Misplaced Pages

Rolls-Royce Thrust Measuring Rig

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A vertical take-off and landing ( VTOL ) aircraft is one that can take off and land vertically without relying on a runway . This classification can include a variety of types of aircraft including helicopters as well as thrust-vectoring fixed-wing aircraft and other hybrid aircraft with powered rotors such as cyclogyros/cyclocopters and gyrodynes .

#208791

71-476: The Rolls-Royce Thrust Measuring Rig (TMR) was a pioneering vertical take-off and landing ( VTOL ) aircraft developed by Rolls-Royce in the 1950s. It has the distinction of being "the first jet-lift aircraft to fly anywhere in the world". The design of the TMR is unique. It was powered by a pair of Nene turbojet engines, which were mounted back-to-back horizontally within a steel framework; in turn, this framework

142-692: A short-or-vertical takeoff and landing aircraft below conventional winged flight speeds, such as with the Harrier "jump jet" , may also be referred to as a reaction control system. Reaction control systems are capable of providing small amounts of thrust in any desired direction or combination of directions. An RCS is also capable of providing torque to allow control of rotation ( roll, pitch, and yaw ). Reaction control systems often use combinations of large and small ( vernier ) thrusters, to allow different levels of response. Spacecraft reaction control systems are used for: Because spacecraft only contain

213-492: A tungsten screen, and the Gemini thrusters used hypergolic mono-methyl hydrazine fuel oxidized with nitrogen tetroxide . The Gemini spacecraft was also equipped with a hypergolic Orbit Attitude and Maneuvering System , which made it the first crewed spacecraft with translation as well as rotation capability. In-orbit attitude control was achieved by firing pairs of eight 25-pound-force (110 N) thrusters located around

284-530: A turbofan in static or hovering conditions. Its efflux can be used for Upper Surface Blown architectures to boost the Lift Coefficient to values exceeding 8.0. Reaction control system A reaction control system ( RCS ) is a spacecraft system that uses thrusters to provide attitude control and translation . Alternatively, reaction wheels can be used for attitude control. Use of diverted engine thrust to provide stable attitude control of

355-631: A VTOL (helicopter) show up in Leonardo da Vinci 's sketch book. Manned VTOL aircraft, in the form of primitive helicopters, first flew in 1907, but would take until after World War Two to be perfected. In addition to helicopter development, many approaches have been tried to develop practical aircraft with vertical take-off and landing capabilities, including Henry Berliner 's 1922–1925 experimental horizontal rotor fixed wing aircraft, and Nikola Tesla 's 1928 patent, and George Lehberger's 1930 patent for relatively impractical VTOL fixed wing airplanes with

426-595: A convention for locations for thrusters on winged vehicles not intended to dock in space; that is, those that only have attitude control thrusters. Those for pitch and yaw are located in the nose, forward of the cockpit, and replace a standard radar system. Those for roll are located at the wingtips. The X-20 , which would have gone into orbit, continued this pattern. Unlike these, the Space Shuttle Orbiter had many more thrusters, which were required to control vehicle attitude in both orbital flight and during

497-543: A conventional wing and tilts the whole assembly to transition between vertical and horizontal flight. A tail-sitter sits vertically on its tail for takeoff and landing, then tilts the whole aircraft forward for horizontal flight. Thrust vectoring is a technique used for jet and rocket engines, where the direction of the engine exhaust is varied. In VTOL, the exhaust can be varied between vertical and horizontal thrust. Similar to tiltrotor concept, but with turbojet or turbofan engines instead of ones with propellers. A lift jet

568-540: A failure of its thrust-vectored control system on 16 September 1957 whilst being piloted by Wing Commander Stan Hubbard of the RAE. On 28 November 1957, the second TMR, Serial XK426 , was destroyed during a test flight, resulting in the death of Wing Commander H. G. F. Larsen, who had been piloting the aircraft for the first time. The research from the TMR's test programme were of considerable value to future VTOL aircraft, as least in some areas: an official report published by

639-512: A finite amount of fuel and there is little chance to refill them, alternative reaction control systems have been developed so that fuel can be conserved. For stationkeeping, some spacecraft (particularly those in geosynchronous orbit ) use high- specific impulse engines such as arcjets , ion thrusters , or Hall effect thrusters . To control orientation, a few spacecraft, including the ISS , use momentum wheels which spin to control rotational rates on

710-783: A followup story was part of the April 2006 issue that mentioned "the fuel-consumption and stability problems that plagued earlier plane/copter." Retired from the British Royal Navy in 2006, the Indian Navy continued to operate Sea Harriers until 2016, mainly from its aircraft carrier INS  Viraat . The latest version of the Harrier, the BAE Harrier II , was retired in December 2010 after being operated by

781-584: A helicopter, then transitions to fixed-wing lift in forward flight. Examples of this include the Bell Boeing V-22 Osprey A tiltrotor or proprotor tilts its propellers or rotors vertically for VTOL and then tilts them forwards for horizontal wing-borne flight, while the main wing remains fixed in place. Similar to tiltrotor concept, but with ducted fans . As it can be seen in the Bell X-22 . A tiltwing has its propellers or rotors fixed to

SECTION 10

#1732783453209

852-439: A helicopter. The rotors would become stationary in mid-flight, and function as wings, providing lift in addition to the static wings. Boeing X-50 is a Canard Rotor/Wing prototype that utilizes a similar concept. A different British VTOL project was the gyrodyne , where a rotor is powered during take-off and landing but which then freewheels during flight, with separate propulsion engines providing forward thrust. Starting with

923-456: A maximum descent rate of 10 feet per second (3 m/s), from occurring in order to avoid sustaining damage and allowed struggling pilots to readily close the throttles without a resulting accident. During the first year of flights, the aircraft remained tethered within the gantry system for flight testing. On 3 August 1954, the TMR conducted its first free flight, piloted by Ronald Thomas Shepherd , Rolls-Royce's chief test pilot. In late 1954,

994-489: A proposal in 1948 for an aircraft capable of vertical takeoff and landing (VTOL) aboard platforms mounted on the afterdecks of conventional ships. Both Convair and Lockheed competed for the contract but in 1950, the requirement was revised, with a call for a research aircraft capable of eventually evolving into a VTOL ship-based convoy escort fighter. At the end of 1958, the French SNECMA Coléoptère ,

1065-425: A series of test flights into how stabilisation could be performed during the aircraft's hover. It contributed to a greater understanding of the level of power and appropriate manners of stabilisation involved in a VTOL aircraft, as well as proving the feasibility of the concept in general. The man largely responsible for the development of the TMR was Dr Alan Arnold Griffith , who had worked on gas turbine design at

1136-460: A set of sixteen R-4D hypergolic thrusters, grouped into external clusters of four, to provide both translation and attitude control. The clusters were located near the craft's average centers of mass, and were fired in pairs in opposite directions for attitude control. A pair of translation thrusters are located at the rear of the Soyuz spacecraft; the counter-acting thrusters are similarly paired in

1207-518: A short time later. The Harrier is usually flown in STOVL mode, which enables it to carry a higher fuel or weapon load over a given distance. In V/STOL the VTOL aircraft moves horizontally along the runway before taking off using vertical thrust. This gives aerodynamic lift as well as thrust lift and permits taking off with heavier loads and is more efficient. When landing the aircraft is much lighter due to

1278-543: A successful landing after boosting 11 commercial satellites to low Earth orbit on Falcon 9 Flight 20 . These demonstrations opened the way for substantial reductions in space flight costs. The helicopter's form of VTOL allows it to take off and land vertically, to hover, and to fly forwards, backwards, and laterally. These attributes allow helicopters to be used in congested or isolated areas where fixed-wing aircraft would usually not be able to take off or land. The capability to efficiently hover for extended periods of time

1349-406: A tailsitter annular wing design, performed its maiden flight. However the sole prototype was destroyed on its ninth flight in 1959, and financing was never sourced for a second prototype. Another more influential early functional contribution to VTOL was Rolls-Royce 's Thrust Measuring Rig ("flying bedstead") of 1953. This led to the first VTOL engines as used in the first British VTOL aircraft,

1420-561: A tilting engines. In the late 1930s British aircraft designer Leslie Everett Baynes was issued a patent for the Baynes Heliplane , another tilt rotor aircraft. In 1941 German designer Heinrich Focke 's began work on the Focke-Achgelis Fa 269 , which had two rotors that tilted downward for vertical takeoff, but wartime bombing halted development. In May 1951, both Lockheed and Convair were awarded contracts in

1491-490: A vertical take-off research aircraft issued in September 1953. The design was accepted by the ministry and a contract was placed for two aircraft (XG900 and XG905) to meet Specification ER.143D dated 15 October 1954. The SC.1 was also equipped with the first "fly-by-wire" control system for a VTOL aircraft. This permitted three modes of control of the aerodynamic surfaces or the nozzle controls. The Republic Aviation AP-100

SECTION 20

#1732783453209

1562-524: Is an auxiliary jet engine used to provide lift for VTOL operation, but may be shut down for normal wing-borne flight. The Yak-38 is the only production aircraft to employ lift jets. Lift fan is an aircraft configuration in which lifting fans are located in large holes in an otherwise conventional fixed wing or fuselage. It is used for V/STOL operation. The aircraft takes off using the fans to provide lift, then transitions to fixed-wing lift in forward flight. Several experimental craft have been flown, but only

1633-672: Is designed to perform missions like a conventional helicopter with the long-range, high-speed cruise performance of a turboprop aircraft. The FAA classifies the Osprey as a model of powered lift aircraft. Attempts were made in the 1960s to develop a commercial passenger aircraft with VTOL capability. The Hawker Siddeley Inter-City Vertical-Lift proposal had two rows of lifting fans on either side. However, none of these aircraft made it to production after they were dismissed as too heavy and expensive to operate. In 2018 Opener Aero demonstrated an electrically powered fixed-wing VTOL aircraft,

1704-527: Is due to the helicopter's relatively long, and hence efficient rotor blades, and allows a helicopter to accomplish tasks that fixed-wing aircraft and other forms of vertical takeoff and landing aircraft could not perform at least as well until 2011 . On the other hand, the long rotor blades restrict the maximum speed to about 250 miles per hour (400 km/h) of at least conventional helicopters, as retreating blade stall causes lateral instability. Autogyros are also known as gyroplanes or gyrocopters. The rotor

1775-543: Is preserved and on public display at the Science Museum in London, England. General characteristics Performance Avionics VTOL Some VTOL aircraft can operate in other modes as well, such as CTOL (conventional take-off & landing), STOL (short take-off & landing), or STOVL (short take-off & vertical landing). Others, such as some helicopters, can only operate as VTOL, due to

1846-421: Is unpowered and rotates freely in the airflow as the craft travels forward, so the craft needs a conventional powerplant to provide thrust. An autogyro is not intrinsically capable of VTOL: for VTO the rotor must be spun up to speed by an auxiliary drive, and vertical landing requires precise control of rotor momentum and pitch. Gyrodynes are also known as compound helicopters or compound gyroplanes. A gyrodyne has

1917-511: The Blackfly , which the manufacturer claims is the world's first ultralight fixed-wing, all-electric, vertical take-off and landing aircraft. In the 21st century, unmanned drones are becoming increasingly commonplace. Many of these have VTOL capability, especially the quadcopter type. In 1947, Ryan X-13 Vertijet , a tailsitter design, was ordered by the US Navy, who then further issued

1988-520: The F-35 Lightning II entered into production. Aircraft in which VTOL is achieved by exploiting the Coandă effect are capable of redirecting air much like thrust vectoring , but rather than routing airflow through a duct, the airflow is simply routed along an existing surface, which is usually the body of the craft allowing less material and weight. The Avro Canada VZ-9 Avrocar , or simply

2059-476: The Fairey Gyrodyne , this type of aircraft later evolved into the much larger twin-engined Fairey Rotodyne , that used tipjets to power the rotor on take-off and landing but which then used two Napier Eland turboprops driving conventional propellers mounted on substantial wings to provide propulsion, the wings serving to unload the rotor during horizontal flight. The Rotodyne was developed to combine

2130-645: The Focke-Achgelis Fa 269 of the mid-1940s and the Centro Técnico Aeroespacial "Convertiplano" of the 1950s reached testing or mock-up stages, the Bell-Boeing V-22 Osprey is considered the world's first production tiltrotor aircraft. It has one three-bladed proprotor , turboprop engine, and transmission nacelle mounted on each wingtip. The Osprey is a multi-mission aircraft with both a vertical takeoff and landing (VTOL) and short takeoff and landing capability ( STOL ). It

2201-750: The Hawker P.1127 , which became subsequently the Kestrel and then entered production as the Hawker Siddeley Harrier , though the supersonic Hawker Siddeley P.1154 was canceled in 1965. The French in competition with the P.1154 had developed a version of the Dassault Mirage III capable of attaining Mach 1. The Dassault Mirage IIIV achieved transition from vertical to horizontal flight in March 1966, reaching Mach 1.3 in level flight

Rolls-Royce Thrust Measuring Rig - Misplaced Pages Continue

2272-571: The Royal Aircraft Establishment (RAE), in the 1920s and was a pioneer of jet lift technology. In 1939, Griffith had been employed by Rolls-Royce. During the 1940s, he conceived of using jet propulsion as a method of directly providing vertical lift to produce an aircraft that could take off vertically. The construction of such an aircraft for research purposes was suggested by Griffith. Being suitably impressed by Griffith's concept, while also being keen to explore and harness

2343-460: The Short SC.1 (1957), Short Brothers and Harland, Belfast which used four vertical lift engines with a horizontal one for forward thrust. The Short SC.1 was the first British fixed-wing VTOL aircraft. The SC.1 was designed to study the problems with VTOL flight and the transition to and from forward flight. The SC.1 was designed to meet a Ministry of Supply (MoS) request for tender (ER.143T) for

2414-529: The lunar module (LEM), which had to rely on a reaction engine to land on the Moon. The idea of using the same engine for vertical and horizontal flight by altering the path of the thrust was conceived by Michel Wibault . It led to the Bristol Siddeley Pegasus engine which used four rotating nozzles to direct thrust over a range of angles. This was developed side by side with an airframe,

2485-585: The 1960s and early 1970s, Germany planned three different VTOL aircraft. One used the Lockheed F-104 Starfighter as a basis for research for a V/STOL aircraft. Although two models (X1 and X2) were built, the project was canceled due to high costs and political problems as well as changed needs in the German Air Force and NATO. The EWR VJ 101 C did perform free VTOL take-offs and landings, as well as test flights beyond mach 1 in

2556-1262: The British Royal Air Force and Royal Navy. The United States Marine Corps and the Italian and Spanish navies all continue to use the AV-8B Harrier II , an American-British variant. Replacing the Harrier II/AV-8B in the air arms of the US and UK is the STOVL variant of the Lockheed Martin F-35 Lightning II , the F-35B. SpaceX developed several prototypes of Falcon 9 to validate various low-altitude, low-velocity engineering aspects of its reusable launch system development program . The first prototype, Grasshopper, made eight successful test flights in 2012–2013. It made its eighth, and final, test flight on October 7, 2013, flying to an altitude of 744 metres (2,441 ft) before making its eighth successful VTVL landing. This

2627-461: The Ministry of Aviation summarised that "the main conclusion to be drawn from this experience is that any practical jet-lift aircraft must have some artificial stabilisation while hovering if it is to operate in other than very favourable weather conditions...the main difficulty in learning to fly the aircraft was the height control; any reduction in the time constant of the engine response would make

2698-430: The TMR was not typically flown if the wind speed was 10 knots or greater, it would only fly under weather conditions in which the aircraft could be controlled in the event of a fault. Pilots were able to perform take-offs and controlled landings, but found both feats to be more difficult if wind was present, particularly if the TMR was required to tilt in order to counteract the wind's effects. Reportedly, pilots found that

2769-458: The TMR was transferred to the RAE's research facilities, firstly being assigned to RAE Farnborough . In June 1956, it was relocated to RAE Bedford , Bedfordshire , for the purposes of conducting further flight tests. While the practicalities surrounding controllability had been addressed during its time at Hucknall, the RAE were more interested in using the TMR to determine if artificial stabilisation would be necessary for such aircraft, both during

2840-520: The VZ-9, was a Canadian VTOL aircraft developed by Avro Aircraft Ltd. which utilizes this phenomenon by blowing air into a central area, then it is directed down over the top surface, which is parabolic and resembles a bowed flying saucer . Due to the Coandă effect, the airflow is attracted to the nearest surface and continues to move along that surface despite the change in the surface's direction away from

2911-405: The act of flying the aircraft; this was further compounded by the slow response time of the engines to throttle changes. Accordingly, there was a considerable degree of anticipation in the use of engine power required to prevent overshooting of desired altitude, and to ensure a gentle touchdown when landing. A total of four outrigger arms extended out from the rig, one on either side and one each at

Rolls-Royce Thrust Measuring Rig - Misplaced Pages Continue

2982-478: The aft end of the adapter module provided forward thrust, which could be used to change the craft's orbit. The Gemini reentry module also had a separate Reentry Control System of sixteen thrusters located at the base of its nose, to provide rotational control during reentry. The Apollo Command Module had a set of twelve hypergolic thrusters for attitude control, and directional reentry control similar to Gemini. The Apollo Service Module and Lunar Module each had

3053-627: The aircraft lacking landing gear that can handle taxiing . VTOL is a subset of V/STOL (vertical or short take-off & landing). Some lighter-than-air aircraft also qualify as VTOL aircraft, as they can hover, takeoff and land with vertical approach/departure profiles. Electric vertical takeoff and landing aircraft, or eVTOLs , are being developed along with more autonomous flight control technologies and mobility-as-a-service (MaaS) to enable advanced air mobility (AAM), that could include on-demand air taxi services, regional air mobility, freight delivery, and personal air vehicles (PAVs). Besides

3124-563: The airflow. The craft is designed to direct the airflow downward to provide lift. Jetoptera announced a proposed line of aircraft based on what it called fluidic propulsion that employs the Coandă effect. The company claims an Oswald efficiency number of 1.45 for its boxwing design. Other claims include increased efficiency, 30% lower weight, reduced complexity, as much as 25 dBA lower (and atonal) noise, shorter wings, and scalability. Jetoptera says its approach yields thrust augmentation ratios exceeding 2.0 and 50% fuel savings when compared to

3195-627: The attempt to design, construct, and test two experimental VTOL fighters. Lockheed produced the XFV , and Convair producing the Convair XFY Pogo . Both experimental programs proceeded to flight status and completed test flights 1954–1955, when the contracts were cancelled. Similarly, the Ryan X-13 Vertijet flew a series of test flights between 1955 and 1957, but also suffered the same fate. The use of vertical fans driven by engines

3266-576: The capabilities of its newly developed range of jet engines, Rolls-Royce commenced construction of the aircraft at the company's facility at Hucknall Aerodrome , Nottinghamshire , England. The crucial auto-stabiliser for the aircraft was designed and produced by the Instrument and Air Photography Department of the Royal Aircraft Establishment (RAE). The aircraft was designated as the Thrust Measuring Rig (TMR), two were constructed for

3337-426: The circumference of its adapter module at the extreme aft end. Lateral translation control was provided by four 100-pound-force (440 N) thrusters around the circumference at the forward end of the adaptor module (close to the spacecraft's center of mass). Two forward-pointing 85-pound-force (380 N) thrusters at the same location, provided aft translation, and two 100-pound-force (440 N) thrusters located in

3408-429: The detection of faults infallible, a safer partial-triplex arrangement was adopted for the RAE's free flight testing phase. As the TMR possessed no inherent stability , it incorporated an experimental automatic stabiliser system. During its numerous test flights, varying degrees of intervention by the stabiliser were performed, including a few in which no stabilisation was active at all. The first machine (Serial XJ314 )

3479-709: The development of the Panavia Tornado . The Yakovlev Yak-38 was a Soviet Navy VTOL aircraft intended for use aboard their light carriers, cargoships, and capital ships. It was developed from the Yakovlev Yak-36 experimental aircraft in the 1970s. Before the Soviet Union broke up, a supersonic VTOL aircraft was developed as the Yak-38's successor, the Yak-141 , which never went into production. In

3550-477: The early part of atmospheric entry, as well as carry out rendezvous and docking maneuvers in orbit. Shuttle thrusters were grouped in the nose of the vehicle and on each of the two aft Orbital Maneuvering System pods. No nozzles interrupted the heat shield on the underside of the craft; instead, the nose RCS nozzles which control positive pitch were mounted on the side of the vehicle, and were canted downward. The downward-facing negative pitch thrusters were located in

3621-495: The efficiency of a fixed-wing aircraft at cruise with the VTOL capability of a helicopter to provide short haul airliner service from city centres to airports. The CL-84 Dynavert was a Canadian V/STOL turbine tilt-wing monoplane designed and manufactured by Canadair between 1964 and 1972. The Canadian government ordered three updated CL-84s for military evaluation in 1968, designated the CL-84-1. From 1972 to 1974, this version

SECTION 50

#1732783453209

3692-415: The front and rear, through which compressed air was released for control in roll , pitch and yaw when in flight. While the controls for yaw and height were mechanically based, the pitch and roll controls were electrically signalled, without any provision for reverting to mechanical operation. Initially, key components for the electrical control system components were duplicated; however, in order to make

3763-429: The height control, the addition of a simplistic trimmer on the throttle to restrict its possible speed of movement, and the installation of 'throttle-anticipators' that failed to operate as intended. The TMR effectively demonstrated that delay in the height control response would be a major difficulty of VTOL aircraft, and the engines of later VTOL aircraft did typically feature faster response times. The aircraft survived

3834-583: The hover and the low-speed stages of flight, and to investigate desirable characteristics towards achieving stable vertical flight. Information from typical flights was primarily acquired through the reported experiences of the pilots. During stability trials, more quantifiable data was gained by instructing multiple pilots to follow the same sequence of manoeuvres, many of which were intended to be representative of VTOL aircraft transitioning into hovering flight; multiple observers were also employed as well. Test flights had several safety restrictions placed upon them:

3905-418: The loss of propellant weight and a controlled vertical landing is possible. An important aspect of Harrier STOL operations aboard naval carriers is the "ski jump" raised forward deck, which gives the craft additional vertical momentum at takeoff. The March 1981 cover of Popular Science showed three illustrations for its "Tilt-engine V/STOL - speeds like a plane, lands like a copter" front-page feature story.;

3976-454: The main initial difficulty in flying the TMR was the regulation of the aircraft's height; this was partially due to the slow response of the engine to throttle movements being commanded by the pilot. The delay interval between the throttle and the engine response was often around the one-to-two second mark; pilots would typically adapt to this peculiarity of the aircraft and become adept at mastering height control. Two attempts were made to improve

4047-700: The mid- and late 60s. One of the test-aircraft is preserved in the Deutsches Museum in Munich, Germany, another outside Friedrichshafen Airport. The others were the VFW-Fokker VAK 191B light fighter and reconnaissance aircraft, and the Dornier Do 31 E-3 (troop) transport. The LLRV was a spacecraft simulator for the Apollo lunar lander. It was designed to mimic the flight characteristics of

4118-516: The middle of the spacecraft (near the center of mass) pointing outwards and forward. These act in pairs to prevent the spacecraft from rotating. The thrusters for the lateral directions are mounted close to the center of mass of the spacecraft, in pairs as well. The suborbital X-15 and a companion training aero-spacecraft, the NF-104 AST , both intended to travel to an altitude that rendered their aerodynamic control surfaces unusable, established

4189-590: The powered rotor of a helicopter with a separate forward thrust system of an autogyro. Apart from take-off and landing the rotor may be unpowered and autorotate. Designs may also include stub wings for added lift. A cyclogyro or cyclocopter has a rotary wing whose axis and surfaces remain sideways across the airflow, as with a conventional wing. There are number of designs for achieving power lift, and some designs may use more than one. There are many experimental designs that have unique design features to achieve powered lift. A convertiplane takes off under rotor lift like

4260-541: The problem of learning to fly a jet-lift aircraft easier". Following the relatively successful trials of the TMR, Rolls-Royce decided to proceed with the development of the Rolls-Royce RB108 direct-lift turbojet; five of these engines were used to power the first true British VTOL aircraft, the Short SC.1 . The Rolls-Royce Thrust Measuring Rig (TMR) was a VTOL aircraft developed to explore the practicality, characteristics, and requirements of such an aircraft. It

4331-399: The test program. On 19 August 1953, the first TMR conducted its maiden flight at Hucknall Aerodrome. In order to perform these flights, a purpose-built gantry-like arrangement had been devised and assembled at Hucknall which, while not restricting the aircraft's movement within a defined space, prevented it from exceeding that boundary; it also prevented excessive descent rates, allowing for

SECTION 60

#1732783453209

4402-467: The thrust of its engines directly downwards. Due its small size, the TMR had a maximum flight endurance of only six minutes. It was powered by a pair of Nene turbojet engines, which were installed in a back-to-back configuration. The output of the jets was directed towards the centre of gravity of the rig; one jetpipe discharging downwards through a central nozzle while the other jet discharged downwards through two smaller nozzles on either side; this

4473-714: The ubiquitous helicopters, there are currently two types of VTOL aircraft in military service: tiltrotor aircraft, such as the Bell Boeing V-22 Osprey , and thrust-vectoring airplanes, such as the Harrier family and new F-35B Lightning II Joint Strike Fighter (JSF). In the civilian sector currently only helicopters are in general use (some other types of commercial VTOL aircraft have been proposed and are under development as of 2017 ). Generally speaking, VTOL aircraft capable of STOVL use it wherever possible, since it typically significantly increases takeoff weight, range or payload compared to pure VTOL. The idea of vertical flight has been around for thousands of years, and sketches for

4544-470: The vehicle. The Mercury space capsule and Gemini reentry module both used groupings of nozzles to provide attitude control . The thrusters were located off their center of mass , thus providing a torque to rotate the capsule. The Gemini capsule was also capable of adjusting its reentry course by rolling, which directed its off-center lifting force. The Mercury thrusters used a hydrogen peroxide monopropellant which turned to steam when forced through

4615-579: Was a prototype VTOL 6x General Electric J85 Turbojet engined nuclear capable strike fighter concept designed by Alexander Kartveli that had 3x ducted fans in the centre of its fuselage and tail as a possible contender for the TFX Program . Another design was the A400 AVS that used variable geometry wings but was found too complicated, however it led to the development of the AFVG which in turn helped

4686-614: Was demonstrated and evaluated in the United States aboard the aircraft carriers USS Guam and USS Guadalcanal , and at various other centres. These trials involved military pilots from the United States, the United Kingdom and Canada. During testing, two of the CL-84s crashed due to mechanical failures, but no loss of life occurred as a result of these accidents. No production contracts resulted. Although tiltrotors such as

4757-574: Was investigated in the 1950s. The US built an aircraft where the jet exhaust drove the fans , while British projects not built included fans driven by mechanical drives from the jet engines. NASA has flown other VTOL craft such as the Bell XV-15 research craft (1977), as have the Soviet Navy and Luftwaffe . Sikorsky tested an aircraft dubbed the X-Wing , which took off in the manner of

4828-651: Was raised upon four legs fitted with castors for wheels. The TMR lacked any lifting surfaces, such as wings ; instead, lift was generated purely by the thrust being directed downwards. Due to its unconventional appearance, it was nicknamed the Flying Bedstead . The TMR had been envisioned specifically for conducting research, specifically to explore the potential applications of then-newly developed jet propulsion towards carrying out vertical flights. First flying in August 1954, extensive studies were conducted during

4899-462: Was so that, in the event of a single engine failing during flight, there would not be any sharp adverse movement as a result. Considerable precautions were taken to safely sustain such an engine failure; the four-leg undercarriage was designed to support a vertical velocity of 34 feet per second (10 m/s), and to withstand a single-engine landing from any height below 50 feet (15 m). The TMR possessed only marginal excess power, which complicated

4970-655: Was the last scheduled test for the Grasshopper rig; next up will be low altitude tests of the Falcon 9 Reusable (F9R) development vehicle in Texas followed by high altitude testing in New Mexico. On November 23, 2015, Blue Origin 's New Shepard booster rocket made the first successful vertical landing following an uncrewed suborbital test flight that reached space. On December 21, 2015, SpaceX Falcon 9 first stage made

5041-406: Was widely known by its nickname of the Flying Bedstead due to its radically unconventional appearance for an aircraft, basically consisting of a rectangular tubular framework that was built around the engines, a platform being placed on top of which to accommodate a single pilot. It did not have any aerodynamic shape, lacking either wings or a tail; it instead generated all of its lift by directing

#208791