Misplaced Pages

Ketmen Ridge

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Ketmen Ridge is a mountain range located in southern Kazakhstan , close to the borders of China and Kyrgyzstan . The ridge is within the territory of the China and Raiymbek districts of the Almaty region . It is located to the east of the Zailiisky Alatau , in the northern Tien Shan mountain range. The total length of the ridge is 310 km (190 mi) and its width is up to 50 km (31 mi). The Ketmen Ridge runs from the Kyungei-Ala-Too Ridge in the west to the Narat Ridge in the east and its northern slopes pass into the Ili Valley . It forms the southern border of the ‘ Semirechiya ’ (‘Seven Rivers’) region, which surrounds Almaty . The altitude ranges from 3,000 to 3,600 m, with the highest point being Mount Aspan at 3,652 m (11,982 ft).

#81918

75-455: The ridge is composed of igneous and sedimentary rocks such as granite and limestone . The slopes are steep with gentle peaks below the snow line. The ridge has a permafrost zone but does not have glaciation or snowfields. It contains steppe and taiga forests which consist mainly of spruce trees and meadows in high-altitude zones. At the foot of the southern slope of the ridge, steppe bison remains have been found. The eponymous Ketmen Pass

150-420: A completely crystalline rock. Granitic rocks mainly consist of feldspar , quartz , mica , and amphibole minerals , which form an interlocking, somewhat equigranular matrix of feldspar and quartz with scattered darker biotite mica and amphibole (often hornblende ) peppering the lighter color minerals. Occasionally some individual crystals ( phenocrysts ) are larger than the groundmass , in which case

225-563: A basaltic magma to a granitic magma, but the quantities produced are small. For example, granitic rock makes up just 4% of the exposures in the South Sandwich Islands . In continental arc settings, granitic rocks are the most common plutonic rocks, and batholiths composed of these rock types extend the entire length of the arc. There are no indication of magma chambers where basaltic magmas differentiate into granites, or of cumulates produced by mafic crystals settling out of

300-520: A diapir it would expend far too much energy in heating wall rocks, thus cooling and solidifying before reaching higher levels within the crust. Fracture propagation is the mechanism preferred by many geologists as it largely eliminates the major problems of moving a huge mass of magma through cold brittle crust. Magma rises instead in small channels along self-propagating dykes which form along new or pre-existing fracture or fault systems and networks of active shear zones. As these narrow conduits open,

375-517: A few (known as leucogranites ) contain almost no dark minerals. Granite is nearly always massive (lacking any internal structures), hard (falling between 6 and 7 on the Mohs hardness scale) , and tough. These properties have made granite a widespread construction stone throughout human history. The word "granite" comes from the Latin granum , a grain, in reference to the coarse-grained structure of such

450-610: A granite that is derived from partial melting of metasedimentary rocks may have more alkali feldspar, whereas a granite derived from partial melting of metaigneous rocks may be richer in plagioclase. It is on this basis that the modern "alphabet" classification schemes are based. The letter-based Chappell & White classification system was proposed initially to divide granites into I-type (igneous source) granite and S-type (sedimentary sources). Both types are produced by partial melting of crustal rocks, either metaigneous rocks or metasedimentary rocks. I-type granites are characterized by

525-565: A high content of sodium and calcium, and by a strontium isotope ratio, Sr/ Sr, of less than 0.708. Sr is produced by radioactive decay of Rb, and since rubidium is concentrated in the crust relative to the mantle, a low ratio suggests origin in the mantle. The elevated sodium and calcium favor crystallization of hornblende rather than biotite. I-type granites are known for their porphyry copper deposits. I-type granites are orogenic (associated with mountain building) and usually metaluminous. S-type granites are sodium-poor and aluminum-rich. As

600-435: A light microscope, whereas cryptoperthitic textures can be seen only with an electron microscope. Buddingtonite is an ammonium feldspar with the chemical formula: NH 4 AlSi 3 O 8 . It is a mineral associated with hydrothermal alteration of the primary feldspar minerals. Barium feldspars form as the result of the substitution of barium for potassium in the mineral structure. Barium feldspars are sometimes classified as

675-473: A mild abrasive action. The USGS estimated global production of feldspar in 2020 to be 26 million tonnes, with the top four producing countries being: China 2 million tonnes; India 5 million tonnes; Italy 4 million; Turkey 7.6 million tonnes. Typical mineralogical and chemical analyses of three commercial grades used in ceramics are: In October 2012, the Curiosity rover found high feldspar content in

750-824: A much higher proportion of clay with the Cecil soil series a prime example of the consequent Ultisol great soil group. Granite is a natural source of radiation , like most natural stones. Potassium-40 is a radioactive isotope of weak emission, and a constituent of alkali feldspar , which in turn is a common component of granitic rocks, more abundant in alkali feldspar granite and syenites . Some granites contain around 10 to 20 parts per million (ppm) of uranium . By contrast, more mafic rocks, such as tonalite, gabbro and diorite , have 1 to 5 ppm uranium, and limestones and sedimentary rocks usually have equally low amounts. Many large granite plutons are sources for palaeochannel -hosted or roll front uranium ore deposits , where

825-536: A peculiar mineralogy and geochemistry, with particularly high silicon and potassium at the expense of calcium and magnesium and a high content of high field strength cations (cations with a small radius and high electrical charge, such as zirconium , niobium , tantalum , and rare earth elements .) They are not orogenic, forming instead over hot spots and continental rifting, and are metaluminous to mildly peralkaline and iron-rich. These granites are produced by partial melting of refractory lithology such as granulites in

SECTION 10

#1732765478082

900-568: A range of hills, formed by the metamorphic aureole or hornfels . Granite often occurs as relatively small, less than 100 km stock masses ( stocks ) and in batholiths that are often associated with orogenic mountain ranges. Small dikes of granitic composition called aplites are often associated with the margins of granitic intrusions . In some locations, very coarse-grained pegmatite masses occur with granite. Granite forms from silica-rich ( felsic ) magmas. Felsic magmas are thought to form by addition of heat or water vapor to rock of

975-415: A result, they contain micas such as biotite and muscovite instead of hornblende. Their strontium isotope ratio is typically greater than 0.708, suggesting a crustal origin. They also commonly contain xenoliths of metamorphosed sedimentary rock, and host tin ores. Their magmas are water-rich, and they readily solidify as the water outgasses from the magma at lower pressure, so they less commonly make it to

1050-399: A separate group of feldspars, and sometimes they are classified as a sub-group of alkali feldspars. The barium feldspars are monoclinic and include the following: The plagioclase feldspars are triclinic . The plagioclase series follows (with percent anorthite in parentheses): Intermediate compositions of exsolve to two feldspars of contrasting composition during cooling, but diffusion

1125-616: A short distance in cold and/or dry conditions that did not promote weathering, and that it was quickly buried by other sediment. Sandstones with large amounts of feldspar are called arkoses . Feldspar is a common raw material used in glassmaking, ceramics, and to some extent as filler and an extender in paint, plastics, and rubber. In the US, about 66% of feldspar is consumed in glassmaking, including glass containers and glass fibre. Ceramics (including electrical insulators, sanitaryware, tableware and tile) and other uses, such as fillers, accounted for

1200-725: A source of alkalies and alumina in glazes. The composition of feldspar used in different ceramic formulations varies depending on various factors, including the properties of the individual grade, the other raw materials and the requirements of the finished products. However, typical additions include: tableware, 15% to 30% feldspar; high-tension electrical porcelains, 25% to 35%; sanitaryware, 25%; wall tile, 0% to 10%; and dental porcelain up to 80% feldspar. Earth sciences : In earth sciences and archaeology, feldspars are used for potassium-argon dating , argon-argon dating and luminescence dating . Minor use : Some household cleaners (such as Bar Keepers Friend and Bon Ami ) use feldspar to give

1275-476: A three-dimensional network. Compositions of major elements in common feldspars can be expressed in terms of three endmembers : Solid solutions between K-feldspar and albite are called alkali feldspar. Solid solutions between albite and anorthite are called plagioclase , or, more properly, plagioclase feldspar. Only limited solid solution occurs between K-feldspar and anorthite, and in the two other solid solutions, immiscibility occurs at temperatures common in

1350-466: Is grus , which is often made up of coarse-grained fragments of disintegrated granite. Climatic variations also influence the weathering rate of granites. For about two thousand years, the relief engravings on Cleopatra's Needle obelisk had survived the arid conditions of its origin before its transfer to London. Within two hundred years, the red granite has drastically deteriorated in the damp and polluted air there. Soil development on granite reflects

1425-545: Is microgranite . The extrusive igneous rock equivalent of granite is rhyolite . Granitic rock is widely distributed throughout the continental crust . Much of it was intruded during the Precambrian age; it is the most abundant basement rock that underlies the relatively thin sedimentary veneer of the continents. Outcrops of granite tend to form tors , domes or bornhardts , and rounded massifs . Granites sometimes occur in circular depressions surrounded by

1500-517: Is 3–6·10 Pa·s. The melting temperature of dry granite at ambient pressure is 1215–1260 °C (2219–2300 °F); it is strongly reduced in the presence of water, down to 650 °C at a few hundred megapascals of pressure. Granite has poor primary permeability overall, but strong secondary permeability through cracks and fractures if they are present. A worldwide average of the chemical composition of granite, by weight percent, based on 2485 analyses: The medium-grained equivalent of granite

1575-480: Is a coarse-grained ( phaneritic ) intrusive igneous rock composed mostly of quartz , alkali feldspar , and plagioclase . It forms from magma with a high content of silica and alkali metal oxides that slowly cools and solidifies underground. It is common in the continental crust of Earth, where it is found in igneous intrusions . These range in size from dikes only a few centimeters across to batholiths exposed over hundreds of square kilometers. Granite

SECTION 20

#1732765478082

1650-708: Is a group of rock-forming aluminium tectosilicate minerals , also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the plagioclase (sodium-calcium) feldspars and the alkali (potassium-sodium) feldspars. Feldspars make up about 60% of the Earth's crust and 41% of the Earth's continental crust by weight. Feldspars crystallize from magma as both intrusive and extrusive igneous rocks and are also present in many types of metamorphic rock . Rock formed almost entirely of calcic plagioclase feldspar

1725-410: Is an excess of aluminum beyond what can be taken up in feldspars (Al 2 O 3 > CaO + K 2 O + Na 2 O) are described as peraluminous , and they contain aluminum-rich minerals such as muscovite . The average density of granite is between 2.65 and 2.75 g/cm (165 and 172 lb/cu ft), its compressive strength usually lies above 200 MPa (29,000 psi), and its viscosity near STP

1800-637: Is believed to have a mass of around 81 tonnes. It was the tallest temple in south India. Imperial Roman granite was quarried mainly in Egypt, and also in Turkey, and on the islands of Elba and Giglio . Granite became "an integral part of the Roman language of monumental architecture". The quarrying ceased around the third century AD. Beginning in Late Antiquity the granite was reused, which since at least

1875-434: Is called a binary or two-mica granite. Two-mica granites are typically high in potassium and low in plagioclase, and are usually S-type granites or A-type granites, as described below . Another aspect of granite classification is the ratios of metals that potentially form feldspars. Most granites have a composition such that almost all their aluminum and alkali metals (sodium and potassium) are combined as feldspar. This

1950-451: Is kinked. Each crankshaft chain links to neighbouring crankshaft chains to form a three-dimensional network of fused four-member rings. The structure is open enough for cations (typically sodium, potassium, or calcium) to fit into the structure and provide charge balance. Chemical weathering of feldspars happens by hydrolysis and produces clay minerals , including illite , smectite , and kaolinite . Hydrolysis of feldspars begins with

2025-667: Is known as anorthosite . Feldspars are also found in many types of sedimentary rocks . The name feldspar derives from the German Feldspat , a compound of the words Feld ("field") and Spat ("flake"). Spat had long been used as the word for "a rock easily cleaved into flakes"; Feldspat was introduced in the 18th century as a more specific term, referring perhaps to its common occurrence in rocks found in fields (Urban Brückmann, 1783) or to its occurrence as "fields" within granite and other minerals (René-Just Haüy, 1804). The change from Spat to -spar

2100-433: Is limited by the amount of thermal energy available, which must be replenished by crystallization of higher-melting minerals in the magma. Thus, the magma is melting crustal rock at its roof while simultaneously crystallizing at its base. This results in steady contamination with crustal material as the magma rises. This may not be evident in the major and minor element chemistry, since the minerals most likely to crystallize at

2175-990: Is located at an altitude of 3,040 m (9,970 ft) above sea level in the eastern part of the mountain range. A caravan trail from the Ili Valley to the Kegen-Tekes Hollow runs through the pass, which connects the northern slope in the Ketmen Gorge and southern slope of the ridge of the Shalkudysu river valley. The Ketmen Ridge includes 1,890 species of mountainous flora. The vegetation in this area consists primarily of vascular plants such as angiosperms, dicots, and monocots. Eighty-four species from 11 genera of rust fungi were found. The most abundant genera found were 48 species of Puccinia , and 12 species of Uromyces . Further Reading Granite Granite ( / ˈ ɡ r æ n ɪ t / GRAN -it )

2250-449: Is much slower than in alkali feldspar, and the resulting two-feldspar intergrowths typically are too fine-grained to be visible with optical microscopes. The immiscibility gaps in the plagioclase solid solutions are complex compared to the gap in the alkali feldspars. The play of colours visible in some feldspar of labradorite composition is due to very fine-grained exsolution lamellae known as Bøggild intergrowth. The specific gravity in

2325-404: Is permeated by sheets and channels of light granitic rock (the leucosome ). The leucosome is interpreted as partial melt of a parent rock that has begun to separate from the remaining solid residue (the melanosome). If enough partial melt is produced, it will separate from the source rock, become more highly evolved through fractional crystallization during its ascent toward the surface, and become

Ketmen Ridge - Misplaced Pages Continue

2400-454: Is relieved when overlying material is removed by erosion or other processes. Chemical weathering of granite occurs when dilute carbonic acid , and other acids present in rain and soil waters, alter feldspar in a process called hydrolysis . As demonstrated in the following reaction, this causes potassium feldspar to form kaolinite , with potassium ions, bicarbonate, and silica in solution as byproducts. An end product of granite weathering

2475-411: Is some concern that some granite sold as countertops or building material may be hazardous to health. Dan Steck of St. Johns University has stated that approximately 5% of all granite is of concern, with the caveat that only a tiny percentage of the tens of thousands of granite slab types have been tested. Resources from national geological survey organizations are accessible online to assist in assessing

2550-479: Is that magma will rise through the crust as a single mass through buoyancy . As it rises, it heats the wall rocks , causing them to behave as a power-law fluid and thus flow around the intrusion allowing it to pass without major heat loss. This is entirely feasible in the warm, ductile lower crust where rocks are easily deformed, but runs into problems in the upper crust which is far colder and more brittle. Rocks there do not deform so easily: for magma to rise as

2625-410: Is the case when K 2 O + Na 2 O + CaO > Al 2 O 3 > K 2 O + Na 2 O. Such granites are described as normal or metaluminous . Granites in which there is not enough aluminum to combine with all the alkali oxides as feldspar (Al 2 O 3 < K 2 O + Na 2 O) are described as peralkaline , and they contain unusual sodium amphiboles such as riebeckite . Granites in which there

2700-489: Is typical of a larger family of granitic rocks , or granitoids , that are composed mostly of coarse-grained quartz and feldspars in varying proportions. These rocks are classified by the relative percentages of quartz, alkali feldspar, and plagioclase (the QAPF classification ), with true granite representing granitic rocks rich in quartz and alkali feldspar. Most granitic rocks also contain mica or amphibole minerals, though

2775-409: Is typically orthoclase or microcline and is often perthitic . The plagioclase is typically sodium-rich oligoclase . Phenocrysts are usually alkali feldspar. Granitic rocks are classified according to the QAPF diagram for coarse grained plutonic rocks and are named according to the percentage of quartz , alkali feldspar ( orthoclase , sanidine , or microcline ) and plagioclase feldspar on

2850-428: Is uncommon, is classified simply as quartz-rich granitoid or, if composed almost entirely of quartz, as quartzolite . True granites are further classified by the percentage of their total feldspar that is alkali feldspar. Granites whose feldspar is 65% to 90% alkali feldspar are syenogranites , while the feldspar in monzogranite is 35% to 65% alkali feldspar. A granite containing both muscovite and biotite micas

2925-571: The A-Q-P half of the diagram. True granite (according to modern petrologic convention) contains between 20% and 60% quartz by volume, with 35% to 90% of the total feldspar consisting of alkali feldspar . Granitic rocks poorer in quartz are classified as syenites or monzonites , while granitic rocks dominated by plagioclase are classified as granodiorites or tonalites . Granitic rocks with over 90% alkali feldspar are classified as alkali feldspar granites . Granitic rock with more than 60% quartz, which

3000-463: The Earth's crust means that clays are very abundant weathering products. About 40% of minerals in sedimentary rocks are clays and clays are the dominant minerals in the most common sedimentary rocks, mudrocks . They are also an important component of soils . Feldspar that has been replaced by clay looks chalky compared to more crystalline and glassy unweathered feldspar grains. Feldspars, especially plagioclase feldspars, are not very stable at

3075-420: The Earth's surface due to their high formation temperature. This lack of stability is why feldspars are easily weathered to clays. Because of this tendency to weather easily, feldspars are usually not prevalent in sedimentary rocks. Sedimentary rocks that contain large amounts of feldspar indicate that the sediment did not undergo much chemical weathering before being buried. This means it was probably transported

Ketmen Ridge - Misplaced Pages Continue

3150-567: The European Union safety standards (section 4.1.1.1 of the National Health and Engineering study) and radon emission levels well below the average outdoor radon concentrations in the US. Granite and related marble industries are considered one of the oldest industries in the world, existing as far back as Ancient Egypt . Major modern exporters of granite include China, India, Italy, Brazil, Canada, Germany, Sweden, Spain and

3225-511: The United States. The Red Pyramid of Egypt ( c.  2590 BC ), named for the light crimson hue of its exposed limestone surfaces, is the third largest of Egyptian pyramids . Pyramid of Menkaure , likely dating 2510 BC, was constructed of limestone and granite blocks. The Great Pyramid of Giza (c. 2580 BC ) contains a huge granite sarcophagus fashioned of "Red Aswan Granite". The mostly ruined Black Pyramid dating from

3300-464: The alkali feldspars occur only in higher temperature environments. Sanidine is stable at the highest temperatures, and microcline at the lowest. Perthite is a typical texture in alkali feldspar, due to exsolution of contrasting alkali feldspar compositions during cooling of an intermediate composition. The perthitic textures in the alkali feldspars of many granites can be seen with the naked eye. Microperthitic textures in crystals are visible using

3375-419: The base of the chamber are the same ones that would crystallize anyway, but crustal assimilation is detectable in isotope ratios. Heat loss to the country rock means that ascent by assimilation is limited to distance similar to the height of the magma chamber. Physical weathering occurs on a large scale in the form of exfoliation joints , which are the result of granite's expanding and fracturing as pressure

3450-418: The big difference in rheology between mafic and felsic magmas makes this process problematic in nature. Granitization is an old, and largely discounted, hypothesis that granite is formed in place through extreme metasomatism . The idea behind granitization was that fluids would supposedly bring in elements such as potassium, and remove others, such as calcium, to transform a metamorphic rock into granite. This

3525-443: The continuous Bowen's reaction series . K-feldspar is the final feldspar to crystallize from the magma. Alkali feldspars are grouped into two types: those containing potassium in combination with sodium, aluminium, or silicon; and those where potassium is replaced by barium. The first of these include: Potassium and sodium feldspars are not perfectly miscible in the melt at low temperatures, therefore intermediate compositions of

3600-424: The crust of the Earth. Albite is considered both a plagioclase and alkali feldspar. The ratio of alkali feldspar to plagioclase feldspar, together with the proportion of quartz , is the basis for the QAPF classification of igneous rock. Calcium-rich plagioclase is the first feldspar to crystallize from cooling magma, then the plagioclase becomes increasingly sodium-rich as crystallization continues. This defines

3675-404: The division between S-type (produced by underplating) and I-type (produced by injection and differentiation) granites, discussed below. The composition and origin of any magma that differentiates into granite leave certain petrological evidence as to what the granite's parental rock was. The final texture and composition of a granite are generally distinctive as to its parental rock. For instance,

3750-473: The early 16th century became known as spolia . Through the process of case-hardening , granite becomes harder with age. The technology required to make tempered metal chisels was largely forgotten during the Middle Ages. As a result, Medieval stoneworkers were forced to use saws or emery to shorten ancient columns or hack them into discs. Giorgio Vasari noted in the 16th century that granite in quarries

3825-429: The feldspar dissolving in water, which happens best in acidic or basic solutions and less well in neutral ones. The speed at which feldspars are weathered is controlled by how quickly they are dissolved. Dissolved feldspar reacts with H or OH ions and precipitates clays. The reaction also produces new ions in solution, with the variety of ions controlled by the type of feldspar reacting. The abundance of feldspars in

SECTION 50

#1732765478082

3900-579: The first magma to enter solidifies and provides a form of insulation for later magma. These mechanisms can operate in tandem. For example, diapirs may continue to rise through the brittle upper crust through stoping , where the granite cracks the roof rocks, removing blocks of the overlying crust which then sink to the bottom of the diapir while the magma rises to take their place. This can occur as piecemeal stopping (stoping of small blocks of chamber roof), as cauldron subsidence (collapse of large blocks of chamber roof), or as roof foundering (complete collapse of

3975-713: The grotto is a highly regarded piece of Buddhist art , and along with the temple complex to which it belongs, Seokguram was added to the UNESCO World Heritage List in 1995. Rajaraja Chola I of the Chola Dynasty in South India built the world's first temple entirely of granite in the 11th century AD in Tanjore , India . The Brihadeeswarar Temple dedicated to Lord Shiva was built in 1010. The massive Gopuram (ornate, upper section of shrine)

4050-474: The lower crust , rather than by decompression of mantle rock, as is the case with basaltic magmas. It has also been suggested that some granites found at convergent boundaries between tectonic plates , where oceanic crust subducts below continental crust, were formed from sediments subducted with the oceanic plate. The melted sediments would have produced magma intermediate in its silica content, which became further enriched in silica as it rose through

4125-729: The lower continental crust at high thermal gradients. This leads to significant extraction of hydrous felsic melts from granulite-facies resitites. A-type granites occur in the Koettlitz Glacier Alkaline Province in the Royal Society Range, Antarctica. The rhyolites of the Yellowstone Caldera are examples of volcanic equivalents of A-type granite. M-type granite was later proposed to cover those granites that were clearly sourced from crystallized mafic magmas, generally sourced from

4200-435: The magma is inevitable once enough magma has accumulated. However, the question of precisely how such large quantities of magma are able to shove aside country rock to make room for themselves (the room problem ) is still a matter of research. Two main mechanisms are thought to be important: Of these two mechanisms, Stokes diapirism has been favoured for many years in the absence of a reasonable alternative. The basic idea

4275-426: The magma. Other processes must produce these great volumes of felsic magma. One such process is injection of basaltic magma into the lower crust, followed by differentiation, which leaves any cumulates in the mantle. Another is heating of the lower crust by underplating basaltic magma, which produces felsic magma directly from crustal rock. The two processes produce different kinds of granites, which may be reflected in

4350-408: The magmatic parent of granitic rock. The residue of the source rock becomes a granulite . The partial melting of solid rocks requires high temperatures and the addition of water or other volatiles which lower the solidus temperature (temperature at which partial melting commences) of these rocks. It was long debated whether crustal thickening in orogens (mountain belts along convergent boundaries )

4425-405: The mantle. Although the fractional crystallisation of basaltic melts can yield small amounts of granites, which are sometimes found in island arcs, such granites must occur together with large amounts of basaltic rocks. H-type granites were suggested for hybrid granites, which were hypothesized to form by mixing between mafic and felsic from different sources, such as M-type and S-type. However,

4500-441: The overlying crust. Early fractional crystallisation serves to reduce a melt in magnesium and chromium, and enrich the melt in iron, sodium, potassium, aluminum, and silicon. Further fractionation reduces the content of iron, calcium, and titanium. This is reflected in the high content of alkali feldspar and quartz in granite. The presence of granitic rock in island arcs shows that fractional crystallization alone can convert

4575-488: The plagioclase series increases from albite (2.62) to anorthite (2.72–2.75). The structure of a feldspar crystal is based on aluminosilicate tetrahedra. Each tetrahedron consists of an aluminium or silicon ion surrounded by four oxygen ions. Each oxygen ion, in turn, is shared by a neighbouring tetrahedron to form a three-dimensional network. The structure can be visualized as long chains of aluminosilicate tetrahedra, sometimes described as crankshaft chains because their shape

SECTION 60

#1732765478082

4650-736: The reign of Amenemhat III once had a polished granite pyramidion or capstone, which is now on display in the main hall of the Egyptian Museum in Cairo (see Dahshur ). Other uses in Ancient Egypt include columns , door lintels , sills , jambs , and wall and floor veneer. How the Egyptians worked the solid granite is still a matter of debate. Tool marks described by the Egyptologist Anna Serotta indicate

4725-487: The remainder. Glass : Feldspar provides both K 2 O and Na 2 O for fluxing, and Al 2 O 3 and CaO as stabilizers. As an important source of Al 2 O 3 for glassmaking, feldspar is valued for its low iron and refractory mineral content, a low cost per unit of Al 2 O 3 , no volatiles and no waste. Ceramics : Feldspars are used in the ceramic industry as a flux to form a glassy phase in bodies during firing, and thus promote vitrification. They also are used as

4800-564: The risk factors in granite country and design rules relating, in particular, to preventing accumulation of radon gas in enclosed basements and dwellings. A study of granite countertops was done (initiated and paid for by the Marble Institute of America) in November 2008 by National Health and Engineering Inc. of USA. In this test, all of the 39 full-size granite slabs that were measured for the study showed radiation levels well below

4875-418: The rock's high quartz content and dearth of available bases, with the base-poor status predisposing the soil to acidification and podzolization in cool humid climates as the weather-resistant quartz yields much sand. Feldspars also weather slowly in cool climes, allowing sand to dominate the fine-earth fraction. In warm humid regions, the weathering of feldspar as described above is accelerated so as to allow

4950-414: The rocks often bear a close resemblance. Under these conditions, granitic melts can be produced in place through the partial melting of metamorphic rocks by extracting melt-mobile elements such as potassium and silicon into the melts but leaving others such as calcium and iron in granulite residues. This may be the origin of migmatites . A migmatite consists of dark, refractory rock (the melanosome ) that

5025-492: The roof of a shallow magma chamber accompanied by a caldera eruption.) There is evidence for cauldron subsidence at the Mt. Ascutney intrusion in eastern Vermont. Evidence for piecemeal stoping is found in intrusions that are rimmed with igneous breccia containing fragments of country rock. Assimilation is another mechanism of ascent, where the granite melts its way up into the crust and removes overlying material in this way. This

5100-435: The surface than magmas of I-type granites, which are thus more common as volcanic rock (rhyolite). They are also orogenic but range from metaluminous to strongly peraluminous. Although both I- and S-type granites are orogenic, I-type granites are more common close to the convergent boundary than S-type. This is attributed to thicker crust further from the boundary, which results in more crustal melting. A-type granites show

5175-440: The texture is known as porphyritic . A granitic rock with a porphyritic texture is known as a granite porphyry . Granitoid is a general, descriptive field term for lighter-colored, coarse-grained igneous rocks. Petrographic examination is required for identification of specific types of granitoids. Granites can be predominantly white, pink, or gray in color, depending on their mineralogy . The alkali feldspar in granites

5250-502: The uranium washes into the sediments from the granite uplands and associated, often highly radioactive pegmatites. Cellars and basements built into soils over granite can become a trap for radon gas, which is formed by the decay of uranium. Radon gas poses significant health concerns and is the number two cause of lung cancer in the US behind smoking. Thorium occurs in all granites. Conway granite has been noted for its relatively high thorium concentration of 56±6 ppm. There

5325-617: The use of flint tools on finer work with harder stones, e.g. when producing the hieroglyphic inscriptions. Patrick Hunt has postulated that the Egyptians used emery , which has greater hardness. The Seokguram Grotto in Korea is a Buddhist shrine and part of the Bulguksa temple complex. Completed in 774 AD, it is an artificial grotto constructed entirely of granite. The main Buddha of

5400-425: Was "far softer and easier to work than after it has lain exposed" while ancient columns, because of their "hardness and solidity have nothing to fear from fire or sword, and time itself, that drives everything to ruin, not only has not destroyed them but has not even altered their colour." Alkali feldspar Feldspar ( / ˈ f ɛ l ( d ) ˌ s p ɑːr / FEL(D) -spar ; sometimes spelled felspar )

5475-595: Was influenced by the English word spar , meaning a non-opaque mineral with good cleavage. Feldspathic refers to materials that contain feldspar. The alternate spelling, felspar , has fallen out of use. The term 'felsic', meaning light coloured minerals such as quartz and feldspars, is an acronymic word derived from fel dspar and si lica, unrelated to the obsolete spelling 'felspar'. The feldspar group of minerals consists of tectosilicates , silicate minerals in which silicon ions are linked by shared oxygen ions to form

5550-405: Was sufficient to produce granite melts by radiogenic heating , but recent work suggests that this is not a viable mechanism. In-situ granitization requires heating by the asthenospheric mantle or by underplating with mantle-derived magmas. Granite magmas have a density of 2.4 Mg/m , much less than the 2.8 Mg/m of high-grade metamorphic rock. This gives them tremendous buoyancy, so that ascent of

5625-564: Was supposed to occur across a migrating front. However, experimental work had established by the 1960s that granites were of igneous origin. The mineralogical and chemical features of granite can be explained only by crystal-liquid phase relations, showing that there must have been at least enough melting to mobilize the magma. However, at sufficiently deep crustal levels, the distinction between metamorphism and crustal melting itself becomes vague. Conditions for crystallization of liquid magma are close enough to those of high-grade metamorphism that

#81918