Misplaced Pages

Kshiroda plate

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Kshiroda plate ( / ʃ ɪ ˈ r oʊ d ə / ) is a hypothetical oceanic tectonic plate which is believed to have existed more than 40 million years ago, to the south of the Eurasian plate , corresponding to the regions of modern South Asia.

#578421

105-539: The Kshiroda plate was discovered when geologists studying the boundary zone between the Indian and Eurasian plates, noticed that the data supported the existence of two parallel subduction zones between the plates. This was studied in detail in 2015 by Oliver Jagoutz, a geologist at the Massachusetts Institute of Technology , Cambridge, Massachusetts , and his team, who identified the possibilities of

210-505: A reflexive verb . The lower plate itself is the subject. It subducts, in the sense of retreat, or removes itself, and while doing so, is the "subducting plate". Moreover, the word slab is specifically attached to the "subducting plate", even though in English the upper plate is just as much of a slab. The upper plate is left hanging, so to speak. To express it geology must switch to a different verb, typically to override . The upper plate,

315-468: A common feature at oceanic spreading centers. A feature of the elevated ridges is their relatively high heat flow values, of about 1–10 μcal/cm s, or roughly 0.04–0.4 W/m . Most crust in the ocean basins is less than 200 million years old, which is much younger than the 4.54 billion year age of Earth . This fact reflects the process of lithosphere recycling into the Earth's mantle during subduction . As

420-509: A depth of about 2,600 meters (8,500 ft) and rises about 2,000 meters (6,600 ft) above the deepest portion of an ocean basin . This feature is where seafloor spreading takes place along a divergent plate boundary . The rate of seafloor spreading determines the morphology of the crest of the mid-ocean ridge and its width in an ocean basin. The production of new seafloor and oceanic lithosphere results from mantle upwelling in response to plate separation. The melt rises as magma at

525-517: A hidden tectonic plate in the region. The usage of the term "Kshiroda plate" began the same year 2015. Around 50 million years ago, the Indian plate collided with the southern subduction zone of the Kshiroda oceanic plate causing the plate to shrink. It was pushed northwards and eventually collapsed more than 40 million years ago. It was pushed below the crust of the Eurasian plate and this led to

630-460: A larger portion of Earth's crust to deform in a more brittle fashion than it would in a normal geothermal gradient setting. Because earthquakes can occur only when a rock is deforming in a brittle fashion, subduction zones can cause large earthquakes. If such a quake causes rapid deformation of the sea floor, there is potential for tsunamis . The largest tsunami ever recorded happened due to a mega-thrust earthquake on December 26, 2004 . The earthquake

735-457: A minimum estimate of how far the continent has subducted. The results show at least a minimum of 229 kilometers of subduction of the northern Australian continental plate. Another example may be the continued northward motion of India, which is subducting beneath Asia. The collision between the two continents initiated around 50 my ago, but is still active. Oceanic-Oceanic plate subduction zones comprise roughly 40% of all subduction zone margins on

840-469: A point of no return. Sections of crustal or intraoceanic arc crust greater than 15 km (9.3 mi) in thickness or oceanic plateau greater than 30 km (19 mi) in thickness can disrupt subduction. However, island arcs subducted end-on may cause only local disruption, while an arc arriving parallel to the zone can shut it down. This has happened with the Ontong Java Plateau and

945-553: A ship of the Lamont–Doherty Earth Observatory of Columbia University , traversed the Atlantic Ocean, recording echo sounder data on the depth of the ocean floor. A team led by Marie Tharp and Bruce Heezen concluded that there was an enormous mountain chain with a rift valley at its crest, running up the middle of the Atlantic Ocean. Scientists named it the 'Mid-Atlantic Ridge'. Other research showed that

1050-408: A subduction zone drags the rest of the plate along behind it. The slab pull mechanism is considered to be contributing more than the ridge push. A process previously proposed to contribute to plate motion and the formation of new oceanic crust at mid-ocean ridges is the "mantle conveyor" due to deep convection (see image). However, some studies have shown that the upper mantle ( asthenosphere )

1155-510: A zone of shortening and crustal thickening in which there may be extensive folding and thrust faulting . If the angle of subduction steepens or rolls back, the upper plate lithosphere will be put in tension instead, often producing a back-arc basin . The arc-trench complex is the surface expression of a much deeper structure. Though not directly accessible, the deeper portions can be studied using geophysics and geochemistry . Subduction zones are defined by an inclined zone of earthquakes ,

SECTION 10

#1732775454579

1260-418: Is "consumed", which happens the geological moment the lower plate slips under, even though it may persist for some time until its remelting and dissipation. In this conceptual model, plate is continually being used up. The identity of the subject, the consumer, or agent of consumption, is left unstated. Some sources accept this subject-object construct. Geology makes to subduct into an intransitive verb and

1365-420: Is a global scale ion-exchange system. Hydrothermal vents at spreading centers introduce various amounts of iron , sulfur , manganese , silicon , and other elements into the ocean, some of which are recycled into the ocean crust. Helium-3 , an isotope that accompanies volcanism from the mantle, is emitted by hydrothermal vents and can be detected in plumes within the ocean. Fast spreading rates will expand

1470-499: Is accreted to (scraped off) the continent, resulting in exotic terranes . The collision of this oceanic material causes crustal thickening and mountain-building. The accreted material is often referred to as an accretionary wedge or prism. These accretionary wedges can be associated with ophiolites (uplifted ocean crust consisting of sediments, pillow basalts, sheeted dykes, gabbro, and peridotite). Subduction may also cause orogeny without bringing in oceanic material that accretes to

1575-413: Is broken into sixteen larger tectonic plates and several smaller plates. These plates are in slow motion, due mostly to the pull force of subducting lithosphere. Sinking lithosphere at subduction zones are a part of convection cells in the underlying ductile mantle . This process of convection allows heat generated by radioactive decay to escape from the Earth's interior. The lithosphere consists of

1680-496: Is characterized by low geothermal gradients and the associated formation of high-pressure low-temperature rocks such as eclogite and blueschist . Likewise, rock assemblages called ophiolites , associated with modern-style subduction, also indicate such conditions. Eclogite xenoliths found in the North China Craton provide evidence that modern-style subduction occurred at least as early as 1.8  Ga ago in

1785-409: Is currently banned by international agreement. Furthermore, plate subduction zones are associated with very large megathrust earthquakes , making the effects of using any specific site for disposal unpredictable and possibly adverse to the safety of long-term disposal. Mid-ocean ridge A mid-ocean ridge ( MOR ) is a seafloor mountain system formed by plate tectonics . It typically has

1890-403: Is driven by the temperature difference between the slab and the surrounding asthenosphere, as the colder oceanic lithosphere is, on average, more dense. Sediments and some trapped water are carried downwards by the slab and recycled into the deep mantle. Earth is so far the only planet where subduction is known to occur, and subduction zones are its most important tectonic feature. Subduction

1995-444: Is fairly well understood, the process by which subduction is initiated remains a matter of discussion and continuing study. Subduction can begin spontaneously if the denser oceanic lithosphere can founder and sink beneath the adjacent oceanic or continental lithosphere through vertical forcing only; alternatively, existing plate motions can induce new subduction zones by horizontally forcing the oceanic lithosphere to rupture and sink into

2100-614: Is found behind the Aleutian Trench subduction zone in Alaska. Volcanoes that occur above subduction zones, such as Mount St. Helens , Mount Etna , and Mount Fuji , lie approximately one hundred kilometers from the trench in arcuate chains called volcanic arcs . Plutons, like Half Dome in Yosemite National Park, generally form 10–50 km below the volcanoes within the volcanic arcs and are only visible on

2205-443: Is in a constant state of 'renewal' at the mid-ocean ridges by the processes of seafloor spreading and plate tectonics. New magma steadily emerges onto the ocean floor and intrudes into the existing ocean crust at and near rifts along the ridge axes. The rocks making up the crust below the seafloor are youngest along the axis of the ridge and age with increasing distance from that axis. New magma of basalt composition emerges at and near

SECTION 20

#1732775454579

2310-477: Is more buoyant and as a result will rise into the lithosphere, where it forms large magma chambers called diapirs. Some of the magma will make it to the surface of the crust where it will form volcanoes and, if eruptive on earth's surface, will produce andesitic lava. Magma that remains in the lithosphere long enough will cool and form plutonic rocks such as diorite, granodiorite, and sometimes granite. The arc magmatism occurs one hundred to two hundred kilometers from

2415-411: Is old, goes down the subduction zone. As this happens, metamorphic reactions increase the density of the continental crustal rocks, which leads to less buoyancy. One study of the active Banda arc-continent collision claims that by unstacking the layers of rock that once covered the continental basement, but are now thrust over one another in the orogenic wedge, and measuring how long they are, can provide

2520-723: Is ongoing beneath part of the Andes , causing segmentation of the Andean Volcanic Belt into four zones. The flat-slab subduction in northern Peru and the Norte Chico region of Chile is believed to be the result of the subduction of two buoyant aseismic ridges, the Nazca Ridge and the Juan Fernández Ridge , respectively. Around Taitao Peninsula flat-slab subduction is attributed to the subduction of

2625-426: Is possible because the cold and rigid oceanic lithosphere is slightly denser than the underlying asthenosphere , the hot, ductile layer in the upper mantle . Once initiated, stable subduction is driven mostly by the negative buoyancy of the dense subducting lithosphere. The down-going slab sinks into the mantle largely under its own weight. Earthquakes are common along subduction zones, and fluids released by

2730-404: Is the driving force behind plate tectonics , and without it, plate tectonics could not occur. Oceanic subduction zones are located along 55,000 km (34,000 mi) convergent plate margins, almost equal to the cumulative plate formation rate 60,000 km (37,000 mi) of mid-ocean ridges. Sea water seeps into oceanic lithosphere through fractures and pores, and reacts with minerals in

2835-478: Is the result of changes in the volume of the ocean basins which are, in turn, affected by rates of seafloor spreading along the mid-ocean ridges. The 100 to 170 meters higher sea level of the Cretaceous Period (144–65 Ma) is partly attributed to plate tectonics because thermal expansion and the absence of ice sheets only account for some of the extra sea level. Seafloor spreading on mid-ocean ridges

2940-440: Is too plastic (flexible) to generate enough friction to pull the tectonic plate along. Moreover, mantle upwelling that causes magma to form beneath the ocean ridges appears to involve only its upper 400 km (250 mi), as deduced from seismic tomography and observations of the seismic discontinuity in the upper mantle at about 400 km (250 mi). On the other hand, some of the world's largest tectonic plates such as

3045-451: Is underlain by denser material and is deeper. Spreading rate is the rate at which an ocean basin widens due to seafloor spreading. Rates can be computed by mapping marine magnetic anomalies that span mid-ocean ridges. As crystallized basalt extruded at a ridge axis cools below Curie points of appropriate iron-titanium oxides, magnetic field directions parallel to the Earth's magnetic field are recorded in those oxides. The orientations of

3150-528: The Cascade Volcanic Arc , that form along the coast of continents. Island arcs (intraoceanic or primitive arcs) are produced by the subduction of oceanic lithosphere beneath another oceanic lithosphere (ocean-ocean subduction) while continental arcs (Andean arcs) form during the subduction of oceanic lithosphere beneath a continental lithosphere (ocean-continent subduction). An example of a volcanic arc having both island and continental arc sections

3255-774: The Chile Rise , a spreading ridge . The Laramide Orogeny in the Rocky Mountains of the United States is attributed to flat-slab subduction. During this orogeny, a broad volcanic gap appeared at the southwestern margin of North America, and deformation occurred much farther inland; it was during this time that the basement -cored mountain ranges of Colorado, Utah, Wyoming, South Dakota, and New Mexico came into being. The most massive subduction zone earthquakes, so-called "megaquakes", have been found to occur in flat-slab subduction zones. Although stable subduction

Kshiroda plate - Misplaced Pages Continue

3360-585: The North American plate and South American plate are in motion, yet only are being subducted in restricted locations such as the Lesser Antilles Arc and Scotia Arc , pointing to action by the ridge push body force on these plates. Computer modeling of the plates and mantle motions suggest that plate motion and mantle convection are not connected, and the main plate driving force is slab pull. Increased rates of seafloor spreading (i.e.

3465-630: The Paleoproterozoic Era . The eclogite itself was produced by oceanic subduction during the assembly of supercontinents at about 1.9–2.0 Ga. Blueschist is a rock typical for present-day subduction settings. The absence of blueschist older than Neoproterozoic reflects more magnesium-rich compositions of Earth's oceanic crust during that period. These more magnesium-rich rocks metamorphose into greenschist at conditions when modern oceanic crust rocks metamorphose into blueschist. The ancient magnesium-rich rocks mean that Earth's mantle

3570-473: The Southwest Indian Ridge ). The spreading center or axis commonly connects to a transform fault oriented at right angles to the axis. The flanks of mid-ocean ridges are in many places marked by the inactive scars of transform faults called fracture zones . At faster spreading rates the axes often display overlapping spreading centers that lack connecting transform faults. The depth of

3675-491: The Vitiaz Trench . Subduction zones host a unique variety of rock types created by the high-pressure, low-temperature conditions a subducting slab encounters during its descent. The metamorphic conditions the slab passes through in this process create and destroy water bearing (hydrous) mineral phases, releasing water into the mantle. This water lowers the melting point of mantle rock, initiating melting. Understanding

3780-533: The Wadati–Benioff zone , that dips away from the trench and extends down below the volcanic arc to the 660-kilometer discontinuity . Subduction zone earthquakes occur at greater depths (up to 600 km (370 mi)) than elsewhere on Earth (typically less than 20 km (12 mi) depth); such deep earthquakes may be driven by deep phase transformations , thermal runaway , or dehydration embrittlement . Seismic tomography shows that some slabs can penetrate

3885-525: The convergent boundaries between tectonic plates. Where one tectonic plate converges with a second plate, the heavier plate dives beneath the other and sinks into the mantle. A region where this process occurs is known as a subduction zone , and its surface expression is known as an arc-trench complex . The process of subduction has created most of the Earth's continental crust. Rates of subduction are typically measured in centimeters per year, with rates of convergence as high as 11 cm/year. Subduction

3990-406: The core–mantle boundary . Here the slabs are heated up by the ambient heat and are not detected anymore ~300 Myr after subduction. Orogeny is the process of mountain building. Subducting plates can lead to orogeny by bringing oceanic islands, oceanic plateaus, sediments and passive continental margins to convergent margins. The material often does not subduct with the rest of the plate but instead

4095-414: The longest mountain range in the world. The continuous mountain range is 65,000 km (40,400 mi) long (several times longer than the Andes , the longest continental mountain range), and the total length of the oceanic ridge system is 80,000 km (49,700 mi) long. At the spreading center on a mid-ocean ridge, the depth of the seafloor is approximately 2,600 meters (8,500 ft). On

4200-411: The lower mantle and sink clear to the core–mantle boundary . Here the residue of the slabs may eventually heat enough to rise back to the surface as mantle plumes . Subduction typically occurs at a moderately steep angle by the time it is beneath the volcanic arc. However, anomalous shallower angles of subduction are known to exist as well as some that are extremely steep. Flat-slab subduction

4305-416: The zeolite , prehnite-pumpellyite, blueschist , and eclogite facies stability zones of subducted oceanic crust. Zeolite and prehnite-pumpellyite facies assemblages may or may not be present, thus the onset of metamorphism may only be marked by blueschist facies conditions. Subducting slabs are composed of basaltic crust topped with pelagic sediments ; however, the pelagic sediments may be accreted onto

Kshiroda plate - Misplaced Pages Continue

4410-506: The Alaskan crust. The concept of subduction would play a role in the development of the plate tectonics theory. First geologic attestations of the "subduct" words date to 1970, In ordinary English to subduct , or to subduce (from Latin subducere , "to lead away") are transitive verbs requiring a subject to perform an action on an object not itself, here the lower plate, which has then been subducted ("removed"). The geological term

4515-588: The Alps. The chemistry of the inclusions supports the existence of a carbon-rich fluid in that environment, and additional chemical measurements of lower pressure and temperature facies in the same tectonic complex support a model for carbon dissolution (rather than decarbonation) as a means of carbon transport. Elastic strain caused by plate convergence in subduction zones produces at least three types of earthquakes. These are deep earthquakes, megathrust earthquakes, and outer rise earthquakes. Deep earthquakes happen within

4620-769: The East Pacific Rise lack rift valleys. The spreading rate of the North Atlantic Ocean is ~ 25 mm/yr, while in the Pacific region, it is 80–145 mm/yr. The highest known rate is over 200 mm/yr in the Miocene on the East Pacific Rise. Ridges that spread at rates <20 mm/yr are referred to as ultraslow spreading ridges (e.g., the Gakkel Ridge in the Arctic Ocean and

4725-526: The Kshiroda plate was pushed above the Eurasian landmass leading to the formation of the earliest mountains of the Himalayas , while the rest of the mountains were formed due to the folding of the Indian and Eurasian continental landmasses. Subduction zones Subduction is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at

4830-680: The Mid-Atlantic Ridge have spread much less far (showing a steeper profile) than faster ridges such as the East Pacific Rise (gentle profile) for the same amount of time and cooling and consequent bathymetric deepening. Slow-spreading ridges (less than 40 mm/yr) generally have large rift valleys , sometimes as wide as 10–20 km (6.2–12.4 mi), and very rugged terrain at the ridge crest that can have relief of up to 1,000 m (3,300 ft). By contrast, fast-spreading ridges (greater than 90 mm/yr) such as

4935-427: The asthenosphere at ocean trenches . Two processes, ridge-push and slab pull , are thought to be responsible for spreading at mid-ocean ridges. Ridge push refers to the gravitational sliding of the ocean plate that is raised above the hotter asthenosphere, thus creating a body force causing sliding of the plate downslope. In slab pull the weight of a tectonic plate being subducted (pulled) below an overlying plate at

5040-472: The asthenosphere. Both models can eventually yield self-sustaining subduction zones, as the oceanic crust is metamorphosed at great depth and becomes denser than the surrounding mantle rocks. The compilation of subduction zone initiation events back to 100 Ma suggests horizontally-forced subduction zone initiation for most modern subduction zones, which is supported by results from numerical models and geologic studies. Some analogue modeling shows, however,

5145-510: The asthenosphere. Individual plates often include both regions of the oceanic lithosphere and continental lithosphere. Subduction zones are where cold oceanic lithosphere sinks back into the mantle and is recycled. They are found at convergent plate boundaries, where the heavier oceanic lithosphere of one plate is overridden by the leading edge of another, less-dense plate. The overridden plate (the slab ) sinks at an angle most commonly between 25 and 75 degrees to Earth's surface. This sinking

5250-478: The axis because of decompression melting in the underlying Earth's mantle . The isentropic upwelling solid mantle material exceeds the solidus temperature and melts. The crystallized magma forms a new crust of basalt known as MORB for mid-ocean ridge basalt, and gabbro below it in the lower oceanic crust . Mid-ocean ridge basalt is a tholeiitic basalt and is low in incompatible elements . Hydrothermal vents fueled by magmatic and volcanic heat are

5355-490: The axis changes in a systematic way with shallower depths between offsets such as transform faults and overlapping spreading centers dividing the axis into segments. One hypothesis for different along-axis depths is variations in magma supply to the spreading center. Ultra-slow spreading ridges form both magmatic and amagmatic (currently lack volcanic activity) ridge segments without transform faults. Mid-ocean ridges exhibit active volcanism and seismicity . The oceanic crust

SECTION 50

#1732775454579

5460-435: The continent, away from the trench, and has been described in western North America (i.e. Laramide orogeny, and currently in Alaska, South America, and East Asia. The processes described above allow subduction to continue while mountain building happens concurrently, which is in contrast to continent-continent collision orogeny, which often leads to the termination of subduction. Continents are pulled into subduction zones by

5565-506: The crust and mantle to form hydrous minerals (such as serpentine) that store water in their crystal structures. Water is transported into the deep mantle via hydrous minerals in subducting slabs. During subduction, a series of minerals in these slabs such as serpentine can be stable at different pressures within the slab geotherms, and may transport significant amount of water into the Earth's interior. As plates sink and heat up, released fluids can trigger seismicity and induce melting within

5670-579: The crust would be melted and recycled into the Earth's mantle . In 1964, George Plafker researched the Good Friday earthquake in Alaska . He concluded that the cause of the earthquake was a megathrust reaction in the Aleutian Trench , a result of the Alaskan continental crust overlapping the Pacific oceanic crust. This meant that the Pacific crust was being forced downward, or subducted , beneath

5775-597: The crust, megathrust earthquakes on the subduction interface near the trench, and outer rise earthquakes on the subducting lower plate as it bends near the trench. Anomalously deep events are a characteristic of subduction zones, which produce the deepest quakes on the planet. Earthquakes are generally restricted to the shallow, brittle parts of the crust, generally at depths of less than twenty kilometers. However, in subduction zones quakes occur at depths as great as 700 km (430 mi). These quakes define inclined zones of seismicity known as Wadati–Benioff zones which trace

5880-609: The crust, through hotspot magmatism or extensional rifting, would the crust be able to break from its continent and begin subduction. Subduction can continue as long as the oceanic lithosphere moves into the subduction zone. However, the arrival of buoyant continental lithosphere at a subduction zone can result in increased coupling at the trench and cause plate boundary reorganization. The arrival of continental crust results in continental collision or terrane accretion that may disrupt subduction. Continental crust can subduct to depths of 250 km (160 mi) where it can reach

5985-448: The degree of lower plate curvature of the subducting plate in great historical earthquakes such as the 2004 Sumatra-Andaman and the 2011 Tōhoku earthquake, it was determined that the magnitude of earthquakes in subduction zones is inversely proportional to the angle of subduction near the trench, meaning that "the flatter the contact between the two plates, the more likely it is that mega-earthquakes will occur". Outer rise earthquakes on

6090-440: The descending slab. Nine of the ten largest earthquakes of the last 100 years were subduction zone megathrust earthquakes. These included the 1960 Great Chilean earthquake which at M 9.5 was the largest earthquake ever recorded, the 2004 Indian Ocean earthquake and tsunami , and the 2011 Tōhoku earthquake and tsunami . The subduction of cold oceanic lithosphere into the mantle depresses the local geothermal gradient and causes

6195-455: The different regimes present in this setting. The models are as follows: In their 2019 study, Macdonald et al. proposed that arc-continent collision zones and the subsequent obduction of oceanic lithosphere was at least partially responsible for controlling global climate. Their model relies on arc-continent collision in tropical zones, where exposed ophiolites composed mainly of mafic material increase "global weatherability" and result in

6300-407: The discovery of the worldwide extent of the mid-ocean ridge in the 1950s, geologists faced a new task: explaining how such an enormous geological structure could have formed. In the 1960s, geologists discovered and began to propose mechanisms for seafloor spreading . The discovery of mid-ocean ridges and the process of seafloor spreading allowed for Wegener's theory to be expanded so that it included

6405-483: The field preserved in the oceanic crust comprise a record of directions of the Earth's magnetic field with time. Because the field has reversed directions at known intervals throughout its history, the pattern of geomagnetic reversals in the ocean crust can be used as an indicator of age; given the crustal age and distance from the ridge axis, spreading rates can be calculated. Spreading rates range from approximately 10–200 mm/yr. Slow-spreading ridges such as

SECTION 60

#1732775454579

6510-474: The floor of the Atlantic, as it keeps spreading, is continuously tearing open and making space for fresh, relatively fluid and hot sima [rising] from depth". However, Wegener did not pursue this observation in his later works and his theory was dismissed by geologists because there was no mechanism to explain how continents could plow through ocean crust , and the theory became largely forgotten. Following

6615-619: The forearc may include an accretionary wedge of sediments scraped off the subducting slab and accreted to the overriding plate. However, not all arc-trench complexes have an accretionary wedge. Accretionary arcs have a well-developed forearc basin behind the accretionary wedge, while the forearc basin is poorly developed in non-accretionary arcs. Beyond the forearc basin, volcanoes are found in long chains called volcanic arcs . The subducting basalt and sediment are normally rich in hydrous minerals and clays. Additionally, large quantities of water are introduced into cracks and fractures created as

6720-420: The forearc-hanging wall and not subducted. Most metamorphic phase transitions that occur within the subducting slab are prompted by the dehydration of hydrous mineral phases. The breakdown of hydrous mineral phases typically occurs at depths greater than 10 km. Each of these metamorphic facies is marked by the presence of a specific stable mineral assemblage, recording the metamorphic conditions undergone but

6825-639: The formation of the Tibetan Plateau and the Himalayas. It is possible that the impact might have caused the delamination of the Indian plate beneath the Tibetan Plateau, a process which is still continuing. The Kshiroda plate has great significance in the geology of South Asia . The subduction of the plate, which occurred before 40 million years ago, caused the upliftment of the Tibetan Plateau . The Tethys Sea bed which used to rest on

6930-484: The globe are linked by plate tectonic boundaries and the trace of the ridges across the ocean floor appears similar to the seam of a baseball . The mid-ocean ridge system thus is the longest mountain range on Earth, reaching about 65,000 km (40,000 mi). The mid-ocean ridges of the world are connected and form the Ocean Ridge, a single global mid-oceanic ridge system that is part of every ocean , making it

7035-430: The idea of subduction initiation at passive margins is popular, there is no modern day example for this type of subduction nucleation. This is likely due to the strength of the oceanic or transitional crust at the continental passive margins, suggesting that if the crust did not break in its first 20 million years of life, it is unlikely to break in the future under normal sedimentation loads. Only with additional weaking of

7140-612: The linear weakness between the separating plates, and emerges as lava , creating new oceanic crust and lithosphere upon cooling. The first discovered mid-ocean ridge was the Mid-Atlantic Ridge , which is a spreading center that bisects the North and South Atlantic basins; hence the origin of the name 'mid-ocean ridge'. Most oceanic spreading centers are not in the middle of their hosting ocean basis but regardless, are traditionally called mid-ocean ridges. Mid-ocean ridges around

7245-574: The lower plate occur when normal faults oceanward of the subduction zone are activated by flexure of the plate as it bends into the subduction zone. The 2009 Samoa earthquake is an example of this type of event. Displacement of the sea floor caused by this event generated a six-meter tsunami in nearby Samoa. Seismic tomography has helped detect subducted lithospheric slabs deep in the mantle where no earthquakes occur. About one hundred slabs have been described in terms of depth and their timing and location of subduction. The great seismic discontinuities in

7350-484: The mantle, at 410 km (250 mi) depth and 670 km (420 mi), are disrupted by the descent of cold slabs in deep subduction zones. Some subducted slabs seem to have difficulty penetrating the major discontinuity that marks the boundary between the upper mantle and lower mantle at a depth of about 670 kilometers. Other subducted oceanic plates have sunk to the core–mantle boundary at 2890 km depth. Generally, slabs decelerate during their descent into

7455-463: The mantle, from typically several cm/yr (up to ~10 cm/yr in some cases) at the subduction zone and in the uppermost mantle, to ~1 cm/yr in the lower mantle. This leads to either folding or stacking of slabs at those depths, visible as thickened slabs in seismic tomography. Below ~1700 km, there might be a limited acceleration of slabs due to lower viscosity as a result of inferred mineral phase changes until they approach and finally stall at

7560-532: The mid-ocean ridge causing basalt reactions with seawater to happen more rapidly. The magnesium/calcium ratio will be lower because more magnesium ions are being removed from seawater and consumed by the rock, and more calcium ions are being removed from the rock and released into seawater. Hydrothermal activity at the ridge crest is efficient in removing magnesium. A lower Mg/Ca ratio favors the precipitation of low-Mg calcite polymorphs of calcium carbonate ( calcite seas ). Slow spreading at mid-ocean ridges has

7665-548: The mid-ocean ridge from the South Atlantic into the Indian Ocean early in the twentieth century. Although the first-discovered section of the ridge system runs down the middle of the Atlantic Ocean, it was found that most mid-ocean ridges are located away from the center of other ocean basins. Alfred Wegener proposed the theory of continental drift in 1912. He stated: "the Mid-Atlantic Ridge ... zone in which

7770-402: The movement of oceanic crust as well as the continents. Plate tectonics was a suitable explanation for seafloor spreading, and the acceptance of plate tectonics by the majority of geologists resulted in a major paradigm shift in geological thinking. It is estimated that along Earth's mid-ocean ridges every year 2.7 km (1.0 sq mi) of new seafloor is formed by this process. With

7875-424: The ocean floor, studied the Mid-Atlantic Ridge and proposed that hot molten rock was added to the crust at the ridge and expanded the seafloor outward. This theory was to become known as seafloor spreading . Since the Earth's circumference has not changed over geologic time, Hess concluded that older seafloor has to be consumed somewhere else, and suggested that this process takes place at oceanic trenches , where

7980-403: The oceanic crust and lithosphere moves away from the ridge axis, the peridotite in the underlying mantle lithosphere cools and becomes more rigid. The crust and the relatively rigid peridotite below it make up the oceanic lithosphere , which sits above the less rigid and viscous asthenosphere . The oceanic lithosphere is formed at an oceanic ridge, while the lithosphere is subducted back into

8085-455: The opposite effect and will result in a higher Mg/Ca ratio favoring the precipitation of aragonite and high-Mg calcite polymorphs of calcium carbonate ( aragonite seas ). Experiments show that most modern high-Mg calcite organisms would have been low-Mg calcite in past calcite seas, meaning that the Mg/Ca ratio in an organism's skeleton varies with the Mg/Ca ratio of the seawater in which it

8190-467: The outermost light crust plus the uppermost rigid portion of the mantle . Oceanic lithosphere ranges in thickness from just a few km for young lithosphere created at mid-ocean ridges to around 100 km (62 mi) for the oldest oceanic lithosphere. Continental lithosphere is up to 200 km (120 mi) thick. The lithosphere is relatively cold and rigid compared with the underlying asthenosphere , and so tectonic plates move as solid bodies atop

8295-399: The overriding continent. When the lower plate subducts at a shallow angle underneath a continent (something called "flat-slab subduction"), the subducting plate may have enough traction on the bottom of the continental plate to cause the upper plate to contract by folding, faulting, crustal thickening, and mountain building. Flat-slab subduction causes mountain building and volcanism moving into

8400-404: The planet. The ocean-ocean plate relationship can lead to subduction zones between oceanic and continental plates, therefore highlighting how important it is to understand this subduction setting. Although it is not fully understood what causes the initiation of subduction of an oceanic plate under another oceanic plate, there are three main models put forth by Baitsch-Ghirardello et al. that explain

8505-590: The possibility of spontaneous subduction from inherent density differences between two plates at specific locations like passive margins and along transform faults . There is evidence this has taken place in the Izu-Bonin-Mariana subduction system. Earlier in Earth's history, subduction is likely to have initiated without horizontal forcing due to the lack of relative plate motion, though a proposal by A. Yin suggests that meteorite impacts may have contributed to subduction initiation on early Earth. Though

8610-520: The pressures and temperatures necessary for this type of metamorphism are much higher than what is observed in most subduction zones. Frezzoti et al. (2011) propose a different mechanism for carbon transport into the overriding plate via dissolution (release of carbon from carbon-bearing minerals into an aqueous solution) instead of decarbonation. Their evidence comes from the close examination of mineral and fluid inclusions in low-temperature (<600 °C) diamonds and garnets found in an eclogite facies in

8715-574: The rate of expansion of the mid-ocean ridge) have caused the global ( eustatic ) sea level to rise over very long timescales (millions of years). Increased seafloor spreading means that the mid-ocean ridge will then expand and form a broader ridge with decreased average depth, taking up more space in the ocean basin. This displaces the overlying ocean and causes sea levels to rise. Sealevel change can be attributed to other factors ( thermal expansion , ice melting, and mantle convection creating dynamic topography ). Over very long timescales, however, it

8820-440: The ridge crest was seismically active and fresh lavas were found in the rift valley. Also, crustal heat flow was higher here than elsewhere in the Atlantic Ocean basin. At first, the ridge was thought to be a feature specific to the Atlantic Ocean. However, as surveys of the ocean floor continued around the world, it was discovered that every ocean contains parts of the mid-ocean ridge system. The German Meteor expedition traced

8925-416: The ridge flanks, the depth of the seafloor (or the height of a location on a mid-ocean ridge above a base-level) is correlated with its age (age of the lithosphere where depth is measured). The depth-age relation can be modeled by the cooling of a lithosphere plate or mantle half-space. A good approximation is that the depth of the seafloor at a location on a spreading mid-ocean ridge is proportional to

9030-444: The rocks of the mantle. The mantle-derived magmas (which are initially basaltic in composition) can ultimately reach the Earth's surface, resulting in volcanic eruptions. The chemical composition of the erupting lava depends upon the degree to which the mantle-derived basalt interacts with (melts) Earth's crust or undergoes fractional crystallization . Arc volcanoes tend to produce dangerous eruptions because they are rich in water (from

9135-431: The seafloor were analyzed by oceanographers Matthew Fontaine Maury and Charles Wyville Thomson and revealed a prominent rise in the seafloor that ran down the Atlantic basin from north to south. Sonar echo sounders confirmed this in the early twentieth century. It was not until after World War II , when the ocean floor was surveyed in more detail, that the full extent of mid-ocean ridges became known. The Vema ,

9240-436: The sedimentary and volcanic cover is mostly scraped off to form an orogenic wedge. An orogenic wedge is larger than most accretionary wedges due to the volume of material there is to accrete. The continental basement rocks beneath the weak cover suites are strong and mostly cold, and can be underlain by a >200 km thick layer of dense mantle. After shedding the low density cover units, the continental plate, especially if it

9345-450: The sinking oceanic plate they are attached to. Where continents are attached to oceanic plates with no subduction, there is a deep basin that accumulates thick suites of sedimentary and volcanic rocks known as a passive margin. Some passive margins have up to 10 km of sedimentary and volcanic rocks covering the continental crust. As a passive margin is pulled into a subduction zone by the attached and negatively buoyant oceanic lithosphere,

9450-453: The slab and sediments) and tend to be extremely explosive. Krakatoa , Nevado del Ruiz , and Mount Vesuvius are all examples of arc volcanoes. Arcs are also associated with most ore deposits. Beyond the volcanic arc is a back-arc region whose character depends strongly on the angle of subduction of the subducting slab. Where this angle is shallow, the subducting slab drags the overlying continental crust partially with it, which produces

9555-439: The square root of the age of the seafloor. The overall shape of ridges results from Pratt isostasy : close to the ridge axis, there is a hot, low-density mantle supporting the oceanic crust. As the oceanic plate cools, away from the ridge axis, the oceanic mantle lithosphere (the colder, denser part of the mantle that, together with the crust, comprises the oceanic plates) thickens, and the density increases. Thus older seafloor

9660-447: The storage of carbon through silicate weathering processes. This storage represents a carbon sink , removing carbon from the atmosphere and resulting in global cooling. Their study correlates several Phanerozoic ophiolite complexes, including active arc-continent subduction, with known global cooling and glaciation periods. This study does not discuss Milankovitch cycles as a driver of global climate cyclicity. Modern-style subduction

9765-481: The stratosphere during violent eruptions can cause rapid cooling of Earth's climate and affect air travel. Arc-magmatism plays a role in Earth's Carbon cycle by releasing subducted carbon through volcanic processes. Older theory states that the carbon from the subducting plate is made available in overlying magmatic systems via decarbonation, where CO 2 is released through silicate-carbonate metamorphism. However, evidence from thermodynamic modeling has shown that

9870-399: The subducted plate and in the overlying mantle wedge. This type of melting selectively concentrates volatiles and transports them into the overlying plate. If an eruption occurs, the cycle then returns the volatiles into the oceans and atmosphere. The surface expressions of subduction zones are arc-trench complexes. On the ocean side of the complex, where the subducting plate first approaches

9975-434: The subducting plate trigger volcanism in the overriding plate. If the subducting plate sinks at a shallow angle, the overriding plate develops a belt of deformation characterized by crustal thickening, mountain building , and metamorphism . Subduction at a steeper angle is characterized by the formation of back-arc basins . According to the theory of plate tectonics , the Earth's lithosphere , its rigid outer shell,

10080-526: The subducting slab bends downward. During the transition from basalt to eclogite, these hydrous materials break down, producing copious quantities of water, which at such great pressure and temperature exists as a supercritical fluid . The supercritical water, which is hot and more buoyant than the surrounding rock, rises into the overlying mantle, where it lowers the melting temperature of the mantle rock, generating magma via flux melting . The magmas, in turn, rise as diapirs because they are less dense than

10185-509: The subducting slab. Transitions between facies cause hydrous minerals to dehydrate at certain pressure-temperature conditions and can therefore be tracked to melting events in the mantle beneath a volcanic arc. Two kinds of arcs are generally observed on Earth: island arcs that form on the oceanic lithosphere (for example, the Mariana and the Tonga island arcs), and continental arcs such as

10290-446: The subduction zone, there is often an outer trench high or outer trench swell . Here the plate shallows slightly before plunging downwards, as a consequence of the rigidity of the plate. The point where the slab begins to plunge downwards is marked by an oceanic trench . Oceanic trenches are the deepest parts of the ocean floor. Beyond the trench is the forearc portion of the overriding plate. Depending on sedimentation rates,

10395-451: The subject, performs the action of overriding the object, the lower plate, which is overridden. Subduction zones are important for several reasons: Subduction zones have also been considered as possible disposal sites for nuclear waste in which the action of subduction itself would carry the material into the planetary mantle , safely away from any possible influence on humanity or the surface environment. However, that method of disposal

10500-454: The surface once the volcanoes have weathered away. The volcanism and plutonism occur as a consequence of the subducting oceanic slab dehydrating as it reaches higher pressures and temperatures. Once the oceanic slab reaches about 100 km in depth, hydrous minerals become unstable and release fluids into the asthenosphere. The fluids act as a flux for the rock within the asthenosphere and cause it to partially melt. The partially melted material

10605-439: The timing and conditions in which these dehydration reactions occur is key to interpreting mantle melting, volcanic arc magmatism, and the formation of continental crust. A metamorphic facies is characterized by a stable mineral assemblage specific to a pressure-temperature range and specific starting material. Subduction zone metamorphism is characterized by a low temperature, high-ultrahigh pressure metamorphic path through

10710-444: The trench and approximately one hundred kilometers above the subducting slab. Arcs produce about 10% of the total volume of magma produced each year on Earth (approximately 0.75 cubic kilometers), much less than the volume produced at mid-ocean ridges, but they have formed most continental crust . Arc volcanism has the greatest impact on humans because many arc volcanoes lie above sea level and erupt violently. Aerosols injected into

10815-628: Was caused by subduction of the Indo-Australian plate under the Euro-Asian Plate, but the tsunami spread over most of the planet and devastated the areas around the Indian Ocean. Small tremors which cause small, nondamaging tsunamis, also occur frequently. A study published in 2016 suggested a new parameter to determine a subduction zone's ability to generate mega-earthquakes. By examining subduction zone geometry and comparing

10920-549: Was grown. The mineralogy of reef-building and sediment-producing organisms is thus regulated by chemical reactions occurring along the mid-ocean ridge, the rate of which is controlled by the rate of sea-floor spreading. The first indications that a ridge bisects the Atlantic Ocean basin came from the results of the British Challenger expedition in the nineteenth century. Soundings from lines dropped to

11025-582: Was once hotter, but not that subduction conditions were hotter. Previously, the lack of pre-Neoproterozoic blueschist was thought to indicate a different type of subduction. Both lines of evidence refute previous conceptions of modern-style subduction having been initiated in the Neoproterozoic Era 1.0 Ga ago. Harry Hammond Hess , who during World War II served in the United States Navy Reserve and became fascinated in

#578421