Misplaced Pages

Fene

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Fene ( Galician pronunciation: [ˈfenɪ] ) is a municipality in the province of A Coruña in the autonomous community of Galicia in northwestern Spain . It is located to the northeast of Galicia on the Ria of Ferrol .

#917082

54-589: The Navantia Shipyards and services in the parts which are nearer Ferrol, the rest of the borough devotes itself to farming , agriculture and fishing . In the late 1960s the gantry crane of the shipyards of Astilleros y Talleres del Noroeste (ASTANO) in Ferrolterra was the largest in Europe . This article about a location in the autonomous community of Galicia, Spain is a stub . You can help Misplaced Pages by expanding it . Navantia Navantia

108-418: A nacelle on top of a tall tubular tower. In a wind farm, individual turbines are interconnected with a medium voltage (often 34.5 kV) power collection system and communications network. In general, a distance of 7D (7 times the rotor diameter of the wind turbine) is set between each turbine in a fully developed wind farm. At a substation, this medium-voltage electric current is increased in voltage with

162-620: A transformer for connection to the high voltage electric power transmission system. Most modern turbines use variable speed generators combined with either a partial or full-scale power converter between the turbine generator and the collector system, which generally have more desirable properties for grid interconnection and have low voltage ride through -capabilities. Modern turbines use either doubly fed electric machines with partial-scale converters or squirrel-cage induction generators or synchronous generators (both permanently and electrically excited) with full-scale converters. Black start

216-543: A factor of 2.1544 increases the wind power by one order of magnitude (multiply by 10). The global wind kinetic energy averaged approximately 1.50 MJ/m over the period from 1979 to 2010, 1.31 MJ/m in the Northern Hemisphere with 1.70 MJ/m in the Southern Hemisphere. The atmosphere acts as a thermal engine, absorbing heat at higher temperatures, releasing heat at lower temperatures. The process

270-456: A global assessment of wind power potential. Unlike 'static' wind resource atlases which average estimates of wind speed and power density across multiple years, tools such as Renewables.ninja provide time-varying simulations of wind speed and power output from different wind turbine models at an hourly resolution. More detailed, site-specific assessments of wind resource potential can be obtained from specialist commercial providers, and many of

324-514: A grid system. Intermittency and the non- dispatchable nature of wind energy production can raise costs for regulation, incremental operating reserve , and (at high penetration levels) could require an increase in the already existing energy demand management , load shedding , storage solutions, or system interconnection with HVDC cables. Fluctuations in load and allowance for the failure of large fossil-fuel generating units require operating reserve capacity, which can be increased to compensate for

378-735: A key role in the discovery of America, but demand for larger ships with greater drafts meant that navy ship production was moved to Arsenal de Ferrol (A Coruña), Arsenal de Cartagena (Murcia), and La Carraca , ( Cádiz ) under reforms introduced by the Marques de la Ensenada and Jorge Juan in the eighteenth century. These shipyards became part of the Spanish Naval Construction Society (La Naval) where civil shipyards such as Matagorda in Puerto Real (Cádiz) or Sestao (Vizcaya) also belonged. The state took over

432-479: A power system that has the potential to meet power supply needs reliably. Integrating ever-higher levels of renewables is being successfully demonstrated in the real world. Solar power tends to be complementary to wind. On daily to weekly timescales, high-pressure areas tend to bring clear skies and low surface winds, whereas low-pressure areas tend to be windier and cloudier. On seasonal timescales, solar energy peaks in summer, whereas in many areas wind energy

486-405: A probability distribution function is often fit to the observed wind speed data. Different locations will have different wind speed distributions. The Weibull model closely mirrors the actual distribution of hourly/ten-minute wind speeds at many locations. The Weibull factor is often close to 2 and therefore a Rayleigh distribution can be used as a less accurate, but simpler model. A wind farm

540-399: A reliable supply of electricity. Land-based (onshore) wind farms have a greater visual impact on the landscape than most other power stations per energy produced. Wind farms sited offshore have less visual impact and have higher capacity factors , although they are generally more expensive. Offshore wind power currently has a share of about 10% of new installations. Wind power is one of

594-545: A system fault. Offshore wind power is wind farms in large bodies of water, usually the sea. These installations can use the more frequent and powerful winds that are available in these locations and have less visual impact on the landscape than land-based projects. However, the construction and maintenance costs are considerably higher. As of November 2021, the Hornsea Wind Farm in the United Kingdom

SECTION 10

#1732780558918

648-623: Is a Spanish state-owned shipbuilding dedicated to civil and military naval construction, the design of deep-tech systems and the manufacture of structures for the renewable energy sector, such as offshore wind or hydrogen. It was established in 2005 following the segregation of the military assets of the IZAR Group. The company designs, builds, and supports different types of surface vessels, submarines, and systems. It directly employs nearly 4,000 workers distributed among its operating centers in A Coruña, Cádiz, Cartagena and Madrid. Navantia

702-420: Is a group of wind turbines in the same location. A large wind farm may consist of several hundred individual wind turbines distributed over an extended area. The land between the turbines may be used for agricultural or other purposes. A wind farm may also be located offshore. Almost all large wind turbines have the same design — a horizontal axis wind turbine having an upwind rotor with 3 blades, attached to

756-474: Is air movement in the Earth's atmosphere. In a unit of time, say 1 second, the volume of air that had passed an area A {\displaystyle A} is A v {\displaystyle Av} . If the air density is ρ {\displaystyle \rho } , the mass of this volume of air is M = ρ A v {\displaystyle M=\rho Av} , and

810-495: Is increasingly diversifying into the offshore sector, especially in wind energy . Wind energy Wind power is the use of wind energy to generate useful work. Historically, wind power was used by sails , windmills and windpumps , but today it is mostly used to generate electricity. This article deals only with wind power for electricity generation. Today, wind power is generated almost completely with wind turbines , generally grouped into wind farms and connected to

864-487: Is lower in summer and higher in winter. Thus the seasonal variation of wind and solar power tend to cancel each other somewhat. Wind hybrid power systems are becoming more popular. For any particular generator, there is an 80% chance that wind output will change less than 10% in an hour and a 40% chance that it will change 10% or more in 5 hours. In summer 2021, wind power in the United Kingdom fell due to

918-412: Is possible and is being further developed for places (such as Iowa ) which generate most of their electricity from wind. Transmission system operators will supply a wind farm developer with a grid code to specify the requirements for interconnection to the transmission grid. This will include the power factor , the constancy of frequency , and the dynamic behaviour of the wind farm turbines during

972-541: Is responsible for the production of wind kinetic energy at a rate of 2.46 W/m thus sustaining the circulation of the atmosphere against friction. Through wind resource assessment , it is possible to estimate wind power potential globally, by country or region, or for a specific site. The Global Wind Atlas provided by the Technical University of Denmark in partnership with the World Bank provides

1026-751: Is sent to the rest of the British grid . On a monthly, weekly, daily, or hourly basis—or less—wind might supply as much as or more than 100% of current use, with the rest stored, exported or curtailed. The seasonal industry might then take advantage of high wind and low usage times such as at night when wind output can exceed normal demand. Such industry might include the production of silicon, aluminum, steel, or natural gas, and hydrogen, and using future long-term storage to facilitate 100% energy from variable renewable energy . Homes and businesses can also be programmed to vary electricity demand , for example by remotely turning up water heater thermostats. Wind power

1080-532: Is the fifth-largest shipbuilder in Europe and the ninth-largest in the world. The company is also expanding into markets such as renewable energy, the offshore industry and naval services. The origins of Navantia go back to the beginnings of Spanish naval construction in the 13th century with the Real Atarazanas de Sevilla and the Real Carenero of San Fernando. Ships made in these yards played

1134-415: Is the largest offshore wind farm in the world at 1,218 MW . Near offshore wind farms may be connected by AC and far offshore by HVDC. Wind power resources are not always located near to high population density. As transmission lines become longer, the losses associated with power transmission increase, as modes of losses at lower lengths are exacerbated and new modes of losses are no longer negligible as

SECTION 20

#1732780558918

1188-449: Is variable, and during low wind periods, it may need to be replaced by other power sources. Transmission networks presently cope with outages of other generation plants and daily changes in electrical demand, but the variability of intermittent power sources such as wind power is more frequent than those of conventional power generation plants which, when scheduled to be operating, may be able to deliver their nameplate capacity around 95% of

1242-483: The Paris Agreement goals to limit climate change , analysts say it should expand much faster – by over 1% of electricity generation per year. Wind power is considered a sustainable , renewable energy source, and has a much smaller impact on the environment compared to burning fossil fuels . Wind power is variable , so it needs energy storage or other dispatchable generation energy sources to attain

1296-425: The Paris Agreement 's goals to limit climate change , analysts say it should expand much faster – by over 1% of electricity generation per year. Expansion of wind power is being hindered by fossil fuel subsidies . The actual amount of electric power that wind can generate is calculated by multiplying the nameplate capacity by the capacity factor , which varies according to equipment and location. Estimates of

1350-523: The electrical grid . In 2022, wind supplied over 2,304 TWh of electricity, which was 7.8% of world electricity. With about 100 GW added during 2021, mostly in China and the United States , global installed wind power capacity exceeded 800 GW. 32 countries generated more than a tenth of their electricity from wind power in 2023 and wind generation has nearly tripled since 2015. To help meet

1404-400: The biggest current challenges to wind power grid integration in some countries is the necessity of developing new transmission lines to carry power from wind farms, usually in remote lowly populated areas due to availability of wind, to high load locations, usually on the coasts where population density is higher. Any existing transmission lines in remote locations may not have been designed for

1458-700: The capacity factor can be calculated from the yearly output. Wind energy penetration is the fraction of energy produced by wind compared with the total generation. Wind power's share of worldwide electricity usage in 2021 was almost 7%, up from 3.5% in 2015. There is no generally accepted maximum level of wind penetration. The limit for a particular grid will depend on the existing generating plants, pricing mechanisms, capacity for energy storage , demand management, and other factors. An interconnected electric power grid will already include reserve generating and transmission capacity to allow for equipment failures. This reserve capacity can also serve to compensate for

1512-406: The capacity factors for wind installations are in the range of 35% to 44%. Since wind speed is not constant, a wind farm's annual energy production is never as much as the sum of the generator nameplate ratings multiplied by the total hours in a year. The ratio of actual productivity in a year to this theoretical maximum is called the capacity factor. Online data is available for some locations, and

1566-772: The cost of wind power matches traditional sources) in some areas of Europe in the mid-2000s, and in the US around the same time. Falling prices continue to drive the Levelized cost down and it has been suggested that it has reached general grid parity in Europe in 2010, and will reach the same point in the US around 2016 due to an expected reduction in capital costs of about 12%. In 2021, the CEO of Siemens Gamesa warned that increased demand for low-cost wind turbines combined with high input costs and high costs of steel result in increased pressure on

1620-399: The electric-power network to be readied for the predictable variations in production that occur. It is thought that the most reliable low-carbon electricity systems will include a large share of wind power. Typically, conventional hydroelectricity complements wind power very well. When the wind is blowing strongly, nearby hydroelectric stations can temporarily hold back their water. When

1674-514: The electricity . For example, socially responsible manufacturers pay utility companies a premium that goes to subsidize and build new wind power infrastructure. Companies use wind-generated power, and in return, they can claim that they are undertaking strong "green" efforts. Wind projects provide local taxes, or payments in place of taxes and strengthen the economy of rural communities by providing income to farmers with wind turbines on their land. The wind energy sector can also produce jobs during

Fene - Misplaced Pages Continue

1728-417: The elimination of subsidies in many markets. As of 2021, subsidies are still often given to offshore wind. But they are generally no longer necessary for onshore wind in countries with even a very low carbon price such as China, provided there are no competing fossil fuel subsidies . Secondary market forces provide incentives for businesses to use wind-generated power, even if there is a premium price for

1782-479: The export of electric power when needed. Electrical utilities continue to study the effects of large-scale penetration of wind generation on system stability. A wind energy penetration figure can be specified for different duration of time but is often quoted annually. To generate almost all electricity from wind annually requires substantial interconnection to other systems, for example some wind power in Scotland

1836-399: The group's business and including ships, submarines, and management of the operational availability of forces); systems (research, development, and integration of defense, surveillance, and navigation systems); diversification (renewable marine energy, construction of naval bases and power plants, and offshore installations); and services (maintenance, repair, and life cycle support). Navantia

1890-403: The larger wind developers have in-house modeling capabilities. The total amount of economically extractable power available from the wind is considerably more than present human power use from all sources. The strength of wind varies, and an average value for a given location does not alone indicate the amount of energy a wind turbine could produce there. To assess prospective wind power sites,

1944-619: The largest shareholder and manager of the IZAR group, separated the military branch in December 2004 and subsequently formed Navantia in March 2005. The civil operations were later also transferred to Navantia. The company is 100% owned by SEPI , the Spanish state-owned industrial holding group, and it designs, builds, repairs, and modernizes military and civilian vessels. In March 2016, Navantia

1998-426: The length is increased; making it harder to transport large loads over large distances. When the transmission capacity does not meet the generation capacity, wind farms are forced to produce below their full potential or stop running altogether, in a process known as curtailment . While this leads to potential renewable generation left untapped, it prevents possible grid overload or risk to reliable service. One of

2052-415: The low marginal costs of this technology. The effect has been identified in several European markets. For wind power plants exposed to electricity market pricing in markets with high penetration of variable renewable energy sources, profitability can be challenged. Turbine prices have fallen significantly in recent years due to tougher competitive conditions such as the increased use of energy auctions, and

2106-408: The lowest winds in seventy years, In the future, smoothing peaks by producing green hydrogen may help when wind has a larger share of generation. While the output from a single turbine can vary greatly and rapidly as local wind speeds vary, as more turbines are connected over larger and larger areas the average power output becomes less variable and more predictable. Weather forecasting permits

2160-460: The lowest-cost electricity sources per unit of energy produced. In many locations, new onshore wind farms are cheaper than new coal or gas plants . Regions in the higher northern and southern latitudes have the highest potential for wind power. In most regions, wind power generation is higher in nighttime, and in winter when solar power output is low. For this reason, combinations of wind and solar power are suitable in many countries. Wind

2214-522: The manufacturers and decreasing profit margins. Northern Eurasia, Canada, some parts of the United States, and Patagonia in Argentina are the best areas for onshore wind: whereas in other parts of the world solar power, or a combination of wind and solar, tend to be cheaper. Wind power is capital intensive but has no fuel costs. The price of wind power is therefore much more stable than

Fene - Misplaced Pages Continue

2268-708: The marginal price, by minimizing the use of expensive peaking power plants . The cost has decreased as wind turbine technology has improved. There are now longer and lighter wind turbine blades, improvements in turbine performance, and increased power generation efficiency. Also, wind project capital expenditure costs and maintenance costs have continued to decline. In 2021, a Lazard study of unsubsidized electricity said that wind power levelized cost of electricity continues to fall but more slowly than before. The study estimated new wind-generated electricity cost from $ 26 to $ 50/MWh, compared to new gas power from $ 45 to $ 74/MWh. The median cost of fully deprecated existing coal power

2322-670: The military arsenals at the end of the Spanish Civil War and formed the Empresa Nacional Bazán in 1947 to build ships using foreign technology. Bazán later began to develop its own ship projects. IZAR was formed in 2000 following a merger between Astilleros Españoles, a company that brought together publicly-owned civil shipyards, and the Empresa Nacional Bazán. To achieve greater efficiency, the Sociedad Estatal de Participaciones Industriales (SEPI) ,

2376-428: The power transfer, or energy transfer per second is P = 1 2 M v 2 = 1 2 ρ A v 3 {\displaystyle P={\tfrac {1}{2}}Mv^{2}={\tfrac {1}{2}}\rho Av^{3}} . Wind power is thus proportional to the third power of the wind speed; the available power increases eightfold when the wind speed doubles. Change of wind speed by

2430-514: The required electrical base-load can save both fuel and total electrical generation costs. The energy needed to build a wind farm divided into the total output over its life, Energy Return on Energy Invested , of wind power varies, but averages about 20–25. Thus, the energy payback time is typically around a year. Onshore wind is an inexpensive source of electric power, cheaper than coal plants and new gas plants. According to BusinessGreen , wind turbines reached grid parity (the point at which

2484-408: The time. Electric power generated from wind power can be highly variable at several different timescales: hourly, daily, or seasonally. Annual variation also exists but is not as significant. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, this variability can present substantial challenges to incorporating large amounts of wind power into

2538-577: The transport of large amounts of energy. In particular geographic regions, peak wind speeds may not coincide with peak demand for electrical power, whether offshore or onshore. A possible future option may be to interconnect widely dispersed geographic areas with an HVDC super grid . In 2020, wind supplied almost 1600 TWh of electricity, which was over 5% of worldwide electrical generation and about 2% of energy consumption. With over 100 GW added during 2020, mostly in China , global installed wind power capacity reached more than 730 GW. But to help meet

2592-580: The variability of wind generation. Utility-scale batteries are often used to balance hourly and shorter timescale variation, but car batteries may gain ground from the mid-2020s. Wind power advocates argue that periods of low wind can be dealt with by simply restarting existing power stations that have been held in readiness, or interlinking with HVDC. The combination of diversifying variable renewables by type and location, forecasting their variation, and integrating them with dispatchable renewables, flexible fueled generators, and demand response can create

2646-407: The varying power generation produced by wind stations. Studies have indicated that 20% of the total annual electrical energy consumption may be incorporated with minimal difficulty. These studies have been for locations with geographically dispersed wind farms, some degree of dispatchable energy or hydropower with storage capacity, demand management, and interconnected to a large grid area enabling

2700-697: The volatile prices of fossil fuel sources. However, the estimated average cost per unit of electric power must incorporate the cost of construction of the turbine and transmission facilities, borrowed funds, return to investors (including the cost of risk), estimated annual production, and other components, averaged over the projected useful life of the equipment, which may be more than 20 years. Energy cost estimates are highly dependent on these assumptions so published cost figures can differ substantially. The presence of wind energy, even when subsidized, can reduce costs for consumers (€5 billion/yr in Germany) by reducing

2754-534: The wind drops they can, provided they have the generation capacity, rapidly increase production to compensate. This gives a very even overall power supply and virtually no loss of energy and uses no more water. Alternatively, where a suitable head of water is not available, pumped-storage hydroelectricity or other forms of grid energy storage such as compressed air energy storage and thermal energy storage can store energy developed by high-wind periods and release it when needed. The type of storage needed depends on

SECTION 50

#1732780558918

2808-542: The wind penetration level – low penetration requires daily storage, and high penetration requires both short- and long-term storage – as long as a month or more. Stored energy increases the economic value of wind energy since it can be shifted to displace higher-cost generation during peak demand periods. The potential revenue from this arbitrage can offset the cost and losses of storage. Although pumped-storage power systems are only about 75% efficient and have high installation costs, their low running costs and ability to reduce

2862-539: Was $ 42/MWh, nuclear $ 29/MWh and gas $ 24/MWh. The study estimated offshore wind at around $ 83/MWh. Compound annual growth rate was 4% per year from 2016 to 2021, compared to 10% per year from 2009 to 2021. While the levelised costs of wind power may have reached that of traditional combustion based power technologies, the market value of the generated power is also lower due to the merit order effect, which implies that electricity market prices are lower in hours with substantial generation of variable renewable energy due to

2916-780: Was selected as the 'preferred bidder' for two logistics support ships for the Royal Australian Navy . In April 2021, Navantia launched its first completely Spanish designed and built submarine, the Issac Peral S-81 . This was 133 years after the launch of the world's first functional military submarine, the Peral . Navantia has locations throughout Spain. The company's headquarters are in Madrid and production centers are in: Navantia's activities can be divided into four main sectors: naval defense (the historical core of

#917082