Misplaced Pages

Database

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In computing , a database is an organized collection of data or a type of data store based on the use of a database management system ( DBMS ), the software that interacts with end users , applications , and the database itself to capture and analyze the data. The DBMS additionally encompasses the core facilities provided to administer the database. The sum total of the database, the DBMS and the associated applications can be referred to as a database system . Often the term "database" is also used loosely to refer to any of the DBMS, the database system or an application associated with the database.

#806193

135-516: Small databases can be stored on a file system , while large databases are hosted on computer clusters or cloud storage . The design of databases spans formal techniques and practical considerations, including data modeling , efficient data representation and storage, query languages , security and privacy of sensitive data, and distributed computing issues, including supporting concurrent access and fault tolerance . Computer scientists may classify database management systems according to

270-431: A data modeling construct for the relational model, and the difference between the two has become irrelevant. The 1980s ushered in the age of desktop computing . The new computers empowered their users with spreadsheets like Lotus 1-2-3 and database software like dBASE . The dBASE product was lightweight and easy for any computer user to understand out of the box. C. Wayne Ratliff , the creator of dBASE, stated: "dBASE

405-616: A data storage service that allows applications to share mass storage . Without a file system, applications could access the storage in incompatible ways that lead to resource contention , data corruption and data loss . There are many file system designs and implementations – with various structure and features and various resulting characteristics such as speed, flexibility, security, size and more. Files systems have been developed for many types of storage devices , including hard disk drives (HDDs), solid-state drives (SSDs), magnetic tapes and optical discs . A portion of

540-483: A 1962 report by the System Development Corporation of California as the first to use the term "data-base" in a specific technical sense. As computers grew in speed and capability, a number of general-purpose database systems emerged; by the mid-1960s a number of such systems had come into commercial use. Interest in a standard began to grow, and Charles Bachman , author of one such product,

675-462: A CPU include the arithmetic–logic unit (ALU) that performs arithmetic and logic operations , processor registers that supply operands to the ALU and store the results of ALU operations, and a control unit that orchestrates the fetching (from memory) , decoding and execution (of instructions) by directing the coordinated operations of the ALU, registers, and other components. Modern CPUs devote

810-486: A CPU may also contain memory , peripheral interfaces, and other components of a computer; such integrated devices are variously called microcontrollers or systems on a chip (SoC). Early computers such as the ENIAC had to be physically rewired to perform different tasks, which caused these machines to be called "fixed-program computers". The "central processing unit" term has been in use since as early as 1955. Since

945-402: A cache had only one level of cache; unlike later level 1 caches, it was not split into L1d (for data) and L1i (for instructions). Almost all current CPUs with caches have a split L1 cache. They also have L2 caches and, for larger processors, L3 caches as well. The L2 cache is usually not split and acts as a common repository for the already split L1 cache. Every core of a multi-core processor has

1080-400: A code from the control unit indicating which operation to perform. Depending on the instruction being executed, the operands may come from internal CPU registers , external memory, or constants generated by the ALU itself. When all input signals have settled and propagated through the ALU circuitry, the result of the performed operation appears at the ALU's outputs. The result consists of both

1215-438: A custom multitasking kernel with built-in networking support, but modern DBMSs typically rely on a standard operating system to provide these functions. Since DBMSs comprise a significant market , computer and storage vendors often take into account DBMS requirements in their own development plans. Databases and DBMSs can be categorized according to the database model(s) that they support (such as relational or XML ),

1350-461: A data word, which may be stored in a register or memory, and status information that is typically stored in a special, internal CPU register reserved for this purpose. Modern CPUs typically contain more than one ALU to improve performance. The address generation unit (AGU), sometimes also called the address computation unit (ACU), is an execution unit inside the CPU that calculates addresses used by

1485-440: A database management system. Existing DBMSs provide various functions that allow management of a database and its data which can be classified into four main functional groups: Both a database and its DBMS conform to the principles of a particular database model . "Database system" refers collectively to the database model, database management system, and database. Physically, database servers are dedicated computers that hold

SECTION 10

#1732787994807

1620-404: A database. One way to classify databases involves the type of their contents, for example: bibliographic , document-text, statistical, or multimedia objects. Another way is by their application area, for example: accounting, music compositions, movies, banking, manufacturing, or insurance. A third way is by some technical aspect, such as the database structure or interface type. This section lists

1755-458: A dedicated L2 cache and is usually not shared between the cores. The L3 cache, and higher-level caches, are shared between the cores and are not split. An L4 cache is currently uncommon, and is generally on dynamic random-access memory (DRAM), rather than on static random-access memory (SRAM), on a separate die or chip. That was also the case historically with L1, while bigger chips have allowed integration of it and generally all cache levels, with

1890-424: A device, device type, directory prefix, file path separator, or file type. File systems typically support organizing files into directories , also called folders , which segregate files into groups. This may be implemented by associating the file name with an index in a table of contents or an inode in a Unix-like file system. Directory structures may be flat (i.e. linear), or allow hierarchies by allowing

2025-542: A different chain, based on IBM's papers on System R. Though Oracle V1 implementations were completed in 1978, it was not until Oracle Version 2 when Ellison beat IBM to market in 1979. Stonebraker went on to apply the lessons from INGRES to develop a new database, Postgres, which is now known as PostgreSQL . PostgreSQL is often used for global mission-critical applications (the .org and .info domain name registries use it as their primary data store , as do many large companies and financial institutions). In Sweden, Codd's paper

2160-461: A different type of entity . Only in the mid-1980s did computing hardware become powerful enough to allow the wide deployment of relational systems (DBMSs plus applications). By the early 1990s, however, relational systems dominated in all large-scale data processing applications, and as of 2018 they remain dominant: IBM Db2 , Oracle , MySQL , and Microsoft SQL Server are the most searched DBMS . The dominant database language, standardized SQL for

2295-672: A directory to contain directories, called subdirectories. The first file system to support arbitrary hierarchies of directories was used in the Multics operating system. The native file systems of Unix-like systems also support arbitrary directory hierarchies, as do, Apple 's Hierarchical File System and its successor HFS+ in classic Mac OS , the FAT file system in MS-DOS 2.0 and later versions of MS-DOS and in Microsoft Windows ,

2430-422: A few of the adjectives used to characterize different kinds of databases. Connolly and Begg define database management system (DBMS) as a "software system that enables users to define, create, maintain and control access to the database." Examples of DBMS's include MySQL , MariaDB , PostgreSQL , Microsoft SQL Server , Oracle Database , and Microsoft Access . The DBMS acronym is sometimes extended to indicate

2565-760: A file system can be managed by the user via various utility programs. Central processing unit A central processing unit ( CPU ), also called a central processor , main processor , or just processor , is the most important processor in a given computer . Its electronic circuitry executes instructions of a computer program , such as arithmetic , logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs). The form, design , and implementation of CPUs have changed over time, but their fundamental operation remains almost unchanged. Principal components of

2700-443: A file system creates a file, it allocates space for data. Some file systems permit or require specifying an initial space allocation and subsequent incremental allocations as the file grows. To delete a file, the file system records that the file's space is free; available to use for another file. A local file system manages storage space to provide a level of reliability and efficiency. Generally, it allocates storage device space in

2835-422: A file system implementation. The physical file system layer provides relatively low-level access to a storage device (e.g. disk). It reads and writes data blocks , provides buffering and other memory management and controls placement of blocks in specific locations on the storage medium. This layer uses device drivers or channel I/O to drive the storage device. A file name , or filename , identifies

SECTION 20

#1732787994807

2970-417: A file to consuming applications and in some cases users. A file name is unique so that an application can refer to exactly one file for a particular name. If the file system supports directories, then generally file name uniqueness is enforced within the context of each directory. In other words, a storage can contain multiple files with the same name, but not in the same directory. Most file systems restrict

3105-706: A forked file system on the Macintosh, and Microsoft supports streams in NTFS. Some file systems maintain multiple past revisions of a file under a single file name; the file name by itself retrieves the most recent version, while prior saved version can be accessed using a special naming convention such as "filename;4" or "filename(-4)" to access the version four saves ago. See comparison of file systems#Metadata for details on which file systems support which kinds of metadata. A local file system tracks which areas of storage belong to which file and which are not being used. When

3240-564: A global clock signal. Two notable examples of this are the ARM compliant AMULET and the MIPS R3000 compatible MiniMIPS. Rather than totally removing the clock signal, some CPU designs allow certain portions of the device to be asynchronous, such as using asynchronous ALUs in conjunction with superscalar pipelining to achieve some arithmetic performance gains. While it is not altogether clear whether totally asynchronous designs can perform at

3375-477: A granular manner, usually multiple physical units (i.e. bytes ). For example, in Apple DOS of the early 1980s, 256-byte sectors on 140 kilobyte floppy disk used a track/sector map . The granular nature results in unused space, sometimes called slack space , for each file except for those that have the rare size that is a multiple of the granular allocation. For a 512-byte allocation, the average unused space

3510-460: A hundred or more gates, was to build them using a metal–oxide–semiconductor (MOS) semiconductor manufacturing process (either PMOS logic , NMOS logic , or CMOS logic). However, some companies continued to build processors out of bipolar transistor–transistor logic (TTL) chips because bipolar junction transistors were faster than MOS chips up until the 1970s (a few companies such as Datapoint continued to build processors out of TTL chips until

3645-522: A lot of semiconductor area to caches and instruction-level parallelism to increase performance and to CPU modes to support operating systems and virtualization . Most modern CPUs are implemented on integrated circuit (IC) microprocessors , with one or more CPUs on a single IC chip. Microprocessor chips with multiple CPUs are called multi-core processors . The individual physical CPUs, called processor cores , can also be multithreaded to support CPU-level multithreading. An IC that contains

3780-411: A memory management unit, translating logical addresses into physical RAM addresses, providing memory protection and paging abilities, useful for virtual memory . Simpler processors, especially microcontrollers , usually don't include an MMU. A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from

3915-459: A number that identifies the address of the next instruction to be fetched. After an instruction is fetched, the PC is incremented by the length of the instruction so that it will contain the address of the next instruction in the sequence. Often, the instruction to be fetched must be retrieved from relatively slow memory, causing the CPU to stall while waiting for the instruction to be returned. This issue

4050-449: A set of operations based on the mathematical system of relational calculus (from which the model takes its name). Splitting the data into a set of normalized tables (or relations ) aimed to ensure that each "fact" was only stored once, thus simplifying update operations. Virtual tables called views could present the data in different ways for different users, but views could not be directly updated. Codd used mathematical terms to define

4185-446: A single large "chunk". Subsequent multi-user versions were tested by customers in 1978 and 1979, by which time a standardized query language – SQL – had been added. Codd's ideas were establishing themselves as both workable and superior to CODASYL, pushing IBM to develop a true production version of System R, known as SQL/DS , and, later, Database 2 ( IBM Db2 ). Larry Ellison 's Oracle Database (or more simply, Oracle ) started from

Database - Misplaced Pages Continue

4320-431: A stream of bytes . Typically, to read file data, a program provides a memory buffer and the file system retrieves data from the medium and then writes the data to the buffer. A write involves the program providing a buffer of bytes that the file system reads and then stores to the medium. Some file systems, or layers on top of a file system, allow a program to define a record so that a program can read and write data as

4455-452: A strong demand for massively distributed databases with high partition tolerance, but according to the CAP theorem , it is impossible for a distributed system to simultaneously provide consistency , availability, and partition tolerance guarantees. A distributed system can satisfy any two of these guarantees at the same time, but not all three. For that reason, many NoSQL databases are using what

4590-585: A structure; not an unorganized sequence of bytes. If a fixed length record definition is used, then locating the n record can be calculated mathematically, which is relatively fast compared to parsing the data for record separators. An identification for each record, also known as a key, allows a program to read, write and update records without regard to their location in storage. Such storage requires managing blocks of media, usually separating key blocks and data blocks. Efficient algorithms can be developed with pyramid structures for locating records. Typically,

4725-454: A time by navigating the links, they would use a declarative query language that expressed what data was required, rather than the access path by which it should be found. Finding an efficient access path to the data became the responsibility of the database management system, rather than the application programmer. This process, called query optimization, depended on the fact that queries were expressed in terms of mathematical logic. Codd's paper

4860-554: A time. Some CPU architectures include multiple AGUs so more than one address-calculation operation can be executed simultaneously, which brings further performance improvements due to the superscalar nature of advanced CPU designs. For example, Intel incorporates multiple AGUs into its Sandy Bridge and Haswell microarchitectures , which increase bandwidth of the CPU memory subsystem by allowing multiple memory-access instructions to be executed in parallel. Many microprocessors (in smartphones and desktop, laptop, server computers) have

4995-446: A useful computer requires thousands or tens of thousands of switching devices. The overall speed of a system is dependent on the speed of the switches. Vacuum-tube computers such as EDVAC tended to average eight hours between failures, whereas relay computers—such as the slower but earlier Harvard Mark I —failed very rarely. In the end, tube-based CPUs became dominant because the significant speed advantages afforded generally outweighed

5130-432: A user's use of storage space. A file system typically ensures that stored data remains consistent in both normal operations as well as exceptional situations like: Recovery from exceptional situations may include updating metadata, directory entries and handling data that was buffered but not written to storage media. A file system might record events to allow analysis of issues such as: Many file systems access data as

5265-439: A very small number of ICs; usually just one. The overall smaller CPU size, as a result of being implemented on a single die, means faster switching time because of physical factors like decreased gate parasitic capacitance . This has allowed synchronous microprocessors to have clock rates ranging from tens of megahertz to several gigahertz. Additionally, the ability to construct exceedingly small transistors on an IC has increased

5400-405: Is 256 bytes. For 64 KB clusters, the average unused space is 32 KB. Generally, the allocation unit size is set when the storage is configured. Choosing a relatively small size compared to the files stored, results in excessive access overhead. Choosing a relatively large size results in excessive unused space. Choosing an allocation size based on the average size of files expected to be in

5535-960: Is called eventual consistency to provide both availability and partition tolerance guarantees with a reduced level of data consistency. NewSQL is a class of modern relational databases that aims to provide the same scalable performance of NoSQL systems for online transaction processing (read-write) workloads while still using SQL and maintaining the ACID guarantees of a traditional database system. Databases are used to support internal operations of organizations and to underpin online interactions with customers and suppliers (see Enterprise software ). Databases are used to hold administrative information and more specialized data, such as engineering data or economic models. Examples include computerized library systems, flight reservation systems , computerized parts inventory systems , and many content management systems that store websites as collections of webpages in

Database - Misplaced Pages Continue

5670-513: Is classified by IBM as a hierarchical database . IDMS and Cincom Systems ' TOTAL databases are classified as network databases. IMS remains in use as of 2014. Edgar F. Codd worked at IBM in San Jose, California , in one of their offshoot offices that were primarily involved in the development of hard disk systems. He was unhappy with the navigational model of the CODASYL approach, notably

5805-400: Is defined by the CPU's instruction set architecture (ISA). Often, one group of bits (that is, a "field") within the instruction, called the opcode, indicates which operation is to be performed, while the remaining fields usually provide supplemental information required for the operation, such as the operands. Those operands may be specified as a constant value (called an immediate value), or as

5940-494: Is generally referred to as the " classic RISC pipeline ", which is quite common among the simple CPUs used in many electronic devices (often called microcontrollers). It largely ignores the important role of CPU cache, and therefore the access stage of the pipeline. Some instructions manipulate the program counter rather than producing result data directly; such instructions are generally called "jumps" and facilitate program behavior like loops , conditional program execution (through

6075-483: Is greater or whether they are equal; one of these flags could then be used by a later jump instruction to determine program flow. Fetch involves retrieving an instruction (which is represented by a number or sequence of numbers) from program memory. The instruction's location (address) in program memory is determined by the program counter (PC; called the "instruction pointer" in Intel x86 microprocessors ), which stores

6210-534: Is invisible to the end user and the system still works correctly. However this can degrade performance on some storage hardware that work better with contiguous blocks such as hard disk drives . Other hardware such as solid-state drives are not affected by fragmentation. A file system often supports access control of data that it manages. The intent of access control is often to prevent certain users from reading or modifying certain files. Access control can also restrict access by program in order to ensure that data

6345-400: Is largely addressed in modern processors by caches and pipeline architectures (see below). The instruction that the CPU fetches from memory determines what the CPU will do. In the decode step, performed by binary decoder circuitry known as the instruction decoder , the instruction is converted into signals that control other parts of the CPU. The way in which the instruction is interpreted

6480-510: Is modified in a controlled way. Examples include passwords stored in the metadata of the file or elsewhere and file permissions in the form of permission bits, access control lists , or capabilities . The need for file system utilities to be able to access the data at the media level to reorganize the structures and provide efficient backup usually means that these are only effective for polite users but are not effective against intruders. Methods for encrypting file data are sometimes included in

6615-530: Is most often credited with the design of the stored-program computer because of his design of EDVAC, and the design became known as the von Neumann architecture , others before him, such as Konrad Zuse , had suggested and implemented similar ideas. The so-called Harvard architecture of the Harvard Mark I , which was completed before EDVAC, also used a stored-program design using punched paper tape rather than electronic memory. The key difference between

6750-462: Is organized. Because of the close relationship between them, the term "database" is often used casually to refer to both a database and the DBMS used to manipulate it. Outside the world of professional information technology , the term database is often used to refer to any collection of related data (such as a spreadsheet or a card index) as size and usage requirements typically necessitate use of

6885-421: Is still pursued in certain applications by some companies like Netezza and Oracle ( Exadata ). IBM started working on a prototype system loosely based on Codd's concepts as System R in the early 1970s. The first version was ready in 1974/5, and work then started on multi-table systems in which the data could be split so that all of the data for a record (some of which is optional) did not have to be stored in

SECTION 50

#1732787994807

7020-550: Is stored inside the allocation group itself. Additional attributes can be associated on file systems, such as NTFS , XFS , ext2 , ext3 , some versions of UFS , and HFS+ , using extended file attributes . Some file systems provide for user defined attributes such as the author of the document, the character encoding of a document or the size of an image. Some file systems allow for different data collections to be associated with one file name. These separate collections may be referred to as streams or forks . Apple has long used

7155-737: Is the IBM PowerPC -based Xenon used in the Xbox 360 ; this reduces the power requirements of the Xbox 360. Another method of addressing some of the problems with a global clock signal is the removal of the clock signal altogether. While removing the global clock signal makes the design process considerably more complex in many ways, asynchronous (or clockless) designs carry marked advantages in power consumption and heat dissipation in comparison with similar synchronous designs. While somewhat uncommon, entire asynchronous CPUs have been built without using

7290-404: Is the basis of query optimization. There is no loss of expressiveness compared with the hierarchic or network models, though the connections between tables are no longer so explicit. In the hierarchic and network models, records were allowed to have a complex internal structure. For example, the salary history of an employee might be represented as a "repeating group" within the employee record. In

7425-488: The IBM z13 has a 96 KiB L1 instruction cache. Most CPUs are synchronous circuits , which means they employ a clock signal to pace their sequential operations. The clock signal is produced by an external oscillator circuit that generates a consistent number of pulses each second in the form of a periodic square wave . The frequency of the clock pulses determines the rate at which a CPU executes instructions and, consequently,

7560-667: The Integrated Data Store (IDS), founded the Database Task Group within CODASYL , the group responsible for the creation and standardization of COBOL . In 1971, the Database Task Group delivered their standard, which generally became known as the CODASYL approach , and soon a number of commercial products based on this approach entered the market. The CODASYL approach offered applications

7695-546: The Manchester Mark 1 ran its first program during the night of 16–17 June 1949. Early CPUs were custom designs used as part of a larger and sometimes distinctive computer. However, this method of designing custom CPUs for a particular application has largely given way to the development of multi-purpose processors produced in large quantities. This standardization began in the era of discrete transistor mainframes and minicomputers , and has rapidly accelerated with

7830-598: The Michigan Terminal System . The system remained in production until 1998. In the 1970s and 1980s, attempts were made to build database systems with integrated hardware and software. The underlying philosophy was that such integration would provide higher performance at a lower cost. Examples were IBM System/38 , the early offering of Teradata , and the Britton Lee, Inc. database machine. Another approach to hardware support for database management

7965-680: The NTFS file system in the Windows NT family of operating systems, and the ODS-2 (On-Disk Structure-2) and higher levels of the Files-11 file system in OpenVMS . In addition to data, the file content, a file system also manages associated metadata which may include but is not limited to: A file system stores associated metadata separate from the content of the file. Most file systems store

8100-434: The database models that they support. Relational databases became dominant in the 1980s. These model data as rows and columns in a series of tables , and the vast majority use SQL for writing and querying data. In the 2000s, non-relational databases became popular, collectively referred to as NoSQL , because they use different query languages . Formally, a "database" refers to a set of related data accessed through

8235-471: The hierarchical model and the CODASYL model ( network model ). These were characterized by the use of pointers (often physical disk addresses) to follow relationships from one record to another. The relational model , first proposed in 1970 by Edgar F. Codd , departed from this tradition by insisting that applications should search for data by content, rather than by following links. The relational model employs sets of ledger-style tables, each used for

SECTION 60

#1732787994807

8370-474: The main memory . A cache is a smaller, faster memory, closer to a processor core , which stores copies of the data from frequently used main memory locations . Most CPUs have different independent caches, including instruction and data caches , where the data cache is usually organized as a hierarchy of more cache levels (L1, L2, L3, L4, etc.). All modern (fast) CPUs (with few specialized exceptions ) have multiple levels of CPU caches. The first CPUs that used

8505-621: The 1980s and early 1990s. The 1990s, along with a rise in object-oriented programming , saw a growth in how data in various databases were handled. Programmers and designers began to treat the data in their databases as objects . That is to say that if a person's data were in a database, that person's attributes, such as their address, phone number, and age, were now considered to belong to that person instead of being extraneous data. This allows for relations between data to be related to objects and their attributes and not to individual fields. The term " object–relational impedance mismatch " described

8640-453: The AGU, various address-generation calculations can be offloaded from the rest of the CPU, and can often be executed quickly in a single CPU cycle. Capabilities of an AGU depend on a particular CPU and its architecture . Thus, some AGUs implement and expose more address-calculation operations, while some also include more advanced specialized instructions that can operate on multiple operands at

8775-431: The ALU's output word size), an arithmetic overflow flag will be set, influencing the next operation. Hardwired into a CPU's circuitry is a set of basic operations it can perform, called an instruction set . Such operations may involve, for example, adding or subtracting two numbers, comparing two numbers, or jumping to a different part of a program. Each instruction is represented by a unique combination of bits , known as

8910-468: The CPU can fetch the data from actual memory locations. Those address-generation calculations involve different integer arithmetic operations , such as addition, subtraction, modulo operations , or bit shifts . Often, calculating a memory address involves more than one general-purpose machine instruction, which do not necessarily decode and execute quickly. By incorporating an AGU into a CPU design, together with introducing specialized instructions that use

9045-479: The CPU to access main memory . By having address calculations handled by separate circuitry that operates in parallel with the rest of the CPU, the number of CPU cycles required for executing various machine instructions can be reduced, bringing performance improvements. While performing various operations, CPUs need to calculate memory addresses required for fetching data from the memory; for example, in-memory positions of array elements must be calculated before

9180-422: The CPU to malfunction. Another major issue, as clock rates increase dramatically, is the amount of heat that is dissipated by the CPU . The constantly changing clock causes many components to switch regardless of whether they are being used at that time. In general, a component that is switching uses more energy than an element in a static state. Therefore, as clock rate increases, so does energy consumption, causing

9315-467: The CPU to require more heat dissipation in the form of CPU cooling solutions. One method of dealing with the switching of unneeded components is called clock gating , which involves turning off the clock signal to unneeded components (effectively disabling them). However, this is often regarded as difficult to implement and therefore does not see common usage outside of very low-power designs. One notable recent CPU design that uses extensive clock gating

9450-682: The University of Michigan began development of the MICRO Information Management System based on D.L. Childs ' Set-Theoretic Data model. MICRO was used to manage very large data sets by the US Department of Labor , the U.S. Environmental Protection Agency , and researchers from the University of Alberta , the University of Michigan , and Wayne State University . It ran on IBM mainframe computers using

9585-539: The ability to navigate around a linked data set which was formed into a large network. Applications could find records by one of three methods: Later systems added B-trees to provide alternate access paths. Many CODASYL databases also added a declarative query language for end users (as distinct from the navigational API ). However, CODASYL databases were complex and required significant training and effort to produce useful applications. IBM also had its own DBMS in 1966, known as Information Management System (IMS). IMS

9720-438: The actual databases and run only the DBMS and related software. Database servers are usually multiprocessor computers, with generous memory and RAID disk arrays used for stable storage. Hardware database accelerators, connected to one or more servers via a high-speed channel, are also used in large-volume transaction processing environments . DBMSs are found at the heart of most database applications . DBMSs may be built around

9855-431: The advent and eventual success of the ubiquitous personal computer , the term CPU is now applied almost exclusively to microprocessors. Several CPUs (denoted cores ) can be combined in a single processing chip. Previous generations of CPUs were implemented as discrete components and numerous small integrated circuits (ICs) on one or more circuit boards. Microprocessors, on the other hand, are CPUs manufactured on

9990-428: The advent of the transistor . Transistorized CPUs during the 1950s and 1960s no longer had to be built out of bulky, unreliable, and fragile switching elements, like vacuum tubes and relays . With this improvement, more complex and reliable CPUs were built onto one or several printed circuit boards containing discrete (individual) components. In 1964, IBM introduced its IBM System/360 computer architecture that

10125-564: The complexity and number of transistors in a single CPU many fold. This widely observed trend is described by Moore's law , which had proven to be a fairly accurate predictor of the growth of CPU (and other IC) complexity until 2016. While the complexity, size, construction and general form of CPUs have changed enormously since 1950, the basic design and function has not changed much at all. Almost all common CPUs today can be very accurately described as von Neumann stored-program machines. As Moore's law no longer holds, concerns have arisen about

10260-423: The complexity scale, a machine language program is a collection of machine language instructions that the CPU executes. The actual mathematical operation for each instruction is performed by a combinational logic circuit within the CPU's processor known as the arithmetic–logic unit or ALU. In general, a CPU executes an instruction by fetching it from memory, using its ALU to perform an operation, and then storing

10395-421: The computer main memory can be set up as a RAM disk that serves as a storage device for a file system. File systems such as tmpfs can store files in virtual memory . A virtual file system provides access to files that are either computed on request, called virtual files (see procfs and sysfs ), or are mapping into another, backing storage. From c.  1900 and before the advent of computers

10530-519: The concepts. The logical file system layer provides relatively high-level access via an application programming interface (API) for file operations including open, close, read and write – delegating operations to lower layers. This layer manages open file table entries and per-process file descriptors. It provides file access, directory operations, security and protection. The virtual file system , an optional layer, supports multiple concurrent instances of physical file systems, each of which called

10665-486: The control unit as part of the von Neumann architecture . In modern computer designs, the control unit is typically an internal part of the CPU with its overall role and operation unchanged since its introduction. The arithmetic logic unit (ALU) is a digital circuit within the processor that performs integer arithmetic and bitwise logic operations. The inputs to the ALU are the data words to be operated on (called operands ), status information from previous operations, and

10800-453: The desired operation. The action is then completed, typically in response to a clock pulse. Very often the results are written to an internal CPU register for quick access by subsequent instructions. In other cases results may be written to slower, but less expensive and higher capacity main memory . For example, if an instruction that performs addition is to be executed, registers containing operands (numbers to be summed) are activated, as are

10935-429: The drawbacks of globally synchronous CPUs. For example, a clock signal is subject to the delays of any other electrical signal. Higher clock rates in increasingly complex CPUs make it more difficult to keep the clock signal in phase (synchronized) throughout the entire unit. This has led many modern CPUs to require multiple identical clock signals to be provided to avoid delaying a single signal significantly enough to cause

11070-453: The early 1980s). In the 1960s, MOS ICs were slower and initially considered useful only in applications that required low power. Following the development of silicon-gate MOS technology by Federico Faggin at Fairchild Semiconductor in 1968, MOS ICs largely replaced bipolar TTL as the standard chip technology in the early 1970s. As the microelectronic technology advanced, an increasing number of transistors were placed on ICs, decreasing

11205-578: The era of specialized supercomputers like those made by Cray Inc and Fujitsu Ltd . During this period, a method of manufacturing many interconnected transistors in a compact space was developed. The integrated circuit (IC) allowed a large number of transistors to be manufactured on a single semiconductor -based die , or "chip". At first, only very basic non-specialized digital circuits such as NOR gates were miniaturized into ICs. CPUs based on these "building block" ICs are generally referred to as "small-scale integration" (SSI) devices. SSI ICs, such as

11340-503: The execution of an instruction, the entire process repeats, with the next instruction cycle normally fetching the next-in-sequence instruction because of the incremented value in the program counter . If a jump instruction was executed, the program counter will be modified to contain the address of the instruction that was jumped to and program execution continues normally. In more complex CPUs, multiple instructions can be fetched, decoded and executed simultaneously. This section describes what

11475-401: The faster the clock, the more instructions the CPU will execute each second. To ensure proper operation of the CPU, the clock period is longer than the maximum time needed for all signals to propagate (move) through the CPU. In setting the clock period to a value well above the worst-case propagation delay , it is possible to design the entire CPU and the way it moves data around the "edges" of

11610-416: The file system. This is very effective since there is no need for file system utilities to know the encryption seed to effectively manage the data. The risks of relying on encryption include the fact that an attacker can copy the data and use brute force to decrypt the data. Additionally, losing the seed means losing the data. Some operating systems allow a system administrator to enable disk quotas to limit

11745-491: The following functions and services a fully-fledged general purpose DBMS should provide: File system In computing , a file system or filesystem (often abbreviated to FS or fs ) governs file organization and access. A local file system is a capability of an operating system that services the applications running on the same computer . A distributed file system is a protocol that provides file access between networked computers. A file system provides

11880-400: The inconvenience of translating between programmed objects and database tables. Object databases and object–relational databases attempt to solve this problem by providing an object-oriented language (sometimes as extensions to SQL) that programmers can use as alternative to purely relational SQL. On the programming side, libraries known as object–relational mappings (ORMs) attempt to solve

12015-559: The individual transistors used by the PDP-8 and PDP-10 to SSI ICs, and their extremely popular PDP-11 line was originally built with SSI ICs, but was eventually implemented with LSI components once these became practical. Lee Boysel published influential articles, including a 1967 "manifesto", which described how to build the equivalent of a 32-bit mainframe computer from a relatively small number of large-scale integration circuits (LSI). The only way to build LSI chips, which are chips with

12150-429: The lack of a "search" facility. In 1970, he wrote a number of papers that outlined a new approach to database construction that eventually culminated in the groundbreaking A Relational Model of Data for Large Shared Data Banks . In this paper, he described a new system for storing and working with large databases. Instead of records being stored in some sort of linked list of free-form records as in CODASYL, Codd's idea

12285-500: The length of a file name. Some file systems match file names as case sensitive and others as case insensitive. For example, the names MYFILE and myfile match the same file for case insensitive, but different files for case sensitive. Most modern file systems allow a file name to contain a wide range of characters from the Unicode character set. Some restrict characters such as those used to indicate special attributes such as

12420-439: The limits of integrated circuit transistor technology. Extreme miniaturization of electronic gates is causing the effects of phenomena like electromigration and subthreshold leakage to become much more significant. These newer concerns are among the many factors causing researchers to investigate new methods of computing such as the quantum computer , as well as to expand the use of parallelism and other methods that extend

12555-408: The location of a value that may be a processor register or a memory address, as determined by some addressing mode . In some CPU designs, the instruction decoder is implemented as a hardwired, unchangeable binary decoder circuit. In others, a microprogram is used to translate instructions into sets of CPU configuration signals that are applied sequentially over multiple clock pulses. In some cases

12690-406: The machine language opcode . While processing an instruction, the CPU decodes the opcode (via a binary decoder ) into control signals, which orchestrate the behavior of the CPU. A complete machine language instruction consists of an opcode and, in many cases, additional bits that specify arguments for the operation (for example, the numbers to be summed in the case of an addition operation). Going up

12825-421: The memory that stores the microprogram is rewritable, making it possible to change the way in which the CPU decodes instructions. After the fetch and decode steps, the execute step is performed. Depending on the CPU architecture, this may consist of a single action or a sequence of actions. During each action, control signals electrically enable or disable various parts of the CPU so they can perform all or part of

12960-576: The model: relations, tuples, and domains rather than tables, rows, and columns. The terminology that is now familiar came from early implementations. Codd would later criticize the tendency for practical implementations to depart from the mathematical foundations on which the model was based. The use of primary keys (user-oriented identifiers) to represent cross-table relationships, rather than disk addresses, had two primary motivations. From an engineering perspective, it enabled tables to be relocated and resized without expensive database reorganization. But Codd

13095-595: The names of all the files in one directory in one place—the directory table for that directory—which is often stored like any other file. Many file systems put only some of the metadata for a file in the directory table, and the rest of the metadata for that file in a completely separate structure, such as the inode . Most file systems also store metadata not associated with any one particular file. Such metadata includes information about unused regions— free space bitmap , block availability map —and information about bad sectors . Often such information about an allocation group

13230-710: The number of individual ICs needed for a complete CPU. MSI and LSI ICs increased transistor counts to hundreds, and then thousands. By 1968, the number of ICs required to build a complete CPU had been reduced to 24 ICs of eight different types, with each IC containing roughly 1000 MOSFETs. In stark contrast with its SSI and MSI predecessors, the first LSI implementation of the PDP-11 contained a CPU composed of only four LSI integrated circuits. Since microprocessors were first introduced they have almost completely overtaken all other central processing unit implementation methods. The first commercially available microprocessor, made in 1971,

13365-583: The ones used in the Apollo Guidance Computer , usually contained up to a few dozen transistors. To build an entire CPU out of SSI ICs required thousands of individual chips, but still consumed much less space and power than earlier discrete transistor designs. IBM's System/370 , follow-on to the System/360, used SSI ICs rather than Solid Logic Technology discrete-transistor modules. DEC's PDP-8 /I and KI10 PDP-10 also switched from

13500-409: The parts of the arithmetic logic unit (ALU) that perform addition. When the clock pulse occurs, the operands flow from the source registers into the ALU, and the sum appears at its output. On subsequent clock pulses, other components are enabled (and disabled) to move the output (the sum of the operation) to storage (e.g., a register or memory). If the resulting sum is too large (i.e., it is larger than

13635-544: The physical wiring of the computer. This overcame a severe limitation of ENIAC, which was the considerable time and effort required to reconfigure the computer to perform a new task. With von Neumann's design, the program that EDVAC ran could be changed simply by changing the contents of the memory. EDVAC was not the first stored-program computer; the Manchester Baby , which was a small-scale experimental stored-program computer, ran its first program on 21 June 1948 and

13770-501: The popularization of the integrated circuit (IC). The IC has allowed increasingly complex CPUs to be designed and manufactured to tolerances on the order of nanometers . Both the miniaturization and standardization of CPUs have increased the presence of digital devices in modern life far beyond the limited application of dedicated computing machines. Modern microprocessors appear in electronic devices ranging from automobiles to cellphones, and sometimes even in toys. While von Neumann

13905-473: The possible exception of the last level. Each extra level of cache tends to be bigger and is optimized differently. Other types of caches exist (that are not counted towards the "cache size" of the most important caches mentioned above), such as the translation lookaside buffer (TLB) that is part of the memory management unit (MMU) that most CPUs have. Caches are generally sized in powers of two: 2, 8, 16 etc. KiB or MiB (for larger non-L1) sizes, although

14040-451: The processor. It tells the computer's memory, arithmetic and logic unit and input and output devices how to respond to the instructions that have been sent to the processor. It directs the operation of the other units by providing timing and control signals. Most computer resources are managed by the CU. It directs the flow of data between the CPU and the other devices. John von Neumann included

14175-480: The relational approach, the data would be normalized into a user table, an address table and a phone number table (for instance). Records would be created in these optional tables only if the address or phone numbers were actually provided. As well as identifying rows/records using logical identifiers rather than disk addresses, Codd changed the way in which applications assembled data from multiple records. Rather than requiring applications to gather data one record at

14310-598: The relational model, has influenced database languages for other data models. Object databases were developed in the 1980s to overcome the inconvenience of object–relational impedance mismatch , which led to the coining of the term "post-relational" and also the development of hybrid object–relational databases . The next generation of post-relational databases in the late 2000s became known as NoSQL databases, introducing fast key–value stores and document-oriented databases . A competing "next generation" known as NewSQL databases attempted new implementations that retained

14445-419: The relational model, the process of normalization led to such internal structures being replaced by data held in multiple tables, connected only by logical keys. For instance, a common use of a database system is to track information about users, their name, login information, various addresses and phone numbers. In the navigational approach, all of this data would be placed in a single variable-length record. In

14580-455: The relational/SQL model while aiming to match the high performance of NoSQL compared to commercially available relational DBMSs. The introduction of the term database coincided with the availability of direct-access storage (disks and drums) from the mid-1960s onwards. The term represented a contrast with the tape-based systems of the past, allowing shared interactive use rather than daily batch processing . The Oxford English Dictionary cites

14715-478: The reliability problems. Most of these early synchronous CPUs ran at low clock rates compared to modern microelectronic designs. Clock signal frequencies ranging from 100 kHz to 4 MHz were very common at this time, limited largely by the speed of the switching devices they were built with. The design complexity of CPUs increased as various technologies facilitated the building of smaller and more reliable electronic devices. The first such improvement came with

14850-409: The result to memory. Besides the instructions for integer mathematics and logic operations, various other machine instructions exist, such as those for loading data from memory and storing it back, branching operations, and mathematical operations on floating-point numbers performed by the CPU's floating-point unit (FPU). The control unit (CU) is a component of the CPU that directs the operation of

14985-484: The rising and falling clock signal. This has the advantage of simplifying the CPU significantly, both from a design perspective and a component-count perspective. However, it also carries the disadvantage that the entire CPU must wait on its slowest elements, even though some portions of it are much faster. This limitation has largely been compensated for by various methods of increasing CPU parallelism (see below). However, architectural improvements alone do not solve all of

15120-623: The same problem. XML databases are a type of structured document-oriented database that allows querying based on XML document attributes. XML databases are mostly used in applications where the data is conveniently viewed as a collection of documents, with a structure that can vary from the very flexible to the highly rigid: examples include scientific articles, patents, tax filings, and personnel records. NoSQL databases are often very fast, do not require fixed table schemas, avoid join operations by storing denormalized data, and are designed to scale horizontally . In recent years, there has been

15255-540: The short switching time of a transistor in comparison to a tube or relay. The increased reliability and dramatically increased speed of the switching elements, which were almost exclusively transistors by this time; CPU clock rates in the tens of megahertz were easily obtained during this period. Additionally, while discrete transistor and IC CPUs were in heavy usage, new high-performance designs like single instruction, multiple data (SIMD) vector processors began to appear. These early experimental designs later gave rise to

15390-429: The storage tends to minimize unusable space. As a file system creates, modifies and deletes files, the underlying storage representation may become fragmented . Files and the unused space between files will occupy allocation blocks that are not contiguous. A file becomes fragmented if space needed to store its content cannot be allocated in contiguous blocks. Free space becomes fragmented when files are deleted. This

15525-581: The technology progress in the areas of processors , computer memory , computer storage , and computer networks . The concept of a database was made possible by the emergence of direct access storage media such as magnetic disks , which became widely available in the mid-1960s; earlier systems relied on sequential storage of data on magnetic tape . The subsequent development of database technology can be divided into three eras based on data model or structure: navigational , SQL/ relational , and post-relational. The two main early navigational data models were

15660-439: The term "CPU" is generally defined as a device for software (computer program) execution, the earliest devices that could rightly be called CPUs came with the advent of the stored-program computer . The idea of a stored-program computer had been already present in the design of John Presper Eckert and John William Mauchly 's ENIAC , but was initially omitted so that it could be finished sooner. On June 30, 1945, before ENIAC

15795-442: The terms file system , filing system and system for filing were used to describe methods of organizing, storing and retrieving paper documents. By 1961, the term file system was being applied to computerized filing alongside the original meaning. By 1964, it was in general use. A local file system's architecture can be described as layers of abstraction even though a particular file system design may not actually separate

15930-423: The type(s) of computer they run on (from a server cluster to a mobile phone ), the query language (s) used to access the database (such as SQL or XQuery ), and their internal engineering, which affects performance, scalability , resilience, and security. The sizes, capabilities, and performance of databases and their respective DBMSs have grown in orders of magnitude. These performance increases were enabled by

16065-410: The underlying database model , with RDBMS for the relational , OODBMS for the object (oriented) and ORDBMS for the object–relational model . Other extensions can indicate some other characteristics, such as DDBMS for a distributed database management systems. The functionality provided by a DBMS can vary enormously. The core functionality is the storage, retrieval and update of data. Codd proposed

16200-455: The use of a "database management system" (DBMS), which is an integrated set of computer software that allows users to interact with one or more databases and provides access to all of the data contained in the database (although restrictions may exist that limit access to particular data). The DBMS provides various functions that allow entry, storage and retrieval of large quantities of information and provides ways to manage how that information

16335-460: The use of a "language" for data access , known as QUEL . Over time, INGRES moved to the emerging SQL standard. IBM itself did one test implementation of the relational model, PRTV , and a production one, Business System 12 , both now discontinued. Honeywell wrote MRDS for Multics , and now there are two new implementations: Alphora Dataphor and Rel. Most other DBMS implementations usually called relational are actually SQL DBMSs. In 1970,

16470-422: The use of a conditional jump), and existence of functions . In some processors, some other instructions change the state of bits in a "flags" register . These flags can be used to influence how a program behaves, since they often indicate the outcome of various operations. For example, in such processors a "compare" instruction evaluates two values and sets or clears bits in the flags register to indicate which one

16605-431: The usefulness of the classical von Neumann model. The fundamental operation of most CPUs, regardless of the physical form they take, is to execute a sequence of stored instructions that is called a program. The instructions to be executed are kept in some kind of computer memory . Nearly all CPUs follow the fetch, decode and execute steps in their operation, which are collectively known as the instruction cycle . After

16740-616: The von Neumann and Harvard architectures is that the latter separates the storage and treatment of CPU instructions and data, while the former uses the same memory space for both. Most modern CPUs are primarily von Neumann in design, but CPUs with the Harvard architecture are seen as well, especially in embedded applications; for instance, the Atmel AVR microcontrollers are Harvard-architecture processors. Relays and vacuum tubes (thermionic tubes) were commonly used as switching elements;

16875-443: Was ICL 's CAFS accelerator, a hardware disk controller with programmable search capabilities. In the long term, these efforts were generally unsuccessful because specialized database machines could not keep pace with the rapid development and progress of general-purpose computers. Thus most database systems nowadays are software systems running on general-purpose hardware, using general-purpose computer data storage. However, this idea

17010-538: Was a development of software written for the Apollo program on the System/360 . IMS was generally similar in concept to CODASYL, but used a strict hierarchy for its model of data navigation instead of CODASYL's network model. Both concepts later became known as navigational databases due to the way data was accessed: the term was popularized by Bachman's 1973 Turing Award presentation The Programmer as Navigator . IMS

17145-412: Was also read and Mimer SQL was developed in the mid-1970s at Uppsala University . In 1984, this project was consolidated into an independent enterprise. Another data model, the entity–relationship model , emerged in 1976 and gained popularity for database design as it emphasized a more familiar description than the earlier relational model. Later on, entity–relationship constructs were retrofitted as

17280-402: Was different from programs like BASIC, C, FORTRAN, and COBOL in that a lot of the dirty work had already been done. The data manipulation is done by dBASE instead of by the user, so the user can concentrate on what he is doing, rather than having to mess with the dirty details of opening, reading, and closing files, and managing space allocation." dBASE was one of the top selling software titles in

17415-538: Was made, mathematician John von Neumann distributed a paper entitled First Draft of a Report on the EDVAC . It was the outline of a stored-program computer that would eventually be completed in August 1949. EDVAC was designed to perform a certain number of instructions (or operations) of various types. Significantly, the programs written for EDVAC were to be stored in high-speed computer memory rather than specified by

17550-422: Was more interested in the difference in semantics: the use of explicit identifiers made it easier to define update operations with clean mathematical definitions, and it also enabled query operations to be defined in terms of the established discipline of first-order predicate calculus ; because these operations have clean mathematical properties, it becomes possible to rewrite queries in provably correct ways, which

17685-422: Was picked up by two people at Berkeley, Eugene Wong and Michael Stonebraker . They started a project known as INGRES using funding that had already been allocated for a geographical database project and student programmers to produce code. Beginning in 1973, INGRES delivered its first test products which were generally ready for widespread use in 1979. INGRES was similar to System R in a number of ways, including

17820-647: Was so popular that it dominated the mainframe computer market for decades and left a legacy that is continued by similar modern computers like the IBM zSeries . In 1965, Digital Equipment Corporation (DEC) introduced another influential computer aimed at the scientific and research markets—the PDP-8 . Transistor-based computers had several distinct advantages over their predecessors. Aside from facilitating increased reliability and lower power consumption, transistors also allowed CPUs to operate at much higher speeds because of

17955-399: Was the Intel 4004 , and the first widely used microprocessor, made in 1974, was the Intel 8080 . Mainframe and minicomputer manufacturers of the time launched proprietary IC development programs to upgrade their older computer architectures , and eventually produced instruction set compatible microprocessors that were backward-compatible with their older hardware and software. Combined with

18090-490: Was to organize the data as a number of " tables ", each table being used for a different type of entity. Each table would contain a fixed number of columns containing the attributes of the entity. One or more columns of each table were designated as a primary key by which the rows of the table could be uniquely identified; cross-references between tables always used these primary keys, rather than disk addresses, and queries would join tables based on these key relationships, using

18225-429: Was used in a series of computers capable of running the same programs with different speeds and performances. This was significant at a time when most electronic computers were incompatible with one another, even those made by the same manufacturer. To facilitate this improvement, IBM used the concept of a microprogram (often called "microcode"), which still sees widespread use in modern CPUs. The System/360 architecture

#806193