Misplaced Pages

Holostei

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#571428

42-555: Holostei is a group of ray-finned bony fish . It is divided into two major clades, the Halecomorphi , represented by the single living genus, Amia with two species, the bowfins ( Amia calva and Amia ocellicauda ), as well as the Ginglymodi , the sole living representatives being the gars (Lepisosteidae), represented by seven living species in two genera ( Atractosteus , Lepisosteus ). The earliest members of

84-534: A clade (from Ancient Greek κλάδος (kládos)  'branch'), also known as a monophyletic group or natural group , is a grouping of organisms that are monophyletic – that is, composed of a common ancestor and all its lineal descendants – on a phylogenetic tree . In the taxonomical literature, sometimes the Latin form cladus (plural cladi ) is used rather than the English form. Clades are

126-479: A "ladder", with supposedly more "advanced" organisms at the top. Taxonomists have increasingly worked to make the taxonomic system reflect evolution. When it comes to naming , this principle is not always compatible with the traditional rank-based nomenclature (in which only taxa associated with a rank can be named) because not enough ranks exist to name a long series of nested clades. For these and other reasons, phylogenetic nomenclature has been developed; it

168-623: A clade can be described based on two different reference points, crown age and stem age. The crown age of a clade refers to the age of the most recent common ancestor of all of the species in the clade. The stem age of a clade refers to the time that the ancestral lineage of the clade diverged from its sister clade. A clade's stem age is either the same as or older than its crown age. Ages of clades cannot be directly observed. They are inferred, either from stratigraphy of fossils , or from molecular clock estimates. Viruses , and particularly RNA viruses form clades. These are useful in tracking

210-459: A free-swimming larval stage. However other patterns of ontogeny exist, with one of the commonest being sequential hermaphroditism . In most cases this involves protogyny , fish starting life as females and converting to males at some stage, triggered by some internal or external factor. Protandry , where a fish converts from male to female, is much less common than protogyny. Most families use external rather than internal fertilization . Of

252-854: A related group of lobe-finned fish . Approximate dates are from Near et al. (2012). Actinistia (Coelacanths) [REDACTED] Dipnoi (Lungfish) [REDACTED] Amphibians [REDACTED] Mammals [REDACTED] Sauropsids ( reptiles , birds ) [REDACTED] part of " Chondrostei " Polypteridae (bichirs) [REDACTED] Acipenseriformes ( sturgeons , paddlefish ) [REDACTED] Teleostei 310 mya [REDACTED] Holostei ( bowfins , gars ) 275 mya [REDACTED] [REDACTED] [REDACTED] Actinopterygii Actinopterygii ( / ˌ æ k t ɪ n ɒ p t ə ˈ r ɪ dʒ i aɪ / ; from actino-  'having rays' and Ancient Greek πτέρυξ (ptérux)  'wing, fins'), members of which are known as ray-finned fish or actinopterygians ,

294-415: A remnant structure: in gars, the spiracles do not even open to the outside; the skeleton is lightly ossified : a thin layer of bone covers a mostly cartilaginous skeleton in the bowfins. In gars, the tail is still heterocercal but less so than in the chondrosteans. Bowfins have many-rayed dorsal fins and can breathe air like the bichirs . In the holosteans a primary pulmonoid (respiratory) swim bladder

336-422: A revised taxonomy based on a concept strongly resembling clades, although the term clade itself would not be coined until 1957 by his grandson, Julian Huxley . German biologist Emil Hans Willi Hennig (1913–1976) is considered to be the founder of cladistics . He proposed a classification system that represented repeated branchings of the family tree, as opposed to the previous systems, which put organisms on

378-429: A suffix added should be e.g. "dracohortian". A clade is by definition monophyletic , meaning that it contains one ancestor which can be an organism, a population, or a species and all its descendants. The ancestor can be known or unknown; any and all members of a clade can be extant or extinct. The science that tries to reconstruct phylogenetic trees and thus discover clades is called phylogenetics or cladistics ,

420-742: A trait still present in Holostei ( bowfins and gars ). In some fish like the arapaima , the swim bladder has been modified for breathing air again, and in other lineages it have been completely lost. The teleosts have urinary and reproductive tracts that are fully separated, while the Chondrostei have common urogenital ducts, and partially connected ducts are found in Cladistia and Holostei. Ray-finned fishes have many different types of scales ; but all teleosts have leptoid scales . The outer part of these scales fan out with bony ridges, while

462-587: Is a class of bony fish that comprise over 50% of living vertebrate species. They are so called because of their lightly built fins made of webbings of skin supported by radially extended thin bony spines called lepidotrichia , as opposed to the bulkier, fleshy lobed fins of the sister class Sarcopterygii (lobe-finned fish). Resembling folding fans , the actinopterygian fins can easily change shape and wetted area , providing superior thrust-to-weight ratios per movement compared to sarcopterygian and chondrichthyian fins. The fin rays attach directly to

SECTION 10

#1732773164572

504-499: Is also used with a similar meaning in other fields besides biology, such as historical linguistics ; see Cladistics § In disciplines other than biology . The term "clade" was coined in 1957 by the biologist Julian Huxley to refer to the result of cladogenesis , the evolutionary splitting of a parent species into two distinct species, a concept Huxley borrowed from Bernhard Rensch . Many commonly named groups – rodents and insects , for example – are clades because, in each case,

546-545: Is divided into the infraclasses Holostei and Teleostei . During the Mesozoic ( Triassic , Jurassic , Cretaceous ) and Cenozoic the teleosts in particular diversified widely. As a result, 96% of living fish species are teleosts (40% of all fish species belong to the teleost subgroup Acanthomorpha ), while all other groups of actinopterygians represent depauperate lineages. The classification of ray-finned fishes can be summarized as follows: The cladogram below shows

588-476: Is in turn included in the mammal, vertebrate and animal clades. The idea of a clade did not exist in pre- Darwinian Linnaean taxonomy , which was based by necessity only on internal or external morphological similarities between organisms. Many of the better known animal groups in Linnaeus's original Systema Naturae (mostly vertebrate groups) do represent clades. The phenomenon of convergent evolution

630-432: Is relatively rare and is found in about 6% of living teleost species; male care is far more common than female care. Male territoriality "preadapts" a species for evolving male parental care. There are a few examples of fish that self-fertilise. The mangrove rivulus is an amphibious, simultaneous hermaphrodite, producing both eggs and spawn and having internal fertilisation. This mode of reproduction may be related to

672-515: Is responsible for many cases of misleading similarities in the morphology of groups that evolved from different lineages. With the increasing realization in the first half of the 19th century that species had changed and split through the ages, classification increasingly came to be seen as branches on the evolutionary tree of life . The publication of Darwin's theory of evolution in 1859 gave this view increasing weight. In 1876 Thomas Henry Huxley , an early advocate of evolutionary theory, proposed

714-489: Is still controversial. As an example, see the full current classification of Anas platyrhynchos (the mallard duck) with 40 clades from Eukaryota down by following this Wikispecies link and clicking on "Expand". The name of a clade is conventionally a plural, where the singular refers to each member individually. A unique exception is the reptile clade Dracohors , which was made by haplology from Latin "draco" and "cohors", i.e. "the dragon cohort "; its form with

756-430: Is still present, a trait that was independently lost in both chondrostei and teleostei, the only other two lineages of fish with a swim bladder (in some teleosts the swim bladder have since evolved to become secondarily respiratory again). The gars have thick ganoid scales typical of sturgeons whereas the bowfin has thin bony scales like the teleosts. The gars are therefore in this regard considered more primitive than

798-506: The Cyprinidae (in goldfish and common carp as recently as 14 million years ago). Ray-finned fish vary in size and shape, in their feeding specializations, and in the number and arrangement of their ray-fins. In nearly all ray-finned fish, the sexes are separate, and in most species the females spawn eggs that are fertilized externally, typically with the male inseminating the eggs after they are laid. Development then proceeds with

840-592: The deep sea to subterranean waters to the highest mountain streams . Extant species can range in size from Paedocypris , at 8 mm (0.3 in); to the massive ocean sunfish , at 2,300 kg (5,070 lb); and to the giant oarfish , at 11 m (36 ft). The largest ever known ray-finned fish, the extinct Leedsichthys from the Jurassic , has been estimated to have grown to 16.5 m (54 ft). Ray-finned fishes occur in many variant forms. The main features of typical ray-finned fish are shown in

882-488: The oviparous teleosts, most (79%) do not provide parental care. Viviparity , ovoviviparity , or some form of parental care for eggs, whether by the male, the female, or both parents is seen in a significant fraction (21%) of the 422 teleost families; no care is likely the ancestral condition. The oldest case of viviparity in ray-finned fish is found in Middle Triassic species of † Saurichthys . Viviparity

SECTION 20

#1732773164572

924-558: The sister group of Teleostei , the major group of living neopterygians, rendering the Holostei paraphyletic . Teleostei [REDACTED] Halecomorphi [REDACTED] Ginglymodi [REDACTED] The Holostei hypothesis, where the gars and bowfin form the clade Holostei as the sister group to Teleostei, is better supported than the Halecostomi hypothesis, rendering the latter paraphyletic. It proposes Halecomorphi as

966-663: The sister lineage of all other actinopterygians, the Acipenseriformes (sturgeons and paddlefishes) are the sister lineage of Neopterygii, and Holostei (bowfin and gars) are the sister lineage of teleosts. The Elopomorpha ( eels and tarpons ) appear to be the most basal teleosts. The earliest known fossil actinopterygian is Andreolepis hedei , dating back 420 million years ( Late Silurian ), remains of which have been found in Russia , Sweden , and Estonia . Crown group actinopterygians most likely originated near

1008-956: The Devonian-Carboniferous boundary. The earliest fossil relatives of modern teleosts are from the Triassic period ( Prohalecites , Pholidophorus ), although it is suspected that teleosts originated already during the Paleozoic Era . The listing below is a summary of all extinct (indicated by a dagger , †) and living groups of Actinopterygii with their respective taxonomic rank . The taxonomy follows Phylogenetic Classification of Bony Fishes with notes when this differs from Nelson, ITIS and FishBase and extinct groups from Van der Laan 2016 and Xu 2021. [REDACTED] [REDACTED] [REDACTED] [REDACTED] [REDACTED] [REDACTED] [REDACTED] Clade In biological phylogenetics ,

1050-402: The adjacent diagram. The swim bladder is a more derived structure and used for buoyancy . Except from the bichirs , which just like the lungs of lobe-finned fish have retained the ancestral condition of ventral budding from the foregut , the swim bladder in ray-finned fishes derives from a dorsal bud above the foregut. In early forms the swim bladder could still be used for breathing,

1092-463: The bichirs and holosteans (bowfin and gars) in having gone through a whole-genome duplication ( paleopolyploidy ). The WGD is estimated to have happened about 320 million years ago in the teleosts, which on average has retained about 17% of the gene duplicates, and around 180 (124–225) million years ago in the chondrosteans. It has since happened again in some teleost lineages, like Salmonidae (80–100 million years ago) and several times independently within

1134-463: The bowfin. The name Holostei derives from the Greek words holos , meaning whole, and osteon , meaning bone: a reference to their bony skeletons. The evolutionary relationships of gars, bowfin and teleosts were a matter of debate. There are two competing hypotheses on the systematics of neopterygians : The Halecostomi hypothesis proposes Halecomorphi ( bowfin and its fossil relatives) as

1176-569: The clade, which are putative " semionotiforms " such as Acentrophorus and Archaeolepidotus , are known from the Middle to Late Permian and are among the earliest known neopterygians . Holostei was thought to be regarded as paraphyletic . However, a recent study provided evidence that the Holostei are the closest living relatives of the Teleostei , both within the Neopterygii . This

1218-706: The different actinopterygian clades (in millions of years , mya) are from Near et al., 2012. Jaw-less fishes ( hagfish , lampreys ) [REDACTED] Cartilaginous fishes ( sharks , rays , ratfish ) [REDACTED] Coelacanths [REDACTED] Lungfish [REDACTED] Amphibians [REDACTED] Mammals [REDACTED] Sauropsids ( reptiles , birds ) [REDACTED] Polypteriformes ( bichirs , reedfishes ) [REDACTED] Acipenseriformes ( sturgeons , paddlefishes ) [REDACTED] Teleostei [REDACTED] Amiiformes ( bowfins ) [REDACTED] Lepisosteiformes ( gars ) [REDACTED] The polypterids (bichirs and reedfish) are

1260-432: The fish's habit of spending long periods out of water in the mangrove forests it inhabits. Males are occasionally produced at temperatures below 19 °C (66 °F) and can fertilise eggs that are then spawned by the female. This maintains genetic variability in a species that is otherwise highly inbred. Actinopterygii is divided into the subclasses Cladistia , Chondrostei and Neopterygii . The Neopterygii , in turn,

1302-436: The fishes. The gars have elongated jaws with fanlike teeth, only 3 branchiostegal rays, and a small dorsal fin. Meanwhile the bowfins have a terminal mouth, 10–13 flattened branchiostegal rays, and a long dorsal fin. The cladogram shows the relationships of holosteans to other living groups of bony fish (Osteichthyes), the great majority of which are teleosts , and to the terrestrial vertebrates (tetrapods) that evolved from

Holostei - Misplaced Pages Continue

1344-451: The fundamental unit of cladistics , a modern approach to taxonomy adopted by most biological fields. The common ancestor may be an individual, a population , or a species ( extinct or extant ). Clades are nested, one in another, as each branch in turn splits into smaller branches. These splits reflect evolutionary history as populations diverged and evolved independently. Clades are termed monophyletic (Greek: "one clan") groups. Over

1386-409: The gars are more primitive than those of the bowfin. Holosteans share with other non-teleost ray-finned fish a mixture of characteristics of teleosts and sharks . In comparison with the other group of non-teleost ray-finned fish, the chondrosteans , the holosteans are closer to the teleosts and further from sharks: the pair of spiracles found in sharks and chondrosteans is reduced in holosteans to

1428-546: The group consists of a common ancestor with all its descendant branches. Rodents, for example, are a branch of mammals that split off after the end of the period when the clade Dinosauria stopped being the dominant terrestrial vertebrates 66 million years ago. The original population and all its descendants are a clade. The rodent clade corresponds to the order Rodentia, and insects to the class Insecta. These clades include smaller clades, such as chipmunk or ant , each of which consists of even smaller clades. The clade "rodent"

1470-438: The inner part is crossed with fibrous connective tissue. Leptoid scales are thinner and more transparent than other types of scales, and lack the hardened enamel - or dentine -like layers found in the scales of many other fish. Unlike ganoid scales , which are found in non-teleost actinopterygians, new scales are added in concentric layers as the fish grows. Teleosts and chondrosteans (sturgeons and paddlefish) also differ from

1512-590: The last few decades, the cladistic approach has revolutionized biological classification and revealed surprising evolutionary relationships among organisms. Increasingly, taxonomists try to avoid naming taxa that are not clades; that is, taxa that are not monophyletic . Some of the relationships between organisms that the molecular biology arm of cladistics has revealed include that fungi are closer relatives to animals than they are to plants, archaea are now considered different from bacteria , and multicellular organisms may have evolved from archaea. The term "clade"

1554-518: The latter term coined by Ernst Mayr (1965), derived from "clade". The results of phylogenetic/cladistic analyses are tree-shaped diagrams called cladograms ; they, and all their branches, are phylogenetic hypotheses. Three methods of defining clades are featured in phylogenetic nomenclature : node-, stem-, and apomorphy-based (see Phylogenetic nomenclature§Phylogenetic definitions of clade names for detailed definitions). The relationship between clades can be described in several ways: The age of

1596-466: The main clades of living actinopterygians and their evolutionary relationships to other extant groups of fishes and the four-limbed vertebrates ( tetrapods ). The latter include mostly terrestrial species but also groups that became secondarily aquatic (e.g. whales and dolphins ). Tetrapods evolved from a group of bony fish during the Devonian period . Approximate divergence dates for

1638-524: The orders Parasemionotiformes , Panxianichthyiformes , Ionoscopiformes , and Amiiformes . In addition to many extinct species , Amiiformes includes only 1 extant species that is commonly referred to as the bowfin. Parasemionotiformes, Panxianichthyiformes, and Ionoscopiformes have no living members. Gars and bowfins are found in North America and in freshwater ecosystems. The differences in each can be spotted very easily from just looking at

1680-494: The proximal or basal skeletal elements, the radials, which represent the articulation between these fins and the internal skeleton (e.g., pelvic and pectoral girdles). The vast majority of actinopterygians are teleosts . By species count, they dominate the subphylum Vertebrata , and constitute nearly 99% of the over 30,000 extant species of fish . They are the most abundant nektonic aquatic animals and are ubiquitous throughout freshwater and marine environments from

1722-616: The sister group of Ginglymodi , the group which includes living gars ( Lepisosteiformes ) and their fossil relatives. It is estimated that the last common ancestor of gars and bowfin lived at least 250 million years ago. Teleostei [REDACTED] Halecomorphi [REDACTED] Ginglymodi [REDACTED] Ginglymodi comprises three orders : Lepisosteiformes , Semionotiformes and Kyphosichthyiformes . Lepisosteiformes includes 1 family , 2 genera , and 7 species that are commonly referred to as gars. Semionotiformes and Kyphosichthyiformes are extinct orders. Halecomorphi contains

Holostei - Misplaced Pages Continue

1764-487: Was found from the morphology of the Holostei, for example presence of a paired vomer . Holosteans are closer to teleosts than are the chondrosteans , the other group intermediate between teleosts and cartilaginous fish, which are regarded as (at the nearest) a sister group to the Neopterygii. The spiracles of holosteans are reduced to vestigial remnants and the bones are lightly ossified. The thick ganoid scales of

#571428