenches. Slab pull may occur in a geodynamic setting where basal tractions continue to act on
6039-464: The largest faults on Earth and give rise to the largest earthquakes. A fault which has a component of dip-slip and a component of strike-slip is termed an oblique-slip fault . Nearly all faults have some component of both dip-slip and strike-slip; hence, defining a fault as oblique requires both dip and strike components to be measurable and significant. Some oblique faults occur within transtensional and transpressional regimes, and others occur where
SECTION 60
#17327646865656138-421: The lithosphere before it dives underneath an adjacent plate, producing a clear topographical feature that can offset, or at least affect, the influence of topographical ocean ridges. Mantle plumes and hot spots are also postulated to impinge on the underside of tectonic plates. Slab pull : Scientific opinion is that the asthenosphere is insufficiently competent or rigid to directly cause motion by friction along
6237-403: The lower mantle, there is a slight westward component in the motions of all the plates. They demonstrated though that the westward drift, seen only for the past 30 Ma, is attributed to the increased dominance of the steadily growing and accelerating Pacific plate. The debate is still open, and a recent paper by Hofmeister et al. (2022) revived the idea advocating again the interaction between
6336-405: The many geographical, geological, and biological continuities between continents. In 1912, the meteorologist Alfred Wegener described what he called continental drift, an idea that culminated fifty years later in the modern theory of plate tectonics. Wegener expanded his theory in his 1915 book The Origin of Continents and Oceans . Starting from the idea (also expressed by his forerunners) that
6435-429: The matching of the rock formations along these edges. Confirmation of their previous contiguous nature also came from the fossil plants Glossopteris and Gangamopteris , and the therapsid or mammal-like reptile Lystrosaurus , all widely distributed over South America, Africa, Antarctica, India, and Australia. The evidence for such an erstwhile joining of these continents was patent to field geologists working in
6534-458: The mid-1950s, the question remained unresolved as to whether mountain roots were clenched in surrounding basalt or were floating on it like an iceberg. Fault (geology) In geology , a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth 's crust result from
6633-408: The miner stood with the footwall under his feet and with the hanging wall above him. These terms are important for distinguishing different dip-slip fault types: reverse faults and normal faults. In a reverse fault, the hanging wall displaces upward, while in a normal fault the hanging wall displaces downward. Distinguishing between these two fault types is important for determining the stress regime of
6732-435: The most common. With the passage of time, a regional reversal between tensional and compressional stresses (or vice-versa) might occur, and faults may be reactivated with their relative block movement inverted in opposite directions to the original movement (fault inversion). In such a way, a normal fault may therefore become a reverse fault and vice versa. In a normal fault, the hanging wall moves downward, relative to
6831-568: The motion picture of the Atlantic region", processes that anticipated seafloor spreading and subduction . One of the first pieces of geophysical evidence that was used to support the movement of lithospheric plates came from paleomagnetism . This is based on the fact that rocks of different ages show a variable magnetic field direction, evidenced by studies since the mid–nineteenth century. The magnetic north and south poles reverse through time, and, especially important in paleotectonic studies,
6930-438: The motion. At a subduction zone the relatively cold, dense oceanic crust sinks down into the mantle, forming the downward convecting limb of a mantle cell , which is the strongest driver of plate motion. The relative importance and interaction of other proposed factors such as active convection, upwelling inside the mantle, and tidal drag of the Moon is still the subject of debate. The outer layers of Earth are divided into
7029-707: The movement of these blocks is accompanied by tilting, due to compaction or stretching of the crust at that point. Fault-block mountains often result from rifting , an indicator of extensional tectonics . These can be small or form extensive rift valley systems, such as the East African Rift zone. Death Valley in California is a smaller example. There are two main types of block mountains; uplifted blocks between two faults and tilted blocks mainly controlled by one fault. Lifted type block mountains have two steep sides exposing both sides scarps, leading to
7128-470: The north pole, and each continent, in fact, shows its own "polar wander path". During the late 1950s, it was successfully shown on two occasions that these data could show the validity of continental drift: by Keith Runcorn in a paper in 1956, and by Warren Carey in a symposium held in March 1956. The second piece of evidence in support of continental drift came during the late 1950s and early 60s from data on
7227-407: The oceanic crust is suggested to be in motion with the continents which caused the proposals related to Earth rotation to be reconsidered. In more recent literature, these driving forces are: Forces that are small and generally negligible are: For these mechanisms to be overall valid, systematic relationships should exist all over the globe between the orientation and kinematics of deformation and
7326-437: The oceanic lithosphere and the thicker continental lithosphere, each topped by its own kind of crust. Along convergent plate boundaries , the process of subduction carries the edge of one plate down under the other plate and into the mantle . This process reduces the total surface area (crust) of the Earth. The lost surface is balanced by the formation of new oceanic crust along divergent margins by seafloor spreading, keeping
7425-494: The opposite direction. These faults may be accompanied by rollover anticlines (e.g. the Niger Delta Structural Style). All faults have a measurable thickness, made up of deformed rock characteristic of the level in the crust where the faulting happened, of the rock types affected by the fault and of the presence and nature of any mineralising fluids . Fault rocks are classified by their textures and
7524-470: The planet. In a paper by it was suggested that, on the other hand, it can easily be observed that many plates are moving north and eastward, and that the dominantly westward motion of the Pacific Ocean basins derives simply from the eastward bias of the Pacific spreading center (which is not a predicted manifestation of such lunar forces). In the same paper the authors admit, however, that relative to
7623-399: The plate as it dives into the mantle (although perhaps to a greater extent acting on both the under and upper side of the slab). Furthermore, slabs that are broken off and sink into the mantle can cause viscous mantle forces driving plates through slab suction. In the theory of plume tectonics followed by numerous researchers during the 1990s, a modified concept of mantle convection currents
7722-426: The plates of the Atlantic basin, which are attached (perhaps one could say 'welded') to adjacent continents instead of subducting plates. It is thus thought that forces associated with the downgoing plate (slab pull and slab suction) are the driving forces which determine the motion of plates, except for those plates which are not being subducted. This view however has been contradicted by a recent study which found that
7821-408: The present continents once formed a single land mass (later called Pangaea ), Wegener suggested that these separated and drifted apart, likening them to "icebergs" of low density sial floating on a sea of denser sima . Supporting evidence for the idea came from the dove-tailing outlines of South America's east coast and Africa's west coast Antonio Snider-Pellegrini had drawn on his maps, and from
7920-459: The relationships recognized during this pre-plate tectonics period to support their theories (see reviews of these various mechanisms related to Earth rotation the work of van Dijk and collaborators). Of the many forces discussed above, tidal force is still highly debated and defended as a possible principal driving force of plate tectonics. The other forces are only used in global geodynamic models not using plate tectonics concepts (therefore beyond
8019-428: The relative position of the magnetic north pole varies through time. Initially, during the first half of the twentieth century, the latter phenomenon was explained by introducing what was called "polar wander" (see apparent polar wander ) (i.e., it was assumed that the north pole location had been shifting through time). An alternative explanation, though, was that the continents had moved (shifted and rotated) relative to
8118-399: The ridge). Cool oceanic lithosphere is significantly denser than the hot mantle material from which it is derived and so with increasing thickness it gradually subsides into the mantle to compensate the greater load. The result is a slight lateral incline with increased distance from the ridge axis. This force is regarded as a secondary force and is often referred to as " ridge push ". This is
8217-412: The right time for—and type of— igneous differentiation . At a given time differentiated magmas would burst violently out of the fault-traps and head to shallower places in the crust where porphyry copper deposits would be formed. As faults are zones of weakness, they facilitate the interaction of water with the surrounding rock and enhance chemical weathering . The enhanced chemical weathering increases
8316-614: The rigid outer shell of the planet including the crust and upper mantle , is fractured into seven or eight major plates (depending on how they are defined) and many minor plates or "platelets". Where the plates meet, their relative motion determines the type of plate boundary (or fault ): convergent , divergent , or transform . The relative movement of the plates typically ranges from zero to 10 cm annually. Faults tend to be geologically active, experiencing earthquakes , volcanic activity , mountain-building , and oceanic trench formation. Tectonic plates are composed of
8415-411: The rock between the faults is converted to fault-bound lenses of rock and then progressively crushed. Due to friction and the rigidity of the constituent rocks, the two sides of a fault cannot always glide or flow past each other easily, and so occasionally all movement stops. The regions of higher friction along a fault plane, where it becomes locked, are called asperities . Stress builds up when
8514-491: The southern hemisphere. The South African Alex du Toit put together a mass of such information in his 1937 publication Our Wandering Continents , and went further than Wegener in recognising the strong links between the Gondwana fragments. Wegener's work was initially not widely accepted, in part due to a lack of detailed evidence but mostly because of the lack of a reasonable physically supported mechanism. Earth might have
8613-416: The stratigraphic sequence is known as a ramp . Typically, thrust faults move within formations by forming flats and climbing up sections with ramps. This results in the hanging wall flat (or a portion thereof) lying atop the foot wall ramp as shown in the fault-bend fold diagram. Thrust faults form nappes and klippen in the large thrust belts. Subduction zones are a special class of thrusts that form
8712-400: The surface, then shallower with increased depth, with the fault plane curving into the Earth. They can also form where the hanging wall is absent (such as on a cliff), where the footwall may slump in a manner that creates multiple listric faults. The fault panes of listric faults can further flatten and evolve into a horizontal or near-horizontal plane, where slip progresses horizontally along
8811-481: The theory of plate tectonics was the scientific and cultural change which occurred during a period of 50 years of scientific debate. The event of the acceptance itself was a paradigm shift and can therefore be classified as a scientific revolution, now described as the Plate Tectonics Revolution . Around the start of the twentieth century, various theorists unsuccessfully attempted to explain
8910-502: The theory) and "fixists" (opponents). During the 1920s, 1930s and 1940s, the former reached important milestones proposing that convection currents might have driven the plate movements, and that spreading may have occurred below the sea within the oceanic crust. Concepts close to the elements of plate tectonics were proposed by geophysicists and geologists (both fixists and mobilists) like Vening-Meinesz, Holmes, and Umbgrove. In 1941, Otto Ampferer described, in his publication "Thoughts on
9009-476: The total surface area constant in a tectonic "conveyor belt". Tectonic plates are relatively rigid and float across the ductile asthenosphere beneath. Lateral density variations in the mantle result in convection currents, the slow creeping motion of Earth's solid mantle. At a seafloor spreading ridge , plates move away from the ridge, which is a topographic high, and the newly formed crust cools as it moves away, increasing its density and contributing to
9108-429: The trenches bounding many continental margins, together with many other geophysical (e.g., gravimetric) and geological observations, showed how the oceanic crust could disappear into the mantle, providing the mechanism to balance the extension of the ocean basins with shortening along its margins. All this evidence, both from the ocean floor and from the continental margins, made it clear around 1965 that continental drift
9207-582: The vicinity. In California, for example, new building construction has been prohibited directly on or near faults that have moved within the Holocene Epoch (the last 11,700 years) of the Earth's geological history. Also, faults that have shown movement during the Holocene plus Pleistocene Epochs (the last 2.6 million years) may receive consideration, especially for critical structures such as power plants, dams, hospitals, and schools. Geologists assess
9306-467: The way the plates move relative to each other. They are associated with different types of surface phenomena. The different types of plate boundaries are: Tectonic plates are able to move because of the relative density of oceanic lithosphere and the relative weakness of the asthenosphere . Dissipation of heat from the mantle is the original source of the energy required to drive plate tectonics through convection or large scale upwelling and doming. As
9405-531: Was feasible. The theory of plate tectonics was defined in a series of papers between 1965 and 1967. The theory revolutionized the Earth sciences, explaining a diverse range of geological phenomena and their implications in other studies such as paleogeography and paleobiology . In the late 19th and early 20th centuries, geologists assumed that Earth's major features were fixed, and that most geologic features such as basin development and mountain ranges could be explained by vertical crustal movement, described in what
9504-599: Was formed. For a typical distance that oceanic lithosphere must travel before being subducted, the thickness varies from about 6 km (4 mi) thick at mid-ocean ridges to greater than 100 km (62 mi) at subduction zones. For shorter or longer distances, the subduction zone, and therefore also the mean, thickness becomes smaller or larger, respectively. Continental lithosphere is typically about 200 km (120 mi) thick, though this varies considerably between basins, mountain ranges, and stable cratonic interiors of continents. The location where two plates meet
9603-424: Was observed early that although granite existed on continents, seafloor seemed to be composed of denser basalt , the prevailing concept during the first half of the twentieth century was that there were two types of crust, named "sial" (continental type crust) and "sima" (oceanic type crust). Furthermore, it was supposed that a static shell of strata was present under the continents. It therefore looked apparent that
9702-443: Was popularized during the 1980s and 1990s. Recent research, based on three-dimensional computer modelling, suggests that plate geometry is governed by a feedback between mantle convection patterns and the strength of the lithosphere. Forces related to gravity are invoked as secondary phenomena within the framework of a more general driving mechanism such as the various forms of mantle dynamics described above. In modern views, gravity
9801-575: Was supported in this by researchers such as Alex du Toit ). Furthermore, when the rock strata of the margins of separate continents are very similar it suggests that these rocks were formed in the same way, implying that they were joined initially. For instance, parts of Scotland and Ireland contain rocks very similar to those found in Newfoundland and New Brunswick . Furthermore, the Caledonian Mountains of Europe and parts of
#564435