The IBM System/3 was an IBM midrange computer introduced in 1969, and marketed until 1985. It was produced by IBM Rochester in Minnesota as a low-end business computer aimed at smaller organizations that still used IBM 1400 series computers or unit record equipment . The first member of what IBM refers to as their "midrange" line, it also introduced the RPG II programming language. It is the first ancestor in the product line whose current version is the IBM i series and includes the highly successful AS/400 .
88-482: At its launch in 1969 it was available for $ 1000/month — less than half cost of an IBM System/360 Model 20 ; the smallest member of the IBM System/360 family. Many of the original System/3 model 10 units were shipped diskless, with only the new IBM 5424 Multifunction Card Unit (MFCU) which read, punched, printed on and sorted the new, smaller 96-column punched cards introduced at the same time. IBM delivered
176-756: A computer or other device. The first floppy disks, invented and made by IBM in 1971, had a disk diameter of 8 inches (203.2 mm). Subsequently, the 5¼-inch (133.35 mm) and then the 3½-inch (88.9 mm) became a ubiquitous form of data storage and transfer into the first years of the 21st century. 3½-inch floppy disks can still be used with an external USB floppy disk drive. USB drives for 5¼-inch, 8-inch, and other-size floppy disks are rare to non-existent. Some individuals and organizations continue to use older equipment to read or transfer data from floppy disks. Floppy disks were so common in late 20th-century culture that many electronic and software programs continue to use save icons that look like floppy disks well into
264-525: A "Test Bits On" op; then 3 bytes for a Jump, as previously described, and useful to the RPG compiler. Saving the odd byte here and there was good when you had only 64K to play with—and, on the S/3 itself, that had to include the operating system (which grew to about 20K on the model 10 with the introduction of the "Communication Control Program", CCP). A simple job control language called Operation Control Language (OCL)
352-442: A 1-operand instruction, such as a Branch. If xx was 00 the operand was addressed by its full 16-bit address. xx=01 or 10 meant base-displacement addressing was used, using index register 1 or 2 respectively. A base address would previously have been loaded into one of the two index registers and the instruction contained the displacement of up to just 256 bytes (8 bits of addressing). Other patterns for this first half-byte indicated
440-469: A 2-operand instruction. "0000" meant both operands were addressed by their direct 16-bit address. "0100": operand 1 uses reg 1 as its base; operand 2 uses direct addressing. "0110": operand 1 uses reg 1 as its base, operand 2 uses reg 2. And so on. The remaining 4 bits of the first byte further defined the instruction. This structure meant that there was the capability to have up to 64 operations in all: 16 commands (though there were never more than five across
528-443: A button that, when pressed, ejects the disk with varying degrees of force, the discrepancy due to the ejection force provided by the spring of the shutter. In IBM PC compatibles , Commodores, Apple II/IIIs, and other non-Apple-Macintosh machines with standard floppy disk drives, a disk may be ejected manually at any time. The drive has a disk-change switch that detects when a disk is ejected or inserted. Failure of this mechanical switch
616-650: A customized operating system is used that has no drivers for USB devices. Hardware floppy disk emulators can be made to interface floppy-disk controllers to a USB port that can be used for flash drives. In May 2016, the United States Government Accountability Office released a report that covered the need to upgrade or replace legacy computer systems within federal agencies. According to this document, old IBM Series/1 minicomputers running on 8-inch floppy disks are still used to coordinate "the operational functions of
704-428: A disk can be accessed, the drive needs to synchronize its head position with the disk tracks. In some drives, this is accomplished with a Track Zero Sensor, while for others it involves the drive head striking an immobile reference surface. In either case, the head is moved so that it is approaching track zero position of the disk. When a drive with the sensor has reached track zero, the head stops moving immediately and
792-474: A disk, some 3½-inch drives (notably the Macintosh External 400K and 800K drives ) instead use Constant Linear Velocity (CLV), which uses a variable speed drive motor that spins more slowly as the head moves away from the center of the disk, maintaining the same speed of the head(s) relative to the surface(s) of the disk. This allows more sectors to be written to the longer middle and outer tracks as
880-413: A hard-sectored disk, there are many holes, one for each sector row, plus an additional hole in a half-sector position, that is used to indicate sector zero. The Apple II computer system is notable in that it did not have an index hole sensor and ignored the presence of hard or soft sectoring. Instead, it used special repeating data synchronization patterns written to the disk between each sector, to assist
968-420: A loaded disk can be removed manually by inserting a straightened paper clip into a small hole at the drive's front panel, just as one would do with a CD-ROM drive in a similar situation. The X68000 has soft-eject 5¼-inch drives. Some late-generation IBM PS/2 machines had soft-eject 3½-inch disk drives as well for which some issues of DOS (i.e. PC DOS 5.02 and higher) offered an EJECT command. Before
SECTION 10
#17327722188481056-452: A number of them. Thus the low-end systems could support a maximum of 10 MB of online storage (two fixed, two removable), although in practice this was very expensive and not common. The System/3 was also available with the IBM 5445 disk drive (20mb) and later the model 15 allowed "winchester" style 3340 drives. On the smaller models, while you could attach 5445 drives, you had to keep the 5444 for
1144-419: A process once it had started to run. For instance, if a compile failed because of an error on the very first page, the user had to wait for a sometimes voluminous compile listing to print in its entirety. Users learned to reach under the printer and jostle the paper discharge chute, which would cause the machine to halt with a "P3" (printer error) displayed. The user could then dial in the response code FF to abort
1232-557: A recovery. The music and theatre industries still use equipment requiring standard floppy disks (e.g. synthesizers, samplers, drum machines, sequencers, and lighting consoles ). Industrial automation equipment such as programmable machinery and industrial robots may not have a USB interface; data and programs are then loaded from disks, damageable in industrial environments. This equipment may not be replaced due to cost or requirement for continuous availability; existing software emulation and virtualization do not solve this problem because
1320-468: A selectable option and purchasable as an aftermarket OEM add-on. By January 2007, only 2% of computers sold in stores contained built-in floppy disk drives. Floppy disks are used for emergency boots in aging systems lacking support for other bootable media and for BIOS updates, since most BIOS and firmware programs can still be executed from bootable floppy disks . If BIOS updates fail or become corrupt, floppy drives can sometimes be used to perform
1408-505: A single hole in the rotating floppy disk medium line up. This mechanism is used to detect the angular start of each track, and whether or not the disk is rotating at the correct speed. Early 8‑inch and 5¼‑inch disks also had holes for each sector in the enclosed magnetic medium, in addition to the index hole, with the same radial distance from the center, for alignment with the same envelope hole. These were termed hard sectored disks. Later soft- sectored disks have only one index hole in
1496-447: A small circle of floppy magnetic material encased in hard plastic. Earlier types of floppy disks did not have this plastic case, which protects the magnetic material from abuse and damage. A sliding metal cover protects the delicate magnetic surface when the diskette is not in use and automatically opens when the diskette is inserted into the computer. The diskette has a square shape: there are apparently eight possible ways to insert it into
1584-411: A small oblong opening in both sides to allow the drive's heads to read and write data and a large hole in the center to allow the magnetic medium to spin by rotating it from its middle hole. Inside the cover are two layers of fabric with the magnetic medium sandwiched in the middle. The fabric is designed to reduce friction between the medium and the outer cover, and catch particles of debris abraded off
1672-439: A thin and flexible disk of a magnetic storage medium in a square or nearly square plastic enclosure lined with a fabric that removes dust particles from the spinning disk. The three most popular (and commercially available) floppy disks are the 8-inch, 5¼-inch, and 3½-inch floppy disks. Floppy disks store digital data which can be read and written when the disk is inserted into a floppy disk drive ( FDD ) connected to or inside
1760-475: Is a common source of disk corruption if a disk is changed and the drive (and hence the operating system) fails to notice. One of the chief usability problems of the floppy disk is its vulnerability; even inside a closed plastic housing, the disk medium is highly sensitive to dust, condensation and temperature extremes. As with all magnetic storage , it is vulnerable to magnetic fields. Blank disks have been distributed with an extensive set of warnings, cautioning
1848-456: Is correctly aligned. For a drive without the sensor, the mechanism attempts to move the head the maximum possible number of positions needed to reach track zero, knowing that once this motion is complete, the head will be positioned over track zero. Some drive mechanisms such as the Apple II 5¼-inch drive without a track zero sensor, produce characteristic mechanical noises when trying to move
SECTION 20
#17327722188481936-428: Is still used by software on user-interface elements related to saving files even though physical floppy disks are largely obsolete. Examples of such software include LibreOffice , Microsoft Paint , and WordPad . The 8-inch and 5¼-inch floppy disks contain a magnetically coated round plastic medium with a large circular hole in the center for a drive's spindle. The medium is contained in a square plastic cover that has
2024-537: The IBM 5444 single-platter disk , roughly the size of a large pizza; initially each platter held 2.5 MB of data. Standard configuration for storage was one or two fixed disks, each in a separate pull-out drawer, which typically held the operating system and user-developed programs. Additionally, each fixed disc could have a removable cartridge disk attached; these typically contained the data-files associated with various applications, for example Payroll, and users frequently had
2112-551: The Type 1 Diskette in 1973, the industry continued to use the terms "floppy disk" or "floppy". In 1976, Shugart Associates introduced the 5¼-inch floppy disk drive. By 1978, there were more than ten manufacturers producing such drives. There were competing floppy disk formats , with hard- and soft-sector versions and encoding schemes such as differential Manchester encoding (DM), modified frequency modulation (MFM), M FM and group coded recording (GCR). The 5¼-inch format displaced
2200-401: The "equal" bit on; Operand= 00011000: if the condition is met we jump forward 24 bytes. Indicators were binary switches used to control program flow. Over 100 of these were available to the programmer. By using the instruction formats explained above, many of the indicator-oriented operations could be fit into just 3 bytes. For example, a line of RPG might test an indicator for "On": 3 bytes for
2288-537: The 'heavy lifting' off of the MFCU and freed the System/3 for actual computing functions. Most experienced System/3 users minimized use of the MFCU as much as possible, since it was a system bottleneck. The later System/32 , IBM System/34 and IBM System/36 were all able to run System/3 applications through emulation. The System/32 used a vertically microcoded processor, with 16-bit microcode words, which emulated
2376-398: The 1990s were non-networked, and floppy disks were the primary means to transfer data between computers, a method known informally as sneakernet . Unlike hard disks, floppy disks were handled and seen; even a novice user could identify a floppy disk. Because of these factors, a picture of a 3½-inch floppy disk became an interface metaphor for saving data. As of 2024 , the floppy disk symbol
2464-469: The 21st century, as a form of skeuomorphic design . While floppy disk drives still have some limited uses, especially with legacy industrial computer equipment , they have been superseded by data storage methods with much greater data storage capacity and data transfer speed , such as USB flash drives , memory cards , optical discs , and storage available through local computer networks and cloud storage . The first commercial floppy disks, developed in
2552-527: The 720 KB double density 3½-inch microfloppy disk on its Convertible laptop computer in 1986 and the 1.44 MB (1,474,560 bytes) high-density version with the IBM Personal System/2 (PS/2) line in 1987. These disk drives could be added to older PC models. In 1988, Y-E Data introduced a drive for 2.88 MB Double-Sided Extended-Density (DSED) diskettes which was used by IBM in its top-of-the-line PS/2 and some RS/6000 models and in
2640-548: The 8-inch one for most uses, and the hard-sectored disk format disappeared. The most common capacity of the 5¼-inch format in DOS-based PCs was 360 KB (368,640 bytes) for the Double-Sided Double-Density (DSDD) format using MFM encoding. In 1984, IBM introduced with its PC/AT the 1.2 MB (1,228,800 bytes) dual-sided 5¼-inch floppy disk, but it never became very popular. IBM started using
2728-494: The Dual Program Feature had two separate status displays. Most/many users did not buy a console. Instead OCL code was either suppressed entirely or printed on the 5203 printer. The console offered by IBM slowed down program execution tremendously when it printed OCL commands, as it was basically a selectric typewriter . The concept of keying your punched cards through the console was a marketing ploy. In reality,
IBM System/3 - Misplaced Pages Continue
2816-446: The MFCU, and the source would then be read following the compiler. An intermediate form was punched on cards, which were then read by the second phase of the compiler. An executable program deck was then punched. This executable could then be booted ("IPL'ed", for "Initial Program Load") to perform the processing desired. This process could require more than an hour for a significant-sized program. The System/3 had no provision for halting
2904-473: The Sony design, introduced in 1983 by many manufacturers, was then rapidly adopted. By 1988, the 3½-inch was outselling the 5¼-inch. Generally, the term floppy disk persisted, even though later style floppy disks have a rigid case around an internal floppy disk. By the end of the 1980s, 5¼-inch disks had been superseded by 3½-inch disks. During this time, PCs frequently came equipped with drives of both sizes. By
2992-502: The System/3 could not be a computer and a keypunch at the same time, so when it was a keypunch, no computing was possible. The original IBM System/3, which was shown in July 1969, had the keypunch console so they could offer a computer for under $ 2,000/month. In reality it was unworkable and almost invariably users acquired a stand-alone keypunch/verifier. Later several OEM companies built 96-column keypunches, sorters, and collators. This took
3080-585: The System/3 instruction set, rather slowly, in microcode. The System/34 and System/36 both had two processors: a Control Storage Processor (CSP), as in System/32, which handled most supervisor and input/output operations, and a Main Storage Processor (MSP). This latter was a re-implementation of the System/3 model 15 processor; effectively providing "hardware emulation" of the System/3. IBM System Too Many Requests If you report this error to
3168-647: The United States' nuclear forces". The government planned to update some of the technology by the end of the 2017 fiscal year. Use in Japan's government ended in 2024. Windows 10 and Windows 11 no longer come with drivers for floppy disk drives (both internal and external). However, they will still support them with a separate device driver provided by Microsoft. The British Airways Boeing 747-400 fleet, up to its retirement in 2020, used 3½-inch floppy disks to load avionics software. Sony, who had been in
3256-512: The Wikimedia System Administrators, please include the details below. Request from 172.68.168.133 via cp1102 cp1102, Varnish XID 550312667 Upstream caches: cp1102 int Error: 429, Too Many Requests at Thu, 28 Nov 2024 05:36:58 GMT Floppy disk#8-inch floppy disk A floppy disk or floppy diskette (casually referred to as a floppy , a diskette , or a disk ) is a type of disk storage composed of
3344-491: The actual address space in use at any one time, their contents being concatenated with the 16-bit address used by a program to produce a real address. These "ATRs" were privileged, available only to the operating system. The original S/3 model 10 (and the later model 12) had an optional crude form of multi-programming called the Dual Program Feature. This provided no more main memory addressing, but gave two sets of registers and instructions which flipped from one "program level" to
3432-409: The computer in finding and synchronizing with the data in each track. The later 3½-inch drives of the mid-1980s did not use sector index holes, but instead also used synchronization patterns. Most 3½-inch drives used a constant speed drive motor and contain the same number of sectors across all tracks. This is sometimes referred to as Constant Angular Velocity (CAV). In order to fit more data onto
3520-406: The corresponding sensor; this was mainly a hardware cost-saving measure. The core of the 3½-inch disk is the same as the other two disks, but the front has only a label and a small opening for reading and writing data, protected by the shutter—a spring-loaded metal or plastic cover, pushed to the side on entry into the drive. Rather than having a hole in the center, it has a metal hub which mates to
3608-399: The current is reversed the magnetization aligns in the opposite direction, encoding one bit of data. To read data, the magnetization of the particles in the media induce a tiny voltage in the head coil as they pass under it. This small signal is amplified and sent to the floppy disk controller , which converts the streams of pulses from the media into data, checks it for errors, and sends it to
IBM System/3 - Misplaced Pages Continue
3696-399: The disk media, an action originally accomplished by a disk-load solenoid. Later drives held the heads out of contact until a front-panel lever was rotated (5¼-inch) or disk insertion was complete (3½-inch). To write data, current is sent through a coil in the head as the media rotates. The head's magnetic field aligns the magnetization of the particles directly below the head on the media. When
3784-442: The disk shell are not quite square: its width is slightly less than its depth, so that it is impossible to insert the disk into a drive slot sideways (i.e. rotated 90 degrees from the correct shutter-first orientation). A diagonal notch at top right ensures that the disk is inserted into the drive in the correct orientation—not upside down or label-end first—and an arrow at top left indicates direction of insertion. The drive usually has
3872-466: The disk to keep them from accumulating on the heads. The cover is usually a one-part sheet, double-folded with flaps glued or spot-welded together. A small notch on the side of the disk identifies whether it is writable, as detected by a mechanical switch or photoelectric sensor . In the 8-inch disk, the notch being covered or not present enables writing, while in the 5¼-inch disk, the notch being present and uncovered enables writing. Tape may be used over
3960-422: The displacement(s) or address(es) for operands, or the details for some commands. An example: a simple command, Conditional Jump, a special type of conditional branch (forward only, up to 256 bytes) suitable mainly for jumping over short blocks of code: Op code byte= F2 (this is in hexadecimal, Hex F is binary 1111, Hex 2 (0010) defines the op); Q byte= 00000001 specifies that we "jump" if the condition register has
4048-406: The eight ways one might try to insert the diskette, only one is correct, and only that one will fit. An excellent design. A spindle motor in the drive rotates the magnetic medium at a certain speed, while a stepper motor-operated mechanism moves the magnetic read/write heads radially along the surface of the disk. Both read and write operations require the media to be rotating and the head to contact
4136-566: The existing IBM 1403 printer line, which had been originally built for the IBM 1401 computer. With the arrival of the IBM 3740 data entry system, the System/3 Model 10 got a feature called LCA (local communication adaptor) which allowed an IBM 3741 station to be "attached" to the system to transmit/receive data. Later models of the System/3 such as the Model 8 were cardless and used the 8" 3740 style floppy disk . The instruction set
4224-692: The existing 3½-inch designs was the SuperDisk in the late 1990s, using very narrow data tracks and a high precision head guidance mechanism with a capacity of 120 MB and backward-compatibility with standard 3½-inch floppies; a format war briefly occurred between SuperDisk and other high-density floppy-disk products, although ultimately recordable CDs/DVDs, solid-state flash storage, and eventually cloud-based online storage would render all these removable disk formats obsolete. External USB -based floppy disk drives are still available, and many modern systems provide firmware support for booting from such drives. In
4312-555: The flexibility of floppy disks combined with greater capacity, but remained niche due to costs. High-capacity backward compatible floppy technologies became popular for a while and were sold as an option or even included in standard PCs, but in the long run, their use was limited to professionals and enthusiasts. Flash-based USB thumb drives finally were a practical and popular replacement, that supported traditional file systems and all common usage scenarios of floppy disks. As opposed to other solutions, no new drive type or special software
4400-457: The floppy disk business since 1983, ended domestic sales of all six 3½-inch floppy disk models as of March 2011. This has been viewed by some as the end of the floppy disk. While production of new floppy disk media has ceased, sales and uses of this media from inventories is expected to continue until at least 2026. For more than two decades, the floppy disk was the primary external writable storage device used. Most computing environments before
4488-413: The following models: The System/3 and successor models System/32 , System/34 , System/36 and System/38 are generally referred to in IBM terminology as "midrange systems" — in contrast to IBM's mainframes . The IBM System/3 was announced as a computer system that initially consisted of: Entry models had as little as 4K (4096) bytes of magnetic-core memory . For mass storage, the System/3 used
SECTION 50
#17327722188484576-512: The general population, floppy disks were often used to store a computer's operating system (OS). Most home computers from that time have an elementary OS and BASIC stored in read-only memory (ROM), with the option of loading a more advanced OS from a floppy disk. By the early 1990s, the increasing software size meant large packages like Windows or Adobe Photoshop required a dozen disks or more. In 1996, there were an estimated five billion standard floppy disks in use. An attempt to enhance
4664-431: The greater capacity, compatibility with existing CD-ROM drives, and—with the advent of re-writeable CDs and packet writing—a similar reusability as floppy disks. However, CD-R/RWs remained mostly an archival medium, not a medium for exchanging data or editing files on the medium itself, because there was no common standard for packet writing which allowed for small updates. Other formats, such as magneto-optical discs , had
4752-407: The heads past the reference surface. This physical striking is responsible for the 5¼-inch drive clicking during the boot of an Apple II, and the loud rattles of its DOS and ProDOS when disk errors occurred and track zero synchronization was attempted. All 8-inch and some 5¼-inch drives used a mechanical method to locate sectors, known as either hard sectors or soft sectors , and is the purpose of
4840-450: The host computer system. A blank unformatted diskette has a coating of magnetic oxide with no magnetic order to the particles. During formatting, the magnetizations of the particles are aligned forming tracks, each broken up into sectors , enabling the controller to properly read and write data. The tracks are concentric rings around the center, with spaces between tracks where no data is written; gaps with padding bytes are provided between
4928-499: The late 1960s, were 8 inches (203.2 mm) in diameter; they became commercially available in 1971 as a component of IBM products and both drives and disks were then sold separately starting in 1972 by Memorex and others. These disks and associated drives were produced and improved upon by IBM and other companies such as Memorex, Shugart Associates , and Burroughs Corporation . The term "floppy disk" appeared in print as early as 1970, and although IBM announced its first media as
5016-424: The machine, only one of which is correct. What happens if I do it wrong? I try inserting the disk sideways. Ah, the designer thought of that. A little study shows that the case really isn't square: it's rectangular, so you can't insert a longer side. I try backward. The diskette goes in only part of the way. Small protrusions, indentations, and cutouts prevent the diskette from being inserted backward or upside down: of
5104-399: The media. In some 5¼-inch drives, insertion of the disk compresses and locks an ejection spring which partially ejects the disk upon opening the catch or lever. This enables a smaller concave area for the thumb and fingers to grasp the disk during removal. Newer 5¼-inch drives and all 3½-inch drives automatically engage the spindle and heads when a disk is inserted, doing the opposite with
5192-400: The medium, and sector position is determined by the disk controller or low-level software from patterns marking the start of a sector. Generally, the same drives are used to read and write both types of disks, with only the disks and controllers differing. Some operating systems using soft sectors, such as Apple DOS , do not use the index hole, and the drives designed for such systems often lack
5280-493: The mid-1990s, 5¼-inch drives had virtually disappeared, as the 3½-inch disk became the predominant floppy disk. The advantages of the 3½-inch disk were its higher capacity, its smaller physical size, and its rigid case which provided better protection from dirt and other environmental risks. Floppy disks became commonplace during the 1980s and 1990s in their use with personal computers to distribute software, transfer data, and create backups . Before hard disks became affordable to
5368-485: The mid-1990s, mechanically incompatible higher-density floppy disks were introduced, like the Iomega Zip disk . Adoption was limited by the competition between proprietary formats and the need to buy expensive drives for computers where the disks would be used. In some cases, failure in market penetration was exacerbated by the release of higher-capacity versions of the drive and media being not backward-compatible with
SECTION 60
#17327722188485456-483: The model 15 or systems running the Communications Control program, CCP. The CCP was a system control programming feature that allowed to support an online network of terminals . A smaller (IBM 5203) printer was attached to the main system. The 5203 was a chain printer with interchangeable cartridges. It could run at 100 or 200 lines per minute, based on model. Later on, IBM offered multiple models of
5544-526: The notch to change the mode of the disk. Punch devices were sold to convert read-only 5¼" disks to writable ones, and also to enable writing on the unused side of single-sided disks for computers with single-sided drives. The latter worked because single- and double-sided disks typically contained essentially identical actual magnetic media, for manufacturing efficiency. Disks whose obverse and reverse sides were thus used separately in single-sided drives were known as flippy disks . Disk notching 5¼" floppies for PCs
5632-485: The old format, including a rigid case with a sliding metal (or later, sometimes plastic) shutter over the head slot, which helped protect the delicate magnetic medium from dust and damage, and a sliding write protection tab, which was far more convenient than the adhesive tabs used with earlier disks. The large market share of the well-established 5¼-inch format made it difficult for these diverse mutually-incompatible new formats to gain significant market share. A variant on
5720-440: The operating system and other programming libraries, however that limitation was changed with software called elimn8 which allowed 5445 drives to totally replace the 5444's. Other companies such as Memorex manufactured compatible 5445 drives for the System/3. The most common punched-card device was IBM 5424 Multifunction Card Unit (MFCU) which read, punched, printed on and sorted the new, smaller 96-column punched cards . Instead of
5808-492: The original drives, dividing the users between new and old adopters. Consumers were wary of making costly investments into unproven and rapidly changing technologies, so none of the technologies became the established standard. Apple introduced the iMac G3 in 1998 with a CD-ROM drive but no floppy drive; this made USB-connected floppy drives popular accessories, as the iMac came without any writable removable media device. Recordable CDs were touted as an alternative, because of
5896-435: The other. The standard I/O instructions were also modified to flip when an I/O was started. So far, only the first byte of the instruction has been explained here. The next ("Q") byte was generally a qualifier, such as specifying the number of bytes to be moved in a move characters op or the condition to test for in a Branch. A couple of instructions used this byte for a 1-byte "immediate" operand. The remaining byte(s) were for
5984-409: The press of the eject button. On Apple Macintosh computers with built-in 3½-inch disk drives, the ejection button is replaced by software controlling an ejection motor which only does so when the operating system no longer needs to access the drive. The user could drag the image of the floppy drive to the trash can on the desktop to eject the disk. In the case of a power failure or drive malfunction,
6072-403: The read operation; other errors are permanent and the disk controller will signal a failure to the operating system if multiple attempts to read the data still fail. After a disk is inserted, a catch or lever at the front of the drive is manually lowered to prevent the disk from accidentally emerging, engage the spindle clamping hub, and in two-sided drives, engage the second read/write head with
6160-406: The rectangular punches in the classic 80-column IBM card, the new cards had tiny (1 mm), circular holes much like paper tape . Data was stored in six-bit binary-coded decimal code, with three rows of 32 characters each, or in 8-bit EBCDIC , with the two extra holes located in the top rows. The new cards had room for 128 printed characters in four rows of 32 characters each. They were about 1/3
6248-409: The results of a compare instruction. Note that registers were used only for addressing and program status, not for arithmetic. The arithmetic instructions provided among the 29 instructions were binary add/subtract (provided to help manipulate addresses) and decimal add/subtract. Multiplication and division were not provided for by the standard hardware, and had to be handled by software routines. There
6336-437: The run. Another way of stopping it was simply to press the green "Start" button on the console, causing the system to reboot. Error codes were displayed on a two-digit seven-segment display (one of the first seen, and built with lamps rather than LEDs). The range of error codes included not only decimal and hexadecimal digits (as seven-segment displays are commonly used) but also a limited set of other letters; for example, "P3"
6424-651: The second-generation NeXTcube and NeXTstation ; however, this format had limited market success due to lack of standards and movement to 1.44 MB drives. Throughout the early 1980s, limits of the 5¼-inch format became clear. Originally designed to be more practical than the 8-inch format, it was becoming considered too large; as the quality of recording media grew, data could be stored in a smaller area. Several solutions were developed, with drives at 2-, 2½-, 3-, 3¼-, 3½- and 4-inches (and Sony 's 90 mm × 94 mm (3.54 in × 3.70 in) disk) offered by various companies. They all had several advantages over
6512-502: The sectors and at the end of the track to allow for slight speed variations in the disk drive, and to permit better interoperability with disk drives connected to other similar systems. Each sector of data has a header that identifies the sector location on the disk. A cyclic redundancy check (CRC) is written into the sector headers and at the end of the user data so that the disk controller can detect potential errors. Some errors are soft and can be resolved by automatically re-trying
6600-404: The size of the older 80 column cards but held 20% more text data. The smaller, and thus lighter card could be processed with faster equipment and with fewer jams. Available as RPQ s (special order equipment) to handle 80-column cards were the IBM 2560 Multifunction Card Machine (MFCM) which could read, punch, interpret and sort, and the IBM 1442 which could only read and punch. Offline storage
6688-413: The small hole in the jacket, off to the side of the spindle hole. A light beam sensor detects when a punched hole in the disk is visible through the hole in the jacket. For a soft-sectored disk, there is only a single hole, which is used to locate the first sector of each track. Clock timing is then used to find the other sectors behind it, which requires precise speed regulation of the drive motor. For
6776-408: The spindle of the drive. Typical 3½-inch disk magnetic coating materials are: Two holes at the bottom left and right indicate whether the disk is write-protected and whether it is high-density; these holes are spaced as far apart as the holes in punched A4 paper, allowing write-protected high-density floppy disks to be clipped into international standard ( ISO 838 ) ring binders . The dimensions of
6864-442: The user not to expose it to dangerous conditions. Rough treatment or removing the disk from the drive while the magnetic media is still spinning is likely to cause damage to the disk, drive head, or stored data. On the other hand, the 3½‑inch floppy disk has been lauded for its mechanical usability by human–computer interaction expert Donald Norman : A simple example of a good design is the 3½-inch magnetic diskette for computers,
6952-468: The whole product range); 16 1-operand instructions starting with 11xx; 16 1-operand instructions starting with xx11; 16 2-operand instructions. As well as the two index registers already mentioned (referred to as 1 and 2, or binary 01 and 10) there were other registers. "Reg 4" (0100) was the instruction address register (IAR) which pointed at the current instruction. "Reg 8" (1000) was the address recall register (ARR), set by certain instructions. Among these
7040-608: Was available with the purchase of an external tape drive which read and wrote standard IBM 9-track tape . The System/3 Mod 10 optionally included the IBM 3410 magnetic tape subsystem. The System/3 Operator Console Facility (OCF) consisted of either a modified IBM Selectric typewriter interfaced into the computer, or a special purpose IBM 3270 display. Within the OCF, there was capability to 'cancel' processes and/or tasks that were running, including either partition (P1 or P2). The system could only run two programs simultaneously, except for
7128-409: Was generally only required where users wanted to overwrite original 5¼" disks of store-bought software, which somewhat commonly shipped with no notch present. Another LED/photo-transistor pair located near the center of the disk detects the index hole once per rotation in the magnetic disk. Detection occurs whenever the drive's sensor, the holes in the correctly inserted floppy's plastic envelope and
7216-468: Was little financial incentive to omit the device from a system. Subsequently, enabled by the widespread support for USB flash drives and BIOS boot, manufacturers and retailers progressively reduced the availability of floppy disk drives as standard equipment. In February 2003, Dell , one of the leading personal computer vendors, announced that floppy drives would no longer be pre-installed on Dell Dimension home computers, although they were still available as
7304-558: Was no floating point provision at all. All this continued to be true even with the later and generally more sophisticated Systems/34 and 36. All the above got more complicated with the System/3 model 15, and the Systems/34 and /36. Though still using 16-bit addressing, all these systems could support well over 64K of main storage (up to 512K and theoretically more), so address translation was used to swap from one 64K address space to another. Address Translation Registers were set to define
7392-407: Was one of several printer error codes. A thick manual that came with the System/3 aided the operator in interpreting the error codes and suggested recovery procedures. The System/3 had no audible warning device, so a program that was not printing, reading cards, or causing other obvious activity could halt and the operator would not know it unless they happened to look at the status display. Models with
7480-576: Was optimised for two key aspects of the product: limited availability of main memory, and the RPG II programming language. The original S/3 (models 10 and then 6, 8 and 12) had 29 instructions, all occupying between 3 and 6 bytes (24 to 48 bits). The first 4 bits conveyed a lot of information: "1111" meant this was an instruction without operands, known as a command. e.g. Start I/O (the I/O op being defined by previously loaded I/O registers). "11xx" and "xx11" meant
7568-443: Was required that impeded adoption, since all that was necessary was an already common USB port . By 2002, most manufacturers still provided floppy disk drives as standard equipment to meet user demand for file-transfer and an emergency boot device, as well as for the general secure feeling of having the familiar device. By this time, the retail cost of a floppy drive had fallen to around $ 20 (equivalent to $ 34 in 2023), so there
7656-470: Was superficially similar to the Job Control Language (JCL). Operator control commands (OCCs) were used to communicate with the system. The System/3 supported RPG II , Fortran IV , COBOL , and Assembler . The System/3 came standard with a RPG II compiler. In a card-only system, the RPG II compiler was supplied as two phases. The first phase would be booted from one input hopper of
7744-451: Was the conditional branch (mnemonic BC) which used it to point to the byte immediately following the branch operation. For programmers used to IBM mainframe behaviour, this meant that the S/3 branch operation could be likened to a conditional BALR (branch and link register) – very useful when branching to a sub-routine, and returning after it had processed. Finally, "Reg 16" (00010000) was the program status register (PSR), holding such things as
#847152