Geology (from Ancient Greek γῆ ( gê ) 'earth' and λoγία ( -logía ) 'study of, discourse') is a branch of natural science concerned with the Earth and other astronomical objects , the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth sciences , including hydrology . It is integrated with Earth system science and planetary science .
99-722: The Imperial Fault Zone is a system of geological faults located in Imperial County in the Southern California region, and adjacent Baja California state in Mexico. It cuts across the border between the United States and Mexico . The Imperial Fault Zone is a right lateral-moving strike-slip fault, representing the northernmost transform fault associated with the East Pacific Rise . It
198-535: A characteristic fabric . All three types may melt again, and when this happens, new magma is formed, from which an igneous rock may once again solidify. Organic matter, such as coal, bitumen, oil, and natural gas, is linked mainly to organic-rich sedimentary rocks. To study all three types of rock, geologists evaluate the minerals of which they are composed and their other physical properties, such as texture and fabric . Geologists also study unlithified materials (referred to as superficial deposits ) that lie above
297-485: A petrographic microscope , where the minerals can be identified through their different properties in plane-polarized and cross-polarized light, including their birefringence , pleochroism , twinning , and interference properties with a conoscopic lens . In the electron microprobe, individual locations are analyzed for their exact chemical compositions and variation in composition within individual crystals. Stable and radioactive isotope studies provide insight into
396-400: A (usually small) angle. Sometimes multiple sets of layers with different orientations exist in the same rock, a structure called cross-bedding . Cross-bedding is characteristic of deposition by a flowing medium (wind or water). The opposite of cross-bedding is parallel lamination, where all sedimentary layering is parallel. Differences in laminations are generally caused by cyclic changes in
495-424: A diagenetic structure common in carbonate rocks is a stylolite . Stylolites are irregular planes where material was dissolved into the pore fluids in the rock. This can result in the precipitation of a certain chemical species producing colouring and staining of the rock, or the formation of concretions . Concretions are roughly concentric bodies with a different composition from the host rock. Their formation can be
594-627: A length of less than a meter. Rocks at the depth to be ductilely stretched are often also metamorphosed. These stretched rocks can also pinch into lenses, known as boudins , after the French word for "sausage" because of their visual similarity. Where rock units slide past one another, strike-slip faults develop in shallow regions, and become shear zones at deeper depths where the rocks deform ductilely. The addition of new rock units, both depositionally and intrusively, often occurs during deformation. Faulting and other deformational processes result in
693-452: A means to provide information about geological history and the timing of geological events. The principle of uniformitarianism states that the geological processes observed in operation that modify the Earth's crust at present have worked in much the same way over geological time. A fundamental principle of geology advanced by the 18th-century Scottish physician and geologist James Hutton
792-608: A number of fields, laboratory, and numerical modeling methods to decipher Earth history and to understand the processes that occur on and inside the Earth. In typical geological investigations, geologists use primary information related to petrology (the study of rocks), stratigraphy (the study of sedimentary layers), and structural geology (the study of positions of rock units and their deformation). In many cases, geologists also study modern soils, rivers , landscapes , and glaciers ; investigate past and current life and biogeochemical pathways, and use geophysical methods to investigate
891-463: A particular sedimentary environment. Examples of bed forms include dunes and ripple marks . Sole markings, such as tool marks and flute casts, are grooves eroded on a surface that are preserved by renewed sedimentation. These are often elongated structures and can be used to establish the direction of the flow during deposition. Ripple marks also form in flowing water. There can be symmetric or asymmetric. Asymmetric ripples form in environments where
990-465: A red colour does not necessarily mean the rock formed in a continental environment or arid climate. The presence of organic material can colour a rock black or grey. Organic material is formed from dead organisms, mostly plants. Normally, such material eventually decays by oxidation or bacterial activity. Under anoxic circumstances, however, organic material cannot decay and leaves a dark sediment, rich in organic material. This can, for example, occur at
1089-489: A rock is usually expressed with the Wentworth scale, though alternative scales are sometimes used. The grain size can be expressed as a diameter or a volume, and is always an average value, since a rock is composed of clasts with different sizes. The statistical distribution of grain sizes is different for different rock types and is described in a property called the sorting of the rock. When all clasts are more or less of
SECTION 10
#17327658993531188-465: A sediment after its initial deposition. This includes compaction and lithification of the sediments. Early stages of diagenesis, described as eogenesis , take place at shallow depths (a few tens of meters) and is characterized by bioturbation and mineralogical changes in the sediments, with only slight compaction. The red hematite that gives red bed sandstones their color is likely formed during eogenesis. Some biochemical processes, like
1287-463: A sedimentary rock are called sediment , and may be composed of geological detritus (minerals) or biological detritus (organic matter). The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement , which are called agents of denudation . Biological detritus
1386-431: A sedimentary rock may have been present in the original sediments or may formed by precipitation during diagenesis. In the second case, a mineral precipitate may have grown over an older generation of cement. A complex diagenetic history can be established by optical mineralogy , using a petrographic microscope . Carbonate rocks predominantly consist of carbonate minerals such as calcite, aragonite or dolomite . Both
1485-499: A single environment and do not necessarily occur in a single order. The Hawaiian Islands , for example, consist almost entirely of layered basaltic lava flows. The sedimentary sequences of the mid-continental United States and the Grand Canyon in the southwestern United States contain almost-undeformed stacks of sedimentary rocks that have remained in place since Cambrian time. Other areas are much more geologically complex. In
1584-516: A small-scale property of a rock, but determines many of its large-scale properties, such as the density , porosity or permeability . The 3D orientation of the clasts is called the fabric of the rock. The size and form of clasts can be used to determine the velocity and direction of current in the sedimentary environment that moved the clasts from their origin; fine, calcareous mud only settles in quiet water while gravel and larger clasts are moved only by rapidly moving water. The grain size of
1683-952: A term for a fissile mudrock (regardless of grain size) although some older literature uses the term "shale" as a synonym for mudrock. Biochemical sedimentary rocks are created when organisms use materials dissolved in air or water to build their tissue. Examples include: Chemical sedimentary rock forms when mineral constituents in solution become supersaturated and inorganically precipitate . Common chemical sedimentary rocks include oolitic limestone and rocks composed of evaporite minerals, such as halite (rock salt), sylvite , baryte and gypsum . This fourth miscellaneous category includes volcanic tuff and volcanic breccias formed by deposition and later cementation of lava fragments erupted by volcanoes, and impact breccias formed after impact events . Alternatively, sedimentary rocks can be subdivided into compositional groups based on their mineralogy: Sedimentary rocks are formed when sediment
1782-417: A texture, only the average size of the crystals and the fabric are necessary. Most sedimentary rocks contain either quartz ( siliciclastic rocks) or calcite ( carbonate rocks ). In contrast to igneous and metamorphic rocks, a sedimentary rock usually contains very few different major minerals. However, the origin of the minerals in a sedimentary rock is often more complex than in an igneous rock. Minerals in
1881-425: A valuable indicator of the biological and ecological environment that existed after the sediment was deposited. On the other hand, the burrowing activity of organisms can destroy other (primary) structures in the sediment, making a reconstruction more difficult. Secondary structures can also form by diagenesis or the formation of a soil ( pedogenesis ) when a sediment is exposed above the water level. An example of
1980-400: A variety of applications. Dating of lava and volcanic ash layers found within a stratigraphic sequence can provide absolute age data for sedimentary rock units that do not contain radioactive isotopes and calibrate relative dating techniques. These methods can also be used to determine ages of pluton emplacement. Thermochemical techniques can be used to determine temperature profiles within
2079-503: Is deposited out of air, ice, wind, gravity, or water flows carrying the particles in suspension . This sediment is often formed when weathering and erosion break down a rock into loose material in a source area. The material is then transported from the source area to the deposition area. The type of sediment transported depends on the geology of the hinterland (the source area of the sediment). However, some sedimentary rocks, such as evaporites , are composed of material that form at
SECTION 20
#17327658993532178-655: Is a major academic discipline , and it is central to geological engineering and plays an important role in geotechnical engineering . The majority of geological data comes from research on solid Earth materials. Meteorites and other extraterrestrial natural materials are also studied by geological methods. Minerals are naturally occurring elements and compounds with a definite homogeneous chemical composition and an ordered atomic arrangement. Each mineral has distinct physical properties, and there are many tests to determine each of them. Minerals are often identified through these tests. The specimens can be tested for: A rock
2277-421: Is a structure where beds with a smaller grain size occur on top of beds with larger grains. This structure forms when fast flowing water stops flowing. Larger, heavier clasts in suspension settle first, then smaller clasts. Although graded bedding can form in many different environments, it is a characteristic of turbidity currents . The surface of a particular bed, called the bedform , can also be indicative of
2376-422: Is accomplished in two primary ways: through faulting and folding . In the shallow crust, where brittle deformation can occur, thrust faults form, which causes the deeper rock to move on top of the shallower rock. Because deeper rock is often older, as noted by the principle of superposition , this can result in older rocks moving on top of younger ones. Movement along faults can result in folding, either because
2475-556: Is an igneous rock . This rock can be weathered and eroded , then redeposited and lithified into a sedimentary rock. Sedimentary rocks are mainly divided into four categories: sandstone, shale, carbonate, and evaporite. This group of classifications focuses partly on the size of sedimentary particles (sandstone and shale), and partly on mineralogy and formation processes (carbonation and evaporation). Igneous and sedimentary rocks can then be turned into metamorphic rocks by heat and pressure that change its mineral content, resulting in
2574-460: Is an intimate coupling between the movement of the plates on the surface and the convection of the mantle (that is, the heat transfer caused by the slow movement of ductile mantle rock). Thus, oceanic parts of plates and the adjoining mantle convection currents always move in the same direction – because the oceanic lithosphere is actually the rigid upper thermal boundary layer of the convecting mantle. This coupling between rigid plates moving on
2673-469: Is any naturally occurring solid mass or aggregate of minerals or mineraloids . Most research in geology is associated with the study of rocks, as they provide the primary record of the majority of the geological history of the Earth. There are three major types of rock: igneous , sedimentary , and metamorphic . The rock cycle illustrates the relationships among them (see diagram). When a rock solidifies or crystallizes from melt ( magma or lava ), it
2772-409: Is called bedding . Single beds can be a couple of centimetres to several meters thick. Finer, less pronounced layers are called laminae, and the structure a lamina forms in a rock is called lamination . Laminae are usually less than a few centimetres thick. Though bedding and lamination are often originally horizontal in nature, this is not always the case. In some environments, beds are deposited at
2871-748: Is connected to the San Andreas Fault by the Brawley Seismic Zone . It terminates on its southern end at the Cerro Prieto spreading center. The Imperial Fault Zone is thought to accommodate slip from both the San Andreas and the San Jacinto fault zones. However, studies covering the last few hundred years show that the slip rate is insufficient to account for the total slip from the San Andreas system. The surface trace
2970-471: Is estimated to be only 8% of the volume of the crust. Sedimentary rocks are only a thin veneer over a crust consisting mainly of igneous and metamorphic rocks . Sedimentary rocks are deposited in layers as strata , forming a structure called bedding . Sedimentary rocks are often deposited in large structures called sedimentary basins . Sedimentary rocks have also been found on Mars . The study of sedimentary rocks and rock strata provides information about
3069-429: Is higher when the sedimentation rate is high (so that a carcass is quickly buried), in anoxic environments (where little bacterial activity occurs) or when the organism had a particularly hard skeleton. Larger, well-preserved fossils are relatively rare. Fossils can be both the direct remains or imprints of organisms and their skeletons. Most commonly preserved are the harder parts of organisms such as bones, shells, and
Imperial Fault Zone - Misplaced Pages Continue
3168-433: Is horizontal). The principle of superposition states that a sedimentary rock layer in a tectonically undisturbed sequence is younger than the one beneath it and older than the one above it. Logically a younger layer cannot slip beneath a layer previously deposited. This principle allows sedimentary layers to be viewed as a form of the vertical timeline, a partial or complete record of the time elapsed from deposition of
3267-491: Is mirrored by the broad categories of rudites , arenites , and lutites , respectively, in older literature. The subdivision of these three broad categories is based on differences in clast shape (conglomerates and breccias), composition (sandstones), or grain size or texture (mudrocks). Conglomerates are dominantly composed of rounded gravel, while breccias are composed of dominantly angular gravel. Sandstone classification schemes vary widely, but most geologists have adopted
3366-484: Is primarily accomplished through normal faulting and through the ductile stretching and thinning. Normal faults drop rock units that are higher below those that are lower. This typically results in younger units ending up below older units. Stretching of units can result in their thinning. In fact, at one location within the Maria Fold and Thrust Belt , the entire sedimentary sequence of the Grand Canyon appears over
3465-401: Is reduced. Sediments are typically saturated with groundwater or seawater when originally deposited, and as pore space is reduced, much of these connate fluids are expelled. In addition to this physical compaction, chemical compaction may take place via pressure solution . Points of contact between grains are under the greatest strain, and the strained mineral is more soluble than the rest of
3564-568: Is that "the present is the key to the past." In Hutton's words: "the past history of our globe must be explained by what can be seen to be happening now." The principle of intrusive relationships concerns crosscutting intrusions. In geology, when an igneous intrusion cuts across a formation of sedimentary rock , it can be determined that the igneous intrusion is younger than the sedimentary rock. Different types of intrusions include stocks, laccoliths , batholiths , sills and dikes . The principle of cross-cutting relationships pertains to
3663-493: Is the most stable, followed by feldspar , micas , and finally other less stable minerals that are only present when little weathering has occurred. The amount of weathering depends mainly on the distance to the source area, the local climate and the time it took for the sediment to be transported to the point where it is deposited. In most sedimentary rocks, mica, feldspar and less stable minerals have been weathered to clay minerals like kaolinite , illite or smectite . Among
3762-523: Is used for geologically young materials containing organic carbon . The geology of an area changes through time as rock units are deposited and inserted, and deformational processes alter their shapes and locations. Rock units are first emplaced either by deposition onto the surface or intrusion into the overlying rock . Deposition can occur when sediments settle onto the surface of the Earth and later lithify into sedimentary rock, or when as volcanic material such as volcanic ash or lava flows blanket
3861-467: Is well-located based on mapped surface offsets from historic events. The Imperial Fault Zone has a history of earthquakes of moderate magnitude, including several doublet earthquakes . Geology Geology describes the structure of the Earth on and beneath its surface and the processes that have shaped that structure. Geologists study the mineralogical composition of rocks in order to get insight into their history of formation. Geology determines
3960-506: The bedrock . This study is often known as Quaternary geology , after the Quaternary period of geologic history, which is the most recent period of geologic time. Magma is the original unlithified source of all igneous rocks . The active flow of molten rock is closely studied in volcanology , and igneous petrology aims to determine the history of igneous rocks from their original molten source to their final crystallization. In
4059-512: The geochemical evolution of rock units. Petrologists can also use fluid inclusion data and perform high temperature and pressure physical experiments to understand the temperatures and pressures at which different mineral phases appear, and how they change through igneous and metamorphic processes. This research can be extrapolated to the field to understand metamorphic processes and the conditions of crystallization of igneous rocks. This work can also help to explain processes that occur within
Imperial Fault Zone - Misplaced Pages Continue
4158-463: The history of life . The scientific discipline that studies the properties and origin of sedimentary rocks is called sedimentology . Sedimentology is part of both geology and physical geography and overlaps partly with other disciplines in the Earth sciences , such as pedology , geomorphology , geochemistry and structural geology . Sedimentary rocks can be subdivided into four groups based on
4257-402: The mantle below (separated within itself by seismic discontinuities at 410 and 660 kilometers), and the outer core and inner core below that. More recently, seismologists have been able to create detailed images of wave speeds inside the earth in the same way a doctor images a body in a CT scan . These images have led to a much more detailed view of the interior of the Earth, and have replaced
4356-682: The organic material of a dead organism undergoes chemical reactions in which volatiles such as water and carbon dioxide are expulsed. The fossil, in the end, consists of a thin layer of pure carbon or its mineralized form, graphite . This form of fossilisation is called carbonisation . It is particularly important for plant fossils. The same process is responsible for the formation of fossil fuels like lignite or coal. Structures in sedimentary rocks can be divided into primary structures (formed during deposition) and secondary structures (formed after deposition). Unlike textures, structures are always large-scale features that can easily be studied in
4455-434: The relative ages of rocks found at a given location; geochemistry (a branch of geology) determines their absolute ages . By combining various petrological, crystallographic, and paleontological tools, geologists are able to chronicle the geological history of the Earth as a whole. One aspect is to demonstrate the age of the Earth . Geology provides evidence for plate tectonics , the evolutionary history of life , and
4554-440: The 1960s, it was discovered that the Earth's lithosphere , which includes the crust and rigid uppermost portion of the upper mantle , is separated into tectonic plates that move across the plastically deforming, solid, upper mantle, which is called the asthenosphere . This theory is supported by several types of observations, including seafloor spreading and the global distribution of mountain terrain and seismicity. There
4653-501: The Dott scheme, which uses the relative abundance of quartz, feldspar, and lithic framework grains and the abundance of a muddy matrix between the larger grains. Six sandstone names are possible using the descriptors for grain composition (quartz-, feldspathic-, and lithic-) and the amount of matrix (wacke or arenite). For example, a quartz arenite would be composed of mostly (>90%) quartz grains and have little or no clayey matrix between
4752-622: The Earth's past climates . Geologists broadly study the properties and processes of Earth and other terrestrial planets. Geologists use a wide variety of methods to understand the Earth's structure and evolution, including fieldwork , rock description , geophysical techniques , chemical analysis , physical experiments , and numerical modelling . In practical terms, geology is important for mineral and hydrocarbon exploration and exploitation, evaluating water resources , understanding natural hazards , remediating environmental problems, and providing insights into past climate change . Geology
4851-424: The Earth, such as subduction and magma chamber evolution. Structural geologists use microscopic analysis of oriented thin sections of geological samples to observe the fabric within the rocks, which gives information about strain within the crystalline structure of the rocks. They also plot and combine measurements of geological structures to better understand the orientations of faults and folds to reconstruct
4950-484: The Grand Canyon in the southwestern United States being a very visible example, the lower rock units were metamorphosed and deformed, and then deformation ended and the upper, undeformed units were deposited. Although any amount of rock emplacement and rock deformation can occur, and they can occur any number of times, these concepts provide a guide to understanding the geological history of an area. Geologists use
5049-470: The activity of bacteria , can affect minerals in a rock and are therefore seen as part of diagenesis. Deeper burial is accompanied by mesogenesis , during which most of the compaction and lithification takes place. Compaction takes place as the sediments come under increasing overburden (lithostatic) pressure from overlying sediments. Sediment grains move into more compact arrangements, grains of ductile minerals (such as mica ) are deformed, and pore space
SECTION 50
#17327658993535148-537: The beginning of the 20th century, advancement in geological science was facilitated by the ability to obtain accurate absolute dates to geological events using radioactive isotopes and other methods. This changed the understanding of geological time. Previously, geologists could only use fossils and stratigraphic correlation to date sections of rock relative to one another. With isotopic dates, it became possible to assign absolute ages to rock units, and these absolute dates could be applied to fossil sequences in which there
5247-399: The bottom of deep seas and lakes. There is little water mixing in such environments; as a result, oxygen from surface water is not brought down, and the deposited sediment is normally a fine dark clay. Dark rocks, rich in organic material, are therefore often shales. The size , form and orientation of clasts (the original pieces of rock) in a sediment is called its texture . The texture is
5346-504: The cement and the clasts (including fossils and ooids ) of a carbonate sedimentary rock usually consist of carbonate minerals. The mineralogy of a clastic rock is determined by the material supplied by the source area, the manner of its transport to the place of deposition and the stability of that particular mineral. The resistance of rock-forming minerals to weathering is expressed by the Goldich dissolution series . In this series, quartz
5445-421: The cement to produce secondary porosity . At sufficiently high temperature and pressure, the realm of diagenesis makes way for metamorphism , the process that forms metamorphic rock . The color of a sedimentary rock is often mostly determined by iron , an element with two major oxides: iron(II) oxide and iron(III) oxide . Iron(II) oxide (FeO) only forms under low oxygen ( anoxic ) circumstances and gives
5544-515: The creation of topographic gradients, causing material on the rock unit that is increasing in elevation to be eroded by hillslopes and channels. These sediments are deposited on the rock unit that is going down. Continual motion along the fault maintains the topographic gradient in spite of the movement of sediment and continues to create accommodation space for the material to deposit. Deformational events are often also associated with volcanism and igneous activity. Volcanic ashes and lavas accumulate on
5643-437: The crust, the uplift of mountain ranges, and paleo-topography. Fractionation of the lanthanide series elements is used to compute ages since rocks were removed from the mantle. Other methods are used for more recent events. Optically stimulated luminescence and cosmogenic radionuclide dating are used to date surfaces and/or erosion rates. Dendrochronology can also be used for the dating of landscapes. Radiocarbon dating
5742-572: The current is in one direction, such as rivers. The longer flank of such ripples is on the upstream side of the current. Symmetric wave ripples occur in environments where currents reverse directions, such as tidal flats. Mudcracks are a bed form caused by the dehydration of sediment that occasionally comes above the water surface. Such structures are commonly found at tidal flats or point bars along rivers. Secondary sedimentary structures are those which formed after deposition. Such structures form by chemical, physical and biological processes within
5841-663: The dominant particle size. Most geologists use the Udden-Wentworth grain size scale and divide unconsolidated sediment into three fractions: gravel (>2 mm diameter), sand (1/16 to 2 mm diameter), and mud (<1/16 mm diameter). Mud is further divided into silt (1/16 to 1/256 mm diameter) and clay (<1/256 mm diameter). The classification of clastic sedimentary rocks parallels this scheme; conglomerates and breccias are made mostly of gravel, sandstones are made mostly of sand , and mudrocks are made mostly of mud. This tripartite subdivision
5940-570: The fault is a normal fault or a thrust fault . The principle of inclusions and components states that, with sedimentary rocks, if inclusions (or clasts ) are found in a formation, then the inclusions must be older than the formation that contains them. For example, in sedimentary rocks, it is common for gravel from an older formation to be ripped up and included in a newer layer. A similar situation with igneous rocks occurs when xenoliths are found. These foreign bodies are picked up as magma or lava flows, and are incorporated, later to cool in
6039-403: The faults are not planar or because rock layers are dragged along, forming drag folds as slip occurs along the fault. Deeper in the Earth, rocks behave plastically and fold instead of faulting. These folds can either be those where the material in the center of the fold buckles upwards, creating " antiforms ", or where it buckles downwards, creating " synforms ". If the tops of the rock units within
SECTION 60
#17327658993536138-489: The field. Sedimentary structures can indicate something about the sedimentary environment or can serve to tell which side originally faced up where tectonics have tilted or overturned sedimentary layers. Sedimentary rocks are laid down in layers called beds or strata . A bed is defined as a layer of rock that has a uniform lithology and texture. Beds form by the deposition of layers of sediment on top of each other. The sequence of beds that characterizes sedimentary rocks
6237-404: The flow calms and the particles settle out of suspension . Most authors presently use the term "mudrock" to refer to all rocks composed dominantly of mud. Mudrocks can be divided into siltstones, composed dominantly of silt-sized particles; mudstones with subequal mixture of silt- and clay-sized particles; and claystones, composed mostly of clay-sized particles. Most authors use " shale " as
6336-483: The folds remain pointing upwards, they are called anticlines and synclines , respectively. If some of the units in the fold are facing downward, the structure is called an overturned anticline or syncline, and if all of the rock units are overturned or the correct up-direction is unknown, they are simply called by the most general terms, antiforms, and synforms. Even higher pressures and temperatures during horizontal shortening can cause both folding and metamorphism of
6435-404: The formation of faults and the age of the sequences through which they cut. Faults are younger than the rocks they cut; accordingly, if a fault is found that penetrates some formations but not those on top of it, then the formations that were cut are older than the fault, and the ones that are not cut must be younger than the fault. Finding the key bed in these situations may help determine whether
6534-485: The grain. As a result, the contact points are dissolved away, allowing the grains to come into closer contact. The increased pressure and temperature stimulate further chemical reactions, such as the reactions by which organic material becomes lignite or coal. Lithification follows closely on compaction, as increased temperatures at depth hasten the precipitation of cement that binds the grains together. Pressure solution contributes to this process of cementation , as
6633-510: The grains, a lithic wacke would have abundant lithic grains and abundant muddy matrix, etc. Although the Dott classification scheme is widely used by sedimentologists, common names like greywacke , arkose , and quartz sandstone are still widely used by non-specialists and in popular literature. Mudrocks are sedimentary rocks composed of at least 50% silt- and clay-sized particles. These relatively fine-grained particles are commonly transported by turbulent flow in water or air, and deposited as
6732-476: The history of rock deformation in the area. In addition, they perform analog and numerical experiments of rock deformation in large and small settings. Sedimentary Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface , followed by cementation . Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form
6831-587: The host rock. For example, a shell consisting of calcite can dissolve while a cement of silica then fills the cavity. In the same way, precipitating minerals can fill cavities formerly occupied by blood vessels , vascular tissue or other soft tissues. This preserves the form of the organism but changes the chemical composition, a process called permineralization . The most common minerals involved in permineralization are various forms of amorphous silica ( chalcedony , flint , chert ), carbonates (especially calcite), and pyrite . At high pressure and temperature,
6930-423: The internal composition and structure of the Earth. Seismologists can use the arrival times of seismic waves to image the interior of the Earth. Early advances in this field showed the existence of a liquid outer core (where shear waves were not able to propagate) and a dense solid inner core . These advances led to the development of a layered model of the Earth, with a lithosphere (including crust) on top,
7029-464: The later end of the scale, it is marked by the present day (in the Holocene epoch ). The following five timelines show the geologic time scale to scale. The first shows the entire time from the formation of the Earth to the present, but this gives little space for the most recent eon. The second timeline shows an expanded view of the most recent eon. In a similar way, the most recent era is expanded in
7128-435: The lithologies dehydrates. Clay can be easily compressed as a result of dehydration, while sand retains the same volume and becomes relatively less dense. On the other hand, when the pore fluid pressure in a sand layer surpasses a critical point, the sand can break through overlying clay layers and flow through, forming discordant bodies of sedimentary rock called sedimentary dykes . The same process can form mud volcanoes on
7227-454: The lowest layer to deposition of the highest bed. The principle of faunal succession is based on the appearance of fossils in sedimentary rocks. As organisms exist during the same period throughout the world, their presence or (sometimes) absence provides a relative age of the formations where they appear. Based on principles that William Smith laid out almost a hundred years before the publication of Charles Darwin 's theory of evolution ,
7326-497: The mantle and show the crystallographic structures expected in the inner core of the Earth. The geological time scale encompasses the history of the Earth. It is bracketed at the earliest by the dates of the first Solar System material at 4.567 Ga (or 4.567 billion years ago) and the formation of the Earth at 4.54 Ga (4.54 billion years), which is the beginning of the Hadean eon – a division of geological time. At
7425-405: The matrix. As a result, xenoliths are older than the rock that contains them. The principle of original horizontality states that the deposition of sediments occurs as essentially horizontal beds. Observation of modern marine and non-marine sediments in a wide variety of environments supports this generalization (although cross-bedding is inclined, the overall orientation of cross-bedded units
7524-450: The mineral dissolved from strained contact points is redeposited in the unstrained pore spaces. This further reduces porosity and makes the rock more compact and competent . Unroofing of buried sedimentary rock is accompanied by telogenesis , the third and final stage of diagenesis. As erosion reduces the depth of burial, renewed exposure to meteoric water produces additional changes to the sedimentary rock, such as leaching of some of
7623-438: The place of deposition. The nature of a sedimentary rock, therefore, not only depends on the sediment supply, but also on the sedimentary depositional environment in which it formed. As sediments accumulate in a depositional environment, older sediments are buried by younger sediments, and they undergo diagenesis. Diagenesis includes all the chemical, physical, and biological changes, exclusive of surface weathering, undergone by
7722-569: The principles of succession developed independently of evolutionary thought. The principle becomes quite complex, however, given the uncertainties of fossilization, localization of fossil types due to lateral changes in habitat ( facies change in sedimentary strata), and that not all fossils formed globally at the same time. Geologists also use methods to determine the absolute age of rock samples and geological events. These dates are useful on their own and may also be used in conjunction with relative dating methods or to calibrate relative methods. At
7821-627: The processes responsible for their formation: clastic sedimentary rocks, biochemical (biogenic) sedimentary rocks, chemical sedimentary rocks, and a fourth category for "other" sedimentary rocks formed by impacts, volcanism , and other minor processes. Clastic sedimentary rocks are composed of rock fragments ( clasts ) that have been cemented together. The clasts are commonly individual grains of quartz , feldspar , clay minerals , or mica . However, any type of mineral may be present. Clasts may also be lithic fragments composed of more than one mineral. Clastic sedimentary rocks are subdivided according to
7920-480: The result of localized precipitation due to small differences in composition or porosity of the host rock, such as around fossils, inside burrows or around plant roots. In carbonate rocks such as limestone or chalk , chert or flint concretions are common, while terrestrial sandstones sometimes contain iron concretions. Calcite concretions in clay containing angular cavities or cracks are called septarian concretions . After deposition, physical processes can deform
8019-454: The rock a grey or greenish colour. Iron(III) oxide (Fe 2 O 3 ) in a richer oxygen environment is often found in the form of the mineral hematite and gives the rock a reddish to brownish colour. In arid continental climates rocks are in direct contact with the atmosphere, and oxidation is an important process, giving the rock a red or orange colour. Thick sequences of red sedimentary rocks formed in arid climates are called red beds . However,
8118-428: The rocks. This metamorphism causes changes in the mineral composition of the rocks; creates a foliation , or planar surface, that is related to mineral growth under stress. This can remove signs of the original textures of the rocks, such as bedding in sedimentary rocks, flow features of lavas , and crystal patterns in crystalline rocks . Extension causes the rock units as a whole to become longer and thinner. This
8217-469: The same size, the rock is called 'well-sorted', and when there is a large spread in grain size, the rock is called 'poorly sorted'. The form of the clasts can reflect the origin of the rock. For example, coquina , a rock composed of clasts of broken shells, can only form in energetic water. The form of a clast can be described by using four parameters: Chemical sedimentary rocks have a non-clastic texture, consisting entirely of crystals. To describe such
8316-433: The sediment supply, caused, for example, by seasonal changes in rainfall, temperature or biochemical activity. Laminae that represent seasonal changes (similar to tree rings ) are called varves . Any sedimentary rock composed of millimeter or finer scale layers can be named with the general term laminite . When sedimentary rocks have no lamination at all, their structural character is called massive bedding. Graded bedding
8415-402: The sediment, producing a third class of secondary structures. Density contrasts between different sedimentary layers, such as between sand and clay, can result in flame structures or load casts , formed by inverted diapirism . While the clastic bed is still fluid, diapirism can cause a denser upper layer to sink into a lower layer. Sometimes, density contrasts occur or are enhanced when one of
8514-443: The sediment. They can be indicators of circumstances after deposition. Some can be used as way up criteria . Organic materials in a sediment can leave more traces than just fossils. Preserved tracks and burrows are examples of trace fossils (also called ichnofossils). Such traces are relatively rare. Most trace fossils are burrows of molluscs or arthropods . This burrowing is called bioturbation by sedimentologists. It can be
8613-433: The simplified layered model with a much more dynamic model. Mineralogists have been able to use the pressure and temperature data from the seismic and modeling studies alongside knowledge of the elemental composition of the Earth to reproduce these conditions in experimental settings and measure changes within the crystal structure. These studies explain the chemical changes associated with the major seismic discontinuities in
8712-532: The southwestern United States, sedimentary, volcanic, and intrusive rocks have been metamorphosed, faulted, foliated, and folded. Even older rocks, such as the Acasta gneiss of the Slave craton in northwestern Canada , the oldest known rock in the world have been metamorphosed to the point where their origin is indiscernible without laboratory analysis. In addition, these processes can occur in stages. In many places,
8811-453: The subsurface that is useful for civil engineering , for example in the construction of roads , houses , tunnels , canals or other structures. Sedimentary rocks are also important sources of natural resources including coal , fossil fuels , drinking water and ores . The study of the sequence of sedimentary rock strata is the main source for an understanding of the Earth's history , including palaeogeography , paleoclimatology and
8910-550: The subsurface. Sub-specialities of geology may distinguish endogenous and exogenous geology. Geological field work varies depending on the task at hand. Typical fieldwork could consist of: In addition to identifying rocks in the field ( lithology ), petrologists identify rock samples in the laboratory. Two of the primary methods for identifying rocks in the laboratory are through optical microscopy and by using an electron microprobe . In an optical mineralogy analysis, petrologists analyze thin sections of rock samples using
9009-407: The surface of the Earth and the convecting mantle is called plate tectonics . The development of plate tectonics has provided a physical basis for many observations of the solid Earth . Long linear regions of geological features are explained as plate boundaries: Plate tectonics has provided a mechanism for Alfred Wegener 's theory of continental drift , in which the continents move across
9108-488: The surface of the Earth over geological time. They also provided a driving force for crustal deformation, and a new setting for the observations of structural geology. The power of the theory of plate tectonics lies in its ability to combine all of these observations into a single theory of how the lithosphere moves over the convecting mantle. Advances in seismology , computer modeling , and mineralogy and crystallography at high temperatures and pressures give insights into
9207-479: The surface, and igneous intrusions enter from below. Dikes , long, planar igneous intrusions, enter along cracks, and therefore often form in large numbers in areas that are being actively deformed. This can result in the emplacement of dike swarms , such as those that are observable across the Canadian shield, or rings of dikes around the lava tube of a volcano. All of these processes do not necessarily occur in
9306-742: The surface. Igneous intrusions such as batholiths , laccoliths , dikes , and sills , push upwards into the overlying rock, and crystallize as they intrude. After the initial sequence of rocks has been deposited, the rock units can be deformed and/or metamorphosed . Deformation typically occurs as a result of horizontal shortening, horizontal extension , or side-to-side ( strike-slip ) motion. These structural regimes broadly relate to convergent boundaries , divergent boundaries , and transform boundaries, respectively, between tectonic plates. When rock units are placed under horizontal compression , they shorten and become thicker. Because rock units, other than muds, do not significantly change in volume , this
9405-407: The third timeline, the most recent period is expanded in the fourth timeline, and the most recent epoch is expanded in the fifth timeline. Horizontal scale is Millions of years (above timelines) / Thousands of years (below timeline) Epochs: Methods for relative dating were developed when geology first emerged as a natural science . Geologists still use the following principles today as
9504-527: The three major types of rock, fossils are most commonly found in sedimentary rock. Unlike most igneous and metamorphic rocks, sedimentary rocks form at temperatures and pressures that do not destroy fossil remnants. Often these fossils may only be visible under magnification . Dead organisms in nature are usually quickly removed by scavengers , bacteria , rotting and erosion, but under exceptional circumstances, these natural processes are unable to take place, leading to fossilisation. The chance of fossilisation
9603-404: The woody tissue of plants. Soft tissue has a much smaller chance of being fossilized, and the preservation of soft tissue of animals older than 40 million years is very rare. Imprints of organisms made while they were still alive are called trace fossils , examples of which are burrows , footprints , etc. As a part of a sedimentary rock, fossils undergo the same diagenetic processes as does
9702-615: Was datable material, converting the old relative ages into new absolute ages. For many geological applications, isotope ratios of radioactive elements are measured in minerals that give the amount of time that has passed since a rock passed through its particular closure temperature , the point at which different radiometric isotopes stop diffusing into and out of the crystal lattice . These are used in geochronologic and thermochronologic studies. Common methods include uranium–lead dating , potassium–argon dating , argon–argon dating and uranium–thorium dating . These methods are used for
9801-422: Was formed by bodies and parts (mainly shells) of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies ( marine snow ). Sedimentation may also occur as dissolved minerals precipitate from water solution . The sedimentary rock cover of the continents of the Earth's crust is extensive (73% of the Earth's current land surface), but sedimentary rock
#352647