This is an accepted version of this page
30-938: Coordinates : 35°32′36.4″N 139°26′42.83″E / 35.543444°N 139.4452306°E / 35.543444; 139.4452306 District in Tokyo, Japan Haramachida 原町田 District [REDACTED] [REDACTED] [REDACTED] Haramachida Coordinates: 35°32′36.4″N 139°26′42.83″E / 35.543444°N 139.4452306°E / 35.543444; 139.4452306 Country Japan Prefecture Tokyo City Machida Area • Total 1.017 km (0.393 sq mi) Population (January 1, 2018) • Total 14,257 • Density 14,000/km (36,000/sq mi) Time zone UTC+9 ( JST ) Postal code 194-0013 Area code 042 Haramachida ( 原町田 )
60-726: A bachelor's degree in International Liberal Arts. In May 2012 it was announced that the university would stop recruiting new students from spring 2013 and would close down permanently after the last of the current students graduate in March 2016. The declining birth rate in Japan and intense competition from other universities were both cited as reasons for the school's closure. 35°30′00.02″N 139°28′02.50″E / 35.5000056°N 139.4673611°E / 35.5000056; 139.4673611 This article on
90-543: A prime meridian at the westernmost known land, designated the Fortunate Isles , off the coast of western Africa around the Canary or Cape Verde Islands , and measured north or south of the island of Rhodes off Asia Minor . Ptolemy credited him with the full adoption of longitude and latitude, rather than measuring latitude in terms of the length of the midsummer day. Ptolemy's 2nd-century Geography used
120-679: A little before 1300; the text was translated into Latin at Florence by Jacopo d'Angelo around 1407. In 1884, the United States hosted the International Meridian Conference , attended by representatives from twenty-five nations. Twenty-two of them agreed to adopt the longitude of the Royal Observatory in Greenwich , England as the zero-reference line. The Dominican Republic voted against
150-416: A location often facetiously called Null Island . In order to use the theoretical definitions of latitude, longitude, and height to precisely measure actual locations on the physical earth, a geodetic datum must be used. A horizonal datum is used to precisely measure latitude and longitude, while a vertical datum is used to measure elevation or altitude. Both types of datum bind a mathematical model of
180-538: A longitudinal degree is 111.3 km. At 30° a longitudinal second is 26.76 m, at Greenwich (51°28′38″N) 19.22 m, and at 60° it is 15.42 m. On the WGS 84 spheroid, the length in meters of a degree of latitude at latitude ϕ (that is, the number of meters you would have to travel along a north–south line to move 1 degree in latitude, when at latitude ϕ ), is about The returned measure of meters per degree latitude varies continuously with latitude. Similarly,
210-700: A national cartographical organization include the North American Datum , the European ED50 , and the British OSGB36 . Given a location, the datum provides the latitude ϕ {\displaystyle \phi } and longitude λ {\displaystyle \lambda } . In the United Kingdom there are three common latitude, longitude, and height systems in use. WGS 84 differs at Greenwich from
240-872: A simple translation may be sufficient. Datums may be global, meaning that they represent the whole Earth, or they may be local, meaning that they represent an ellipsoid best-fit to only a portion of the Earth. Examples of global datums include World Geodetic System (WGS 84, also known as EPSG:4326 ), the default datum used for the Global Positioning System , and the International Terrestrial Reference System and Frame (ITRF), used for estimating continental drift and crustal deformation . The distance to Earth's center can be used both for very deep positions and for positions in space. Local datums chosen by
270-503: A year, or 10 m in a century. A weather system high-pressure area can cause a sinking of 5 mm . Scandinavia is rising by 1 cm a year as a result of the melting of the ice sheets of the last ice age , but neighboring Scotland is rising by only 0.2 cm . These changes are insignificant if a local datum is used, but are statistically significant if a global datum is used. On the GRS 80 or WGS 84 spheroid at sea level at
300-586: Is where Earth's equatorial radius a {\displaystyle a} equals 6,378,137 m and tan β = b a tan ϕ {\displaystyle \textstyle {\tan \beta ={\frac {b}{a}}\tan \phi }\,\!} ; for the GRS 80 and WGS 84 spheroids, b a = 0.99664719 {\textstyle {\tfrac {b}{a}}=0.99664719} . ( β {\displaystyle \textstyle {\beta }\,\!}
330-418: Is a spherical or geodetic coordinate system for measuring and communicating positions directly on Earth as latitude and longitude . It is the simplest, oldest and most widely used of the various spatial reference systems that are in use, and forms the basis for most others. Although latitude and longitude form a coordinate tuple like a cartesian coordinate system , the geographic coordinate system
SECTION 10
#1732787251330360-1586: Is a district of Machida , Tokyo , Japan . The current administrative place name is Haramachida 1-chome to 6-chome (residential addressing system). References [ edit ] ^ "土地・気象 【町田市統計書 第50号2016(平成28)年度発行】" . 町田市. 2017-03-21 . Retrieved 2018-01-21 . ^ "町丁別世帯数・人口表" . 町田市. 2018-01-15 . Retrieved 2018-01-21 . ^ "郵便番号" . 日本郵便 . Retrieved 2018-01-21 . v t e Machida, Tokyo Primary and secondary schools Tokyo Metro BOE Machida High School Tamagawa Gakuen Third Junior & Senior High School of Nihon University Colleges and universities J. F. Oberlin University Showa Pharmaceutical University Tamagawa University Tsurukawa Women's Junior College Wako University Kokushikan University Machida Campus Tokyo Kasei-Gakuin University Branch Campus Closed Tokyo Jogakkan College Train stations JR East Aihara Machida Naruse Keio Tamasakai Odakyu Machida Tamagawagakuen-mae Tsurukawa Tokyu Minami-machida Grandberry Park Suzukakedai Tsukushino This list
390-487: Is incomplete. Retrieved from " https://en.wikipedia.org/w/index.php?title=Haramachida&oldid=1019936958 " Category : Districts of Machida, Tokyo Hidden categories: Pages using gadget WikiMiniAtlas Articles with short description Short description is different from Wikidata Coordinates on Wikidata Articles containing Japanese-language text Geographic coordinate system A geographic coordinate system ( GCS )
420-775: Is known as the reduced (or parametric) latitude ). Aside from rounding, this is the exact distance along a parallel of latitude; getting the distance along the shortest route will be more work, but those two distances are always within 0.6 m of each other if the two points are one degree of longitude apart. Like any series of multiple-digit numbers, latitude-longitude pairs can be challenging to communicate and remember. Therefore, alternative schemes have been developed for encoding GCS coordinates into alphanumeric strings or words: These are not distinct coordinate systems, only alternative methods for expressing latitude and longitude measurements. Tokyo Jogakkan College Tokyo Jogakkan College ( 東京女学館大学 , Tōkyō jogaku-kan daigaku , TJKC)
450-544: Is not cartesian because the measurements are angles and are not on a planar surface. A full GCS specification, such as those listed in the EPSG and ISO 19111 standards, also includes a choice of geodetic datum (including an Earth ellipsoid ), as different datums will yield different latitude and longitude values for the same location. The invention of a geographic coordinate system is generally credited to Eratosthenes of Cyrene , who composed his now-lost Geography at
480-753: Is the angle east or west of a reference meridian to another meridian that passes through that point. All meridians are halves of great ellipses (often called great circles ), which converge at the North and South Poles. The meridian of the British Royal Observatory in Greenwich , in southeast London, England, is the international prime meridian , although some organizations—such as the French Institut national de l'information géographique et forestière —continue to use other meridians for internal purposes. The prime meridian determines
510-405: Is ultimately calculated from latitude and longitude, it is crucial that they clearly state the datum on which they are based. For example, a UTM coordinate based on WGS84 will be different than a UTM coordinate based on NAD27 for the same location. Converting coordinates from one datum to another requires a datum transformation such as a Helmert transformation , although in certain situations
540-494: The Library of Alexandria in the 3rd century BC. A century later, Hipparchus of Nicaea improved on this system by determining latitude from stellar measurements rather than solar altitude and determining longitude by timings of lunar eclipses , rather than dead reckoning . In the 1st or 2nd century, Marinus of Tyre compiled an extensive gazetteer and mathematically plotted world map using coordinates measured east from
570-512: The Equator, one latitudinal second measures 30.715 m , one latitudinal minute is 1843 m and one latitudinal degree is 110.6 km. The circles of longitude, meridians, meet at the geographical poles, with the west–east width of a second naturally decreasing as latitude increases. On the Equator at sea level, one longitudinal second measures 30.92 m, a longitudinal minute is 1855 m and
600-464: The far western Aleutian Islands . The combination of these two components specifies the position of any location on the surface of Earth, without consideration of altitude or depth. The visual grid on a map formed by lines of latitude and longitude is known as a graticule . The origin/zero point of this system is located in the Gulf of Guinea about 625 km (390 mi) south of Tema , Ghana ,
630-415: The length in meters of a degree of longitude can be calculated as (Those coefficients can be improved, but as they stand the distance they give is correct within a centimeter.) The formulae both return units of meters per degree. An alternative method to estimate the length of a longitudinal degree at latitude ϕ {\displaystyle \phi } is to assume a spherical Earth (to get
SECTION 20
#1732787251330660-481: The motion, while France and Brazil abstained. France adopted Greenwich Mean Time in place of local determinations by the Paris Observatory in 1911. The latitude ϕ of a point on Earth's surface is the angle between the equatorial plane and the straight line that passes through that point and through (or close to) the center of the Earth. Lines joining points of the same latitude trace circles on
690-523: The one used on published maps OSGB36 by approximately 112 m. The military system ED50 , used by NATO , differs from about 120 m to 180 m. Points on the Earth's surface move relative to each other due to continental plate motion, subsidence, and diurnal Earth tidal movement caused by the Moon and the Sun. This daily movement can be as much as a meter. Continental movement can be up to 10 cm
720-535: The proper Eastern and Western Hemispheres , although maps often divide these hemispheres further west in order to keep the Old World on a single side. The antipodal meridian of Greenwich is both 180°W and 180°E. This is not to be conflated with the International Date Line , which diverges from it in several places for political and convenience reasons, including between far eastern Russia and
750-430: The same datum will obtain the same location measurement for the same physical location. However, two different datums will usually yield different location measurements for the same physical location, which may appear to differ by as much as several hundred meters; this not because the location has moved, but because the reference system used to measure it has shifted. Because any spatial reference system or map projection
780-664: The same prime meridian but measured latitude from the Equator instead. After their work was translated into Arabic in the 9th century, Al-Khwārizmī 's Book of the Description of the Earth corrected Marinus' and Ptolemy's errors regarding the length of the Mediterranean Sea , causing medieval Arabic cartography to use a prime meridian around 10° east of Ptolemy's line. Mathematical cartography resumed in Europe following Maximus Planudes ' recovery of Ptolemy's text
810-486: The shape of the earth (usually a reference ellipsoid for a horizontal datum, and a more precise geoid for a vertical datum) to the earth. Traditionally, this binding was created by a network of control points , surveyed locations at which monuments are installed, and were only accurate for a region of the surface of the Earth. Some newer datums are bound to the center of mass of the Earth. This combination of mathematical model and physical binding mean that anyone using
840-464: The surface of Earth called parallels , as they are parallel to the Equator and to each other. The North Pole is 90° N; the South Pole is 90° S. The 0° parallel of latitude is designated the Equator , the fundamental plane of all geographic coordinate systems. The Equator divides the globe into Northern and Southern Hemispheres . The longitude λ of a point on Earth's surface
870-445: The width per minute and second, divide by 60 and 3600, respectively): where Earth's average meridional radius M r {\displaystyle \textstyle {M_{r}}\,\!} is 6,367,449 m . Since the Earth is an oblate spheroid , not spherical, that result can be off by several tenths of a percent; a better approximation of a longitudinal degree at latitude ϕ {\displaystyle \phi }
900-491: Was a private women's college in Machida, Tokyo , Japan . The predecessor of the school was founded in 1888, and it was chartered as a junior college in 1956. In 1995 TJKC entered into an agreement with The School for International Training to create an English medium degree program. In 2002 it became a four-year liberal arts college with a small student body of no more than 480 pupils. Students graduating from TJKC receive
#329670