Helioseismology is the study of the structure and dynamics of the Sun through its oscillations. These are principally caused by sound waves that are continuously driven and damped by convection near the Sun's surface. It is similar to geoseismology , or asteroseismology , which are respectively the studies of the Earth or stars through their oscillations. While the Sun's oscillations were first detected in the early 1960s, it was only in the mid-1970s that it was realized that the oscillations propagated throughout the Sun and could allow scientists to study the Sun's deep interior. The term was coined by Douglas Gough in the 90s. The modern field is separated into global helioseismology , which studies the Sun's resonant modes directly, and local helioseismology , which studies the propagation of the component waves near the Sun's surface.
63-457: Helioseismology has contributed to a number of scientific breakthroughs. The most notable was to show that the anomaly in the predicted neutrino flux from the Sun could not be caused by flaws in stellar models and must instead be a problem of particle physics . The so-called solar neutrino problem was ultimately resolved by neutrino oscillations . The experimental discovery of neutrino oscillations
126-487: A Hilbert space , which is also treated in quantum field theory . Following the convention of particle physicists, the term elementary particles is applied to those particles that are, according to current understanding, presumed to be indivisible and not composed of other particles. Ordinary matter is made from first- generation quarks ( up , down ) and leptons ( electron , electron neutrino ). Collectively, quarks and leptons are called fermions , because they have
189-402: A microsecond . They occur after collisions between particles made of quarks, such as fast-moving protons and neutrons in cosmic rays . Mesons are also produced in cyclotrons or other particle accelerators . Particles have corresponding antiparticles with the same mass but with opposite electric charges . For example, the antiparticle of the electron is the positron . The electron has
252-502: A quantum spin of half-integers (−1/2, 1/2, 3/2, etc.). This causes the fermions to obey the Pauli exclusion principle , where no two particles may occupy the same quantum state . Quarks have fractional elementary electric charge (−1/3 or 2/3) and leptons have whole-numbered electric charge (0 or 1). Quarks also have color charge , which is labeled arbitrarily with no correlation to actual light color as red, green and blue. Because
315-1058: A " Theory of Everything ", or "TOE". There are also other areas of work in theoretical particle physics ranging from particle cosmology to loop quantum gravity . In principle, all physics (and practical applications developed therefrom) can be derived from the study of fundamental particles. In practice, even if "particle physics" is taken to mean only "high-energy atom smashers", many technologies have been developed during these pioneering investigations that later find wide uses in society. Particle accelerators are used to produce medical isotopes for research and treatment (for example, isotopes used in PET imaging ), or used directly in external beam radiotherapy . The development of superconductors has been pushed forward by their use in particle physics. The World Wide Web and touchscreen technology were initially developed at CERN . Additional applications are found in medicine, national security, industry, computing, science, and workforce development, illustrating
378-410: A few g modes could substantially increase our knowledge of the deep interior of the Sun. However, no individual g mode has yet been unambiguously measured, although indirect detections have been both claimed and challenged. Additionally, there can be similar gravity modes confined to the convectively stable atmosphere. Surface gravity waves are analogous to waves in deep water, having the property that
441-452: A fourth generation of fermions does not exist. Bosons are the mediators or carriers of fundamental interactions, such as electromagnetism , the weak interaction , and the strong interaction . Electromagnetism is mediated by the photon , the quanta of light . The weak interaction is mediated by the W and Z bosons . The strong interaction is mediated by the gluon , which can link quarks together to form composite particles. Due to
504-430: A negative electric charge, the positron has a positive charge. These antiparticles can theoretically form a corresponding form of matter called antimatter . Some particles, such as the photon , are their own antiparticle. These elementary particles are excitations of the quantum fields that also govern their interactions. The dominant theory explaining these fundamental particles and fields, along with their dynamics,
567-414: A roughly spherically symmetric self-gravitating fluid in hydrostatic equilibrium. Each mode can then be represented approximately as the product of a function of radius r {\displaystyle r} and a spherical harmonic Y l m ( θ , ϕ ) {\displaystyle Y_{l}^{m}(\theta ,\phi )} , and consequently can be characterized by
630-499: A wide range of exotic particles . All particles and their interactions observed to date can be described almost entirely by the Standard Model. Dynamics of particles are also governed by quantum mechanics ; they exhibit wave–particle duality , displaying particle-like behaviour under certain experimental conditions and wave -like behaviour in others. In more technical terms, they are described by quantum state vectors in
693-425: Is a particle physics theory suggesting that systems with higher energy have a smaller number of dimensions. A third major effort in theoretical particle physics is string theory . String theorists attempt to construct a unified description of quantum mechanics and general relativity by building a theory based on small strings, and branes rather than particles. If the theory is successful, it may be considered
SECTION 10
#1732790695284756-554: Is called the Standard Model . The reconciliation of gravity to the current particle physics theory is not solved; many theories have addressed this problem, such as loop quantum gravity , string theory and supersymmetry theory . Practical particle physics is the study of these particles in radioactive processes and in particle accelerators such as the Large Hadron Collider . Theoretical particle physics
819-507: Is difficult to infer from them the structure of the solar core. Gravity modes are confined to convectively stable regions, either the radiative interior or the atmosphere. The restoring force is predominantly buoyancy, and thus indirectly gravity, from which they take their name. They are evanescent in the convection zone, and therefore interior modes have tiny amplitudes at the surface and are extremely difficult to detect and identify. It has long been recognized that measurement of even just
882-532: Is explained by the Standard Model , which gained widespread acceptance in the mid-1970s after experimental confirmation of the existence of quarks . It describes the strong , weak , and electromagnetic fundamental interactions , using mediating gauge bosons . The species of gauge bosons are eight gluons , W , W and Z bosons , and the photon . The Standard Model also contains 24 fundamental fermions (12 particles and their associated anti-particles), which are
945-595: Is in model building where model builders develop ideas for what physics may lie beyond the Standard Model (at higher energies or smaller distances). This work is often motivated by the hierarchy problem and is constrained by existing experimental data. It may involve work on supersymmetry , alternatives to the Higgs mechanism , extra spatial dimensions (such as the Randall–Sundrum models ), Preon theory, combinations of these, or other ideas. Vanishing-dimensions theory
1008-466: Is now known as the tachocline and is thought to be a key component for the solar dynamo . Although it roughly coincides with the base of the solar convection zone — also inferred through helioseismology — it is conceptually distinct, being a boundary layer in which there is a meridional flow connected with the convection zone and driven by the interplay between baroclinicity and Maxwell stresses. Helioseismology benefits most from continuous monitoring of
1071-674: Is only about these variables that information can be derived directly. The square of the adiabatic sound speed, c 2 = γ 1 p / ρ {\displaystyle c^{2}=\gamma _{1}p/\rho } , is such commonly adopted function, because that is the quantity upon which acoustic propagation principally depends. Properties of other, non-seismic, quantities, such as helium abundance, Y {\displaystyle Y} , or main-sequence age t ⊙ {\displaystyle t_{\odot }} , can be inferred only by supplementation with additional assumptions, which renders
1134-471: Is the study of these particles in the context of cosmology and quantum theory . The two are closely interrelated: the Higgs boson was postulated by theoretical particle physicists and its presence confirmed by practical experiments. The idea that all matter is fundamentally composed of elementary particles dates from at least the 6th century BC. In the 19th century, John Dalton , through his work on stoichiometry , concluded that each element of nature
1197-451: Is therefore the action of pressure forces p {\displaystyle p} (plus putative Maxwell stresses) against matter with inertia density ρ {\displaystyle \rho } , which itself depends upon the relation between them under adiabatic change, usually quantified via the (first) adiabatic exponent γ 1 {\displaystyle \gamma _{1}} . The equilibrium values of
1260-600: Is used to extract the parameters of the Standard Model with less uncertainty. This work probes the limits of the Standard Model and therefore expands scientific understanding of nature's building blocks. Those efforts are made challenging by the difficulty of calculating high precision quantities in quantum chromodynamics . Some theorists working in this area use the tools of perturbative quantum field theory and effective field theory , referring to themselves as phenomenologists . Others make use of lattice field theory and call themselves lattice theorists . Another major effort
1323-544: The atomic nuclei are baryons – the neutron is composed of two down quarks and one up quark, and the proton is composed of two up quarks and one down quark. A baryon is composed of three quarks, and a meson is composed of two quarks (one normal, one anti). Baryons and mesons are collectively called hadrons . Quarks inside hadrons are governed by the strong interaction, thus are subjected to quantum chromodynamics (color charges). The bounded quarks must have their color charge to be neutral, or "white" for analogy with mixing
SECTION 20
#17327906952841386-401: The weak interaction , and the strong interaction . Quarks cannot exist on their own but form hadrons . Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons . Two baryons, the proton and the neutron , make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths of
1449-604: The Lagrangian pressure perturbation is essentially zero. They are of high degree ℓ {\displaystyle \ell } , penetrating a characteristic distance R / ℓ {\displaystyle R/\ell } , where R {\displaystyle R} is the solar radius. To good approximation, they obey the so-called deep-water-wave dispersion law: ω 2 = g k h {\displaystyle \omega ^{2}=gk_{\rm {h}}} , irrespective of
1512-408: The Standard Model during the 1970s, physicists clarified the origin of the particle zoo. The large number of particles was explained as combinations of a (relatively) small number of more fundamental particles and framed in the context of quantum field theories . This reclassification marked the beginning of modern particle physics. The current state of the classification of all elementary particles
1575-434: The Sun's interior structure and dynamics. Given a reference model of the Sun, the differences between its mode frequencies and those of the Sun, if small, are weighted averages of the differences between the Sun's structure and that of the reference model. The frequency differences can then be used to infer those structural differences. The weighting functions of these averages are known as kernels . The first inversions of
1638-469: The Sun's structure were made using Duvall's law and later using Duvall's law linearized about a reference solar model. These results were subsequently supplemented by analyses that linearize the full set of equations describing the stellar oscillations about a theoretical reference model and are now a standard way to invert frequency data. The inversions demonstrated differences in solar models that were greatly reduced by implementing gravitational settling :
1701-781: The Sun, which began first with uninterrupted observations from near the South Pole over the austral summer. In addition, observations over multiple solar cycles have allowed helioseismologists to study changes in the Sun's structure over decades. These studies are made possible by global telescope networks like the Global Oscillations Network Group (GONG) and the Birmingham Solar Oscillations Network (BiSON), which have been operating for over several decades. Solar oscillation modes are interpreted as resonant vibrations of
1764-416: The Sun. Different modes are sensitive to different parts of the Sun and, given enough data, these differences can be used to infer the rotation rate throughout the Sun. For example, if the Sun were rotating uniformly throughout, all the p modes would be split by approximately the same amount. Actually, the angular velocity is not uniform, as can be seen at the surface, where the equator rotates faster than
1827-543: The Sun. Evidently, the oscillation frequencies ω {\displaystyle \omega } depend only on the seismic variables ρ ( p , Ω , B ) {\displaystyle \rho (p,\Omega ,{\rm {B)}}} , γ 1 {\displaystyle \gamma _{1}} , Ω {\displaystyle \Omega } and B {\displaystyle {\rm {B}}} , or any independent set of functions of them. Consequently it
1890-571: The aforementioned color confinement, gluons are never observed independently. The Higgs boson gives mass to the W and Z bosons via the Higgs mechanism – the gluon and photon are expected to be massless . All bosons have an integer quantum spin (0 and 1) and can have the same quantum state . Most aforementioned particles have corresponding antiparticles , which compose antimatter . Normal particles have positive lepton or baryon number , and antiparticles have these numbers negative. Most properties of corresponding antiparticles and particles are
1953-597: The constituents of all matter . Finally, the Standard Model also predicted the existence of a type of boson known as the Higgs boson . On 4 July 2012, physicists with the Large Hadron Collider at CERN announced they had found a new particle that behaves similarly to what is expected from the Higgs boson. The Standard Model, as currently formulated, has 61 elementary particles. Those elementary particles can combine to form composite particles, accounting for
Helioseismology - Misplaced Pages Continue
2016-419: The data analysis perspective, global helioseismology differs from geoseismology by studying only normal modes. Local helioseismology is thus somewhat closer in spirit to geoseismology in the sense that it studies the complete wavefield. Because the Sun is a star, helioseismology is closely related to the study of oscillations in other stars, known as asteroseismology . Helioseismology is most closely related to
2079-450: The development of nuclear weapons . Throughout the 1950s and 1960s, a bewildering variety of particles was found in collisions of particles from beams of increasingly high energy. It was referred to informally as the " particle zoo ". Important discoveries such as the CP violation by James Cronin and Val Fitch brought new questions to matter-antimatter imbalance . After the formulation of
2142-568: The field to maturity, and the state of the field was summarized in a 1996 special issue of Science magazine . This coincided with the start of normal operations of the Solar and Heliospheric Observatory (SoHO), which began producing high-quality data for helioseismology. The subsequent years saw the resolution of the solar neutrino problem, and the long seismic observations began to allow analysis of multiple solar activity cycles. The agreement between standard solar models and helioseismic inversions
2205-478: The first experimental deviations from the Standard Model, since neutrinos do not have mass in the Standard Model. Modern particle physics research is focused on subatomic particles , including atomic constituents, such as electrons , protons , and neutrons (protons and neutrons are composite particles called baryons , made of quarks ), that are produced by radioactive and scattering processes; such particles are photons , neutrinos , and muons , as well as
2268-403: The gradual separation of heavier elements towards the solar centre (and lighter elements to the surface to replace them). If the Sun were perfectly spherical, the modes with different azimuthal orders m would have the same frequencies. Rotation, however, breaks this degeneracy, and the modes frequencies differ by rotational splittings that are weighted-averages of the angular velocity through
2331-538: The gravitational interaction, but it has not been detected or completely reconciled with current theories. Many other hypothetical particles have been proposed to address the limitations of the Standard Model. Notably, supersymmetric particles aim to solve the hierarchy problem , axions address the strong CP problem , and various other particles are proposed to explain the origins of dark matter and dark energy . The world's major particle physics laboratories are: Theoretical particle physics attempts to develop
2394-424: The hundreds of other species of particles that have been discovered since the 1960s. The Standard Model has been found to agree with almost all the experimental tests conducted to date. However, most particle physicists believe that it is an incomplete description of nature and that a more fundamental theory awaits discovery (See Theory of Everything ). In recent years, measurements of neutrino mass have provided
2457-433: The interactions between the quarks store energy which can convert to other particles when the quarks are far apart enough, quarks cannot be observed independently. This is called color confinement . There are three known generations of quarks (up and down, strange and charm , top and bottom ) and leptons (electron and its neutrino, muon and its neutrino , tau and its neutrino ), with strong indirect evidence that
2520-421: The interior are p modes, with frequencies between about 1 and 5 millihertz and angular degrees ranging from zero (purely radial motion) to order 10 3 {\displaystyle 10^{3}} . Broadly speaking, their energy densities vary with radius inversely proportional to the sound speed, so their resonant frequencies are determined predominantly by the outer regions of the Sun. Consequently it
2583-401: The latter, but the results were not wholly convincing. It was not until Tom Duvall and Jack Harvey connected the two extreme data sets by measuring modes of intermediate degree to establish the quantum numbers associated with the earlier observations that the higher- Y {\displaystyle Y} model was established, thereby suggesting at that early stage that the resolution of
Helioseismology - Misplaced Pages Continue
2646-497: The models, theoretical framework, and mathematical tools to understand current experiments and make predictions for future experiments (see also theoretical physics ). There are several major interrelated efforts being made in theoretical particle physics today. One important branch attempts to better understand the Standard Model and its tests. Theorists make quantitative predictions of observables at collider and astronomical experiments, which along with experimental measurements
2709-427: The neutrino problem must lie in nuclear or particle physics. New methods of inversion developed in the 1980s, allowing researchers to infer the profiles sound speed and, less accurately, density throughout most of the Sun, corroborating the conclusion that residual errors in the inference of the solar structure is not the cause of the neutrino problem. Towards the end of the decade, observations also began to show that
2772-559: The oscillation mode frequencies vary with the Sun's magnetic activity cycle . To overcome the problem of not being able to observe the Sun at night, several groups had begun to assemble networks of telescopes (e.g. the Birmingham Solar Oscillations Network , or BiSON, and the Global Oscillation Network Group ) from which the Sun would always be visible to at least one node. Long, uninterrupted observations brought
2835-407: The oscillations might be global modes of the Sun and predicted that the modes would form clear ridges in two-dimensional power spectra. The ridges were subsequently confirmed in observations of high-degree modes in the mid 1970s, and mode multiplets of different radial orders were distinguished in whole-disc observations. At a similar time, Jørgen Christensen-Dalsgaard and Douglas Gough suggested
2898-525: The oscillations, granulation produces a stronger signal in intensity than line-of-sight velocity, so the latter is preferred for helioseismic observatories. Local helioseismology—a term coined by Charles Lindsey, Doug Braun and Stuart Jefferies in 1993—employs several different analysis methods to make inferences from the observational data. The Sun's oscillation modes represent a discrete set of observations that are sensitive to its continuous structure. This allows scientists to formulate inverse problems for
2961-476: The outcome more uncertain. The chief tool for analysing the raw seismic data is the Fourier transform . To good approximation, each mode is a damped harmonic oscillator, for which the power as a function of frequency is a Lorentz function . Spatially resolved data are usually projected onto desired spherical harmonics to obtain time series which are then Fourier transformed. Helioseismologists typically combine
3024-483: The photon or gluon, have no antiparticles. Quarks and gluons additionally have color charges, which influences the strong interaction. Quark's color charges are called red, green and blue (though the particle itself have no physical color), and in antiquarks are called antired, antigreen and antiblue. The gluon can have eight color charges , which are the result of quarks' interactions to form composite particles (gauge symmetry SU(3) ). The neutrons and protons in
3087-420: The poles. The Sun rotates slowly enough that a spherical, non-rotating model is close enough to reality for deriving the rotational kernels. Helioseismology has shown that the Sun has a rotation profile with several features: Helioseismology was born from analogy with geoseismology but several important differences remain. First, the Sun lacks a solid surface and therefore cannot support shear waves . From
3150-589: The potential of using individual mode frequencies to infer the interior structure of the Sun. They calibrated solar models against the low-degree data finding two similarly good fits, one with low Y {\displaystyle Y} and a corresponding low neutrino production rate L ν {\displaystyle L_{\nu }} , the other with higher Y {\displaystyle Y} and L ν {\displaystyle L_{\nu }} ; earlier envelope calibrations against high-degree frequencies preferred
3213-426: The primary colors . More exotic hadrons can have other types, arrangement or number of quarks ( tetraquark , pentaquark ). An atom is made from protons, neutrons and electrons. By modifying the particles inside a normal atom, exotic atoms can be formed. A simple example would be the hydrogen-4.1 , which has one of its electrons replaced with a muon. The graviton is a hypothetical particle that can mediate
SECTION 50
#17327906952843276-423: The resulting one-dimensional power spectra into a two-dimensional spectrum. The lower frequency range of the oscillations is dominated by the variations caused by granulation . This must first be filtered out before (or at the same time that) the modes are analysed. Granular flows at the solar surface are mostly horizontal, from the centres of the rising granules to the narrow downdrafts between them. Relative to
3339-444: The same, with a few gets reversed; the electron's antiparticle, positron, has an opposite charge. To differentiate between antiparticles and particles, a plus or negative sign is added in superscript . For example, the electron and the positron are denoted e and e . When a particle and an antiparticle interact with each other, they are annihilated and convert to other particles. Some particles, such as
3402-622: The scale of protons and neutrons , while the study of combination of protons and neutrons is called nuclear physics . The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons , and electrons and electron neutrinos . The three fundamental interactions known to be mediated by bosons are electromagnetism ,
3465-616: The stratification of the Sun, where ω {\displaystyle \omega } is the angular frequency, g {\displaystyle g} is the surface gravity and k h = ℓ / R {\displaystyle k_{\rm {h}}=\ell /R} is the horizontal wavenumber, and tend asymptotically to that relation as k h → ∞ {\displaystyle k_{\rm {h}}\rightarrow \infty } . The oscillations that have been successfully utilized for seismology are essentially adiabatic. Their dynamics
3528-447: The study of low degree modes (angular degree ℓ ≤ 3 {\displaystyle \ell \leq 3} ). This makes inversion much more difficult but upper limits can still be achieved by making more restrictive assumptions. Solar oscillations were first observed in the early 1960s as a quasi-periodic intensity and line-of-sight velocity variation with a period of about 5 minutes. Scientists gradually realized that
3591-429: The study of stars whose oscillations are also driven and damped by their outer convection zones, known as solar-like oscillators , but the underlying theory is broadly the same for other classes of variable star. The principal difference is that oscillations in distant stars cannot be resolved. Because the brighter and darker sectors of the spherical harmonic cancel out, this restricts asteroseismology almost entirely to
3654-417: The three quantum numbers which label: It can be shown that the oscillations are separated into two categories: interior oscillations and a special category of surface oscillations. More specifically, there are: Pressure modes are in essence standing sound waves. The dominant restoring force is the pressure (rather than buoyancy), hence the name. All the solar oscillations that are used for inferences about
3717-511: The variables p {\displaystyle p} and ρ {\displaystyle \rho } (together with the dynamically small angular velocity Ω {\displaystyle \Omega } and magnetic field B {\displaystyle {\rm {B}}} ) are related by the constraint of hydrostatic support, which depends upon the total mass M {\displaystyle M} and radius R {\displaystyle R} of
3780-682: Was composed of a single, unique type of particle. The word atom , after the Greek word atomos meaning "indivisible", has since then denoted the smallest particle of a chemical element , but physicists later discovered that atoms are not, in fact, the fundamental particles of nature, but are conglomerates of even smaller particles, such as the electron . The early 20th century explorations of nuclear physics and quantum physics led to proofs of nuclear fission in 1939 by Lise Meitner (based on experiments by Otto Hahn ), and nuclear fusion by Hans Bethe in that same year; both discoveries also led to
3843-477: Was disrupted by new measurements of the heavy element content of the solar photosphere based on detailed three-dimensional models. Though the results later shifted back towards the traditional values used in the 1990s, the new abundances significantly worsened the agreement between the models and helioseismic inversions. The cause of the discrepancy remains unsolved and is known as the solar abundance problem . Space-based observations by SoHO have continued and SoHO
SECTION 60
#17327906952843906-593: Was joined in 2010 by the Solar Dynamics Observatory (SDO), which has also been monitoring the Sun continuously since its operations began. In addition, ground-based networks (notably BiSON and GONG) continue to operate, providing nearly continuous data from the ground too. Particle physics Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation . The field also studies combinations of elementary particles up to
3969-424: Was recognized by the 2015 Nobel Prize for Physics . Helioseismology also allowed accurate measurements of the quadrupole (and higher-order) moments of the Sun's gravitational potential, which are consistent with General Relativity . The first helioseismic calculations of the Sun's internal rotation profile showed a rough separation into a rigidly-rotating core and differentially-rotating envelope. The boundary layer
#283716