A frying pan , frypan , or skillet is a flat-bottomed pan used for frying , searing , and browning foods. It is typically 20 to 30 cm (8 to 12 in) in diameter with relatively low sides that flare outwards, a long handle, and no lid. Larger pans may have a small grab handle opposite the main handle. A pan of similar dimensions, but with less flared, more vertical sides and often with a lid, is called a sauté pan . While a sauté pan can be used as a frying pan, it is designed for lower-heat cooking.
51-532: Iron Skillet may refer to: Frying pan Iron Skillet (trophy) , the trophy awarded to the victor of the SMU–TCU football rivalry Iron Skillet (restaurant) , an American restaurant chain attached to Petro Stopping Centers Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title Iron Skillet . If an internal link led you here, you may wish to change
102-731: A martensitic stainless steel alloy, today known as AISI type 420. The discovery was announced two years later in a January 1915 newspaper article in The New York Times . The metal was later marketed under the "Staybrite" brand by Firth Vickers in England and was used for the new entrance canopy for the Savoy Hotel in London in 1929. Brearley applied for a US patent during 1915 only to find that Haynes had already registered one. Brearley and Haynes pooled their funding and, with
153-575: A body-centered tetragonal crystal structure, and offer a wide range of properties and are used as stainless engineering steels, stainless tool steels, and creep -resistant steels. They are magnetic, and not as corrosion-resistant as ferritic and austenitic stainless steels due to their low chromium content. They fall into four categories (with some overlap): Martensitic stainless steels can be heat treated to provide better mechanical properties. The heat treatment typically involves three steps: Replacing some carbon in martensitic stainless steels by nitrogen
204-464: A countertop. (The legs usually attach to handles.) Electric frying pans are common in shapes that are unusual for 'unpowered' frying pans, notably square and rectangular. Most are designed with straighter sides than their stovetop cousins and include a lid. In this way they are a cross between a frying pan and a sauté pan. A modern electric skillet has an additional advantage over the stovetop version: heat regulation. The detachable power cord incorporates
255-627: A group of investors, formed the American Stainless Steel Corporation, with headquarters in Pittsburgh , Pennsylvania. Brearley initially called his new alloy "rustless steel". The alloy was sold in the US under different brand names like "Allegheny metal" and "Nirosta steel". Even within the metallurgy industry, the name remained unsettled; in 1921, one trade journal called it "unstainable steel". Brearley worked with
306-417: A large number of copper pans are sold with a tin lining which can be replaced when it wears out. Cast iron pans are used because although they do not conduct heat very evenly, they do retain it quite well, making them useful for searing meats and vegetables. Carbon steel cookware is used because over time it can develop a highly nonstick patina of polymerized oil called seasoning useful for cooking protein that
357-519: A local cutlery manufacturer, who gave it the name "stainless steel". As late as 1932, Ford Motor Company continued calling the alloy "rustless steel" in automobile promotional materials. In 1929, before the Great Depression, over 25,000 tons of stainless steel were manufactured and sold in the US annually. Major technological advances in the 1950s and 1960s allowed the production of large tonnages at an affordable cost: Stainless steel
408-451: A lower design criteria and corrosion resistance is required, for example in high temperatures and oxidizing environments. Martensitic , duplex and ferritic stainless steels are magnetic , while austenitic stainless steel is usually non-magnetic. Ferritic steel owes its magnetism to its body-centered cubic crystal structure , in which iron atoms are arranged in cubes (with one iron atom at each corner) and an additional iron atom in
459-469: A protective oxide surface film, such as aluminum and titanium, are also susceptible. Under high contact-force sliding, this oxide can be deformed, broken, and removed from parts of the component, exposing the bare reactive metal. When the two surfaces are of the same material, these exposed surfaces can easily fuse. Separation of the two surfaces can result in surface tearing and even complete seizure of metal components or fasteners. Galling can be mitigated by
510-404: A thermostatic control for maintaining the desired temperature. With the perfection of the thermostatic control, the electric skillet became a popular kitchen appliance. Although it largely has been supplanted by the microwave oven , it is still in use in many kitchens. Stainless steel Stainless steel , also known as inox , corrosion-resistant steel ( CRES ), and rustless steel ,
561-406: A useful interchange table. Although stainless steel does rust, this only affects the outer few layers of atoms, its chromium content shielding deeper layers from oxidation. The addition of nitrogen also improves resistance to pitting corrosion and increases mechanical strength. Thus, there are numerous grades of stainless steel with varying chromium and molybdenum contents to suit the environment
SECTION 10
#1732773283336612-410: Is a pan used to make rappie pie , an Acadian potato dish. The pan is made from aluminum or stainless steel . Traditionally, frying pans were made of cast iron , carbon steel or copper lined with tin, for their different qualities and properties. Copper pans are highly thermally conductive, making them useful for evenly sautéing. However, they are also highly reactive with most foods, so today
663-406: Is a recent development. The limited solubility of nitrogen is increased by the pressure electroslag refining (PESR) process, in which melting is carried out under high nitrogen pressure. Steel containing up to 0.4% nitrogen has been achieved, leading to higher hardness and strength and higher corrosion resistance. As PESR is expensive, lower but significant nitrogen contents have been achieved using
714-996: Is an alloy of iron that is resistant to rusting and corrosion . It contains iron with chromium and other elements such as molybdenum , carbon , nickel and nitrogen depending on its specific use and cost. Stainless steel's resistance to corrosion results from the 10.5%, or more, chromium content which forms a passive film that can protect the material and self-heal in the presence of oxygen. The alloy's properties, such as luster and resistance to corrosion, are useful in many applications. Stainless steel can be rolled into sheets , plates, bars, wire, and tubing. These can be used in cookware , cutlery , surgical instruments , major appliances , vehicles, construction material in large buildings, industrial equipment (e.g., in paper mills , chemical plants , water treatment ), and storage tanks and tankers for chemicals and food products. Some grades are also suitable for forging and casting . The biological cleanability of stainless steel
765-532: Is an extension of the heating- quenching - tempering cycle, where the final temperature of the material before full-load use is taken down to a cryogenic temperature range. This can remove residual stresses and improve wear resistance. Austenitic stainless steel sub-groups, 200 series and 300 series: Ferritic stainless steels possess a ferrite microstructure like carbon steel, which is a body-centered cubic crystal structure, and contain between 10.5% and 27% chromium with very little or no nickel. This microstructure
816-426: Is bent or cut, magnetism occurs along the edge of the stainless steel because the crystal structure rearranges itself. Galling , sometimes called cold welding, is a form of severe adhesive wear, which can occur when two metal surfaces are in relative motion to each other and under heavy pressure. Austenitic stainless steel fasteners are particularly susceptible to thread galling, though other alloys that self-generate
867-510: Is classified into five main families that are primarily differentiated by their crystalline structure : Austenitic stainless steel is the largest family of stainless steels, making up about two-thirds of all stainless steel production. They possess an austenitic microstructure, which is a face-centered cubic crystal structure. This microstructure is achieved by alloying steel with sufficient nickel, manganese, or nitrogen to maintain an austenitic microstructure at all temperatures, ranging from
918-409: Is near that of ordinary steel, and much higher than the melting points of aluminium or copper. As with most alloys, the melting point of stainless steel is expressed in the form of a range of temperatures, and not a single temperature. This temperature range goes from 1,400 to 1,530 °C (2,550 to 2,790 °F; 1,670 to 1,800 K; 3,010 to 3,250 °R) depending on the specific consistency of
969-1421: Is one of the most-produced industrial chemicals. At room temperature, type 304 stainless steel is only resistant to 3% acid, while type 316 is resistant to 3% acid up to 50 °C (120 °F) and 20% acid at room temperature. Thus type 304 SS is rarely used in contact with sulfuric acid. Type 904L and Alloy 20 are resistant to sulfuric acid at even higher concentrations above room temperature. Concentrated sulfuric acid possesses oxidizing characteristics like nitric acid, and thus silicon-bearing stainless steels are also useful. Hydrochloric acid damages any kind of stainless steel and should be avoided. All types of stainless steel resist attack from phosphoric acid and nitric acid at room temperature. At high concentrations and elevated temperatures, attack will occur, and higher-alloy stainless steels are required. In general, organic acids are less corrosive than mineral acids such as hydrochloric and sulfuric acid. Type 304 and type 316 stainless steels are unaffected by weak bases such as ammonium hydroxide , even in high concentrations and at high temperatures. The same grades exposed to stronger bases such as sodium hydroxide at high concentrations and high temperatures will likely experience some etching and cracking. Increasing chromium and nickel contents provide increased resistance. All grades resist damage from aldehydes and amines , though in
1020-402: Is porous and fragile. In addition, as iron oxide occupies a larger volume than the original steel, this layer expands and tends to flake and fall away, exposing the underlying steel to further attack. In comparison, stainless steels contain sufficient chromium to undergo passivation , spontaneously forming a microscopically thin inert surface film of chromium oxide by reaction with the oxygen in
1071-498: Is present at all temperatures due to the chromium addition, so they are not capable of being hardened by heat treatment. They cannot be strengthened by cold work to the same degree as austenitic stainless steels. They are magnetic. Additions of niobium (Nb), titanium (Ti), and zirconium (Zr) to type 430 allow good weldability. Due to the near-absence of nickel, they are less expensive than austenitic steels and are present in many products, which include: Martensitic stainless steels have
SECTION 20
#17327732833361122-407: Is prone to stick, such as fish and eggs. While all of these materials are still commonly used in professional kitchens, many modern materials have supplanted them in the consumer market. Nowadays, most frying pans are now made from metals such as aluminium or stainless steel . The materials and construction method used in modern frying pans vary greatly and some typical materials include: A coating
1173-466: Is sometimes applied to the surface of the pan to make it non-stick . Frying pans made from bare cast iron or carbon steel can also gain non-stick properties through seasoning and use. A process for bonding Teflon to chemically roughened aluminium was patented in France by Marc Gregoire in 1954. In 1956 he formed a company to market non-stick cookware under the " Tefal " brand name. The durability of
1224-452: Is superior to both aluminium and copper, and comparable to glass. Its cleanability, strength, and corrosion resistance have prompted the use of stainless steel in pharmaceutical and food processing plants. Different types of stainless steel are labeled with an AISI three-digit number. The ISO 15510 standard lists the chemical compositions of stainless steels of the specifications in existing ISO, ASTM , EN , JIS , and GB standards in
1275-404: Is to be incorporated in a later step such as a pan sauce. Since little or no residue can stick to the surface, the sauce will fail for lack of its primary flavouring agent. An electric frying pan or electric skillet incorporates an electric heating element into the frying pan itself and so can function independently off of a cooking stove . Accordingly, it has heat-insulated legs for standing on
1326-571: The Essen firm Friedrich Krupp Germaniawerft built the 366-ton sailing yacht Germania featuring a chrome-nickel steel hull, in Germany. In 1911, Philip Monnartz reported on the relationship between chromium content and corrosion resistance. On 17 October 1912, Krupp engineers Benno Strauss and Eduard Maurer patented as Nirosta the austenitic stainless steel known today as 18/8 or AISI type 304. Similar developments were taking place in
1377-459: The Old English panna . Before the introduction of the kitchen stove in the mid-19th century, a commonly used cast-iron cooking pan called a 'spider' had a handle and three legs used to stand up in the coals and ashes of the fire. Cooking pots and pans with legless, flat bottoms were designed when cooking stoves became popular; this period of the late 19th century saw the introduction of
1428-638: The cryogenic region to the melting point. Thus, austenitic stainless steels are not hardenable by heat treatment since they possess the same microstructure at all temperatures. However, "forming temperature is an essential factor for metastable austenitic stainless steel (M-ASS) products to accommodate microstructures and cryogenic mechanical performance. ... Metastable austenitic stainless steels (M-ASSs) are widely used in manufacturing cryogenic pressure vessels (CPVs), owing to their high cryogenic toughness, ductility, strength, corrosion-resistance, and economy." Cryogenic cold-forming of austenitic stainless steel
1479-528: The water industry . Precipitation hardening stainless steels have corrosion resistance comparable to austenitic varieties, but can be precipitation hardened to even higher strengths than other martensitic grades. There are three types of precipitation hardening stainless steels: Solution treatment at about 1,040 °C (1,900 °F) followed by quenching results in a relatively ductile martensitic structure. Subsequent aging treatment at 475 °C (887 °F) precipitates Nb and Cu-rich phases that increase
1530-549: The 1840s, both Britain's Sheffield steelmakers and then Krupp of Germany were producing chromium steel with the latter employing it for cannons in the 1850s. In 1861, Robert Forester Mushet took out a patent on chromium steel in Britain. These events led to the first American production of chromium-containing steel by J. Baur of the Chrome Steel Works of Brooklyn for the construction of bridges. A US patent for
1581-549: The 19th century didn't pay attention to the amount of carbon in the alloyed steels they were testing until in 1898 Adolphe Carnot and E. Goutal noted that chromium steels better resist to oxidation with acids the less carbon they contain. Also in the late 1890s, German chemist Hans Goldschmidt developed an aluminothermic ( thermite ) process for producing carbon-free chromium. Between 1904 and 1911, several researchers, particularly Leon Guillet of France, prepared alloys that would be considered stainless steel today. In 1908,
Iron Skillet - Misplaced Pages Continue
1632-667: The United States, where Christian Dantsizen of General Electric and Frederick Becket (1875–1942) at Union Carbide were industrializing ferritic stainless steel. In 1912, Elwood Haynes applied for a US patent on a martensitic stainless steel alloy, which was not granted until 1919. While seeking a corrosion-resistant alloy for gun barrels in 1913, Harry Brearley of the Brown-Firth research laboratory in Sheffield, England, discovered and subsequently industrialized
1683-441: The air and even the small amount of dissolved oxygen in the water. This passive film prevents further corrosion by blocking oxygen diffusion to the steel surface and thus prevents corrosion from spreading into the bulk of the metal. This film is self-repairing, even when scratched or temporarily disturbed by conditions that exceed the inherent corrosion resistance of that grade. The resistance of this film to corrosion depends upon
1734-587: The alloy in question. Like steel , stainless steels are relatively poor conductors of electricity, with significantly lower electrical conductivities than copper. In particular, the non-electrical contact resistance (ECR) of stainless steel arises as a result of the dense protective oxide layer and limits its functionality in applications as electrical connectors. Copper alloys and nickel-coated connectors tend to exhibit lower ECR values and are preferred materials for such applications. Nevertheless, stainless steel connectors are employed in situations where ECR poses
1785-610: The alloy must endure. Corrosion resistance can be increased further by the following means: The most common type of stainless steel, 304, has a tensile yield strength around 210 MPa (30,000 psi) in the annealed condition. It can be strengthened by cold working to a strength of 1,050 MPa (153,000 psi) in the full-hard condition. The strongest commonly available stainless steels are precipitation hardening alloys such as 17-4 PH and Custom 465. These can be heat treated to have tensile yield strengths up to 1,730 MPa (251,000 psi). Melting point of stainless steel
1836-706: The alloy. The invention of stainless steel followed a series of scientific developments, starting in 1798 when chromium was first shown to the French Academy by Louis Vauquelin . In the early 1800s, British scientists James Stoddart, Michael Faraday , and Robert Mallet observed the resistance of chromium-iron alloys ("chromium steels") to oxidizing agents . Robert Bunsen discovered chromium's resistance to strong acids. The corrosion resistance of iron-chromium alloys may have been first recognized in 1821 by Pierre Berthier , who noted their resistance against attack by some acids and suggested their use in cutlery. In
1887-580: The center. This central iron atom is responsible for ferritic steel's magnetic properties. This arrangement also limits the amount of carbon the steel can absorb to around 0.025%. Grades with low coercive field have been developed for electro-valves used in household appliances and for injection systems in internal combustion engines. Some applications require non-magnetic materials, such as magnetic resonance imaging . Austenitic stainless steels, which are usually non-magnetic , can be made slightly magnetic through work hardening . Sometimes, if austenitic steel
1938-544: The chemical composition of the stainless steel, chiefly the chromium content. It is customary to distinguish between four forms of corrosion: uniform, localized (pitting), galvanic, and SCC (stress corrosion cracking). Any of these forms of corrosion can occur when the grade of stainless steel is not suited for the working environment. The designation "CRES" refers to corrosion-resistant (stainless) steel. Uniform corrosion takes place in very aggressive environments, typically where chemicals are produced or heavily used, such as in
1989-401: The early coatings was initially poor, but improvements in manufacturing have made these products a kitchen standard. The surface is not as tough as metal and the use of metal utensils (e.g. spatulas ) can permanently mar the coating and degrade its non-stick property. For some cooking preparations a non-stick frying pan is inappropriate, especially for deglazing , where the residue of browning
2040-435: The flat cast-iron skillet. A versatile pan that combines the best of both the sauté pan and the frying pan has higher, sloping sides that are often slightly curved. This pan is called a sauteuse (literally a sauté pan in the female gender), an evasée (denoting a pan with sloping sides), or a fait-tout (literally "does everything"). Most professional kitchens have several of these utensils in varying sizes. A "rappie pan"
2091-644: The link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Iron_Skillet&oldid=899003272 " Category : Disambiguation pages Hidden categories: Short description is different from Wikidata All article disambiguation pages All disambiguation pages Frying pan Copper frying pans were used in ancient Mesopotamia . Frying pans were also known in ancient Greece , where they were called tagēnon ( Ancient Greek : τάγηνον ) and teganon (τήγανον) and Rome , where they were called patella or sartago . The word pan derives from
Iron Skillet - Misplaced Pages Continue
2142-506: The most widely used. Many grading systems are in use, including US SAE steel grades . The Unified Numbering System for Metals and Alloys (UNS) was developed by the ASTM in 1970. Europe has adopted EN 10088 . Unlike carbon steel , stainless steels do not suffer uniform corrosion when exposed to wet environments. Unprotected carbon steel rusts readily when exposed to a combination of air and moisture. The resulting iron oxide surface layer
2193-414: The product was issued in 1869. This was followed with recognition of the corrosion resistance of chromium alloys by Englishmen John T. Woods and John Clark, who noted ranges of chromium from 5–30%, with added tungsten and "medium carbon". They pursued the commercial value of the innovation via a British patent for "Weather-Resistant Alloys". Scientists researching steel corrosion in the second half of
2244-429: The pulp and paper industries. The entire surface of the steel is attacked, and the corrosion is expressed as corrosion rate in mm/year (usually less than 0.1 mm/year is acceptable for such cases). Corrosion tables provide guidelines. This is typically the case when stainless steels are exposed to acidic or basic solutions. Whether stainless steel corrodes depends on the kind and concentration of acid or base and
2295-574: The solution temperature. Uniform corrosion is typically easy to avoid because of extensive published corrosion data or easily performed laboratory corrosion testing. Acidic solutions can be put into two general categories: reducing acids, such as hydrochloric acid and dilute sulfuric acid , and oxidizing acids , such as nitric acid and concentrated sulfuric acid. Increasing chromium and molybdenum content provides increased resistance to reducing acids while increasing chromium and silicon content provides increased resistance to oxidizing acids. Sulfuric acid
2346-949: The standard AOD process. Duplex stainless steels have a mixed microstructure of austenite and ferrite, the ideal ratio being a 50:50 mix, though commercial alloys may have ratios of 40:60. They are characterized by higher chromium (19–32%) and molybdenum (up to 5%) and lower nickel contents than austenitic stainless steels. Duplex stainless steels have roughly twice the yield strength of austenitic stainless steel. Their mixed microstructure provides improved resistance to chloride stress corrosion cracking in comparison to austenitic stainless steel types 304 and 316. Duplex grades are usually divided into three sub-groups based on their corrosion resistance: lean duplex, standard duplex, and super duplex. The properties of duplex stainless steels are achieved with an overall lower alloy content than similar-performing super-austenitic grades, making their use cost-effective for many applications. The pulp and paper industry
2397-536: The strength up to above 1,000 MPa (150,000 psi) yield strength. This outstanding strength level is used in high-tech applications such as aerospace (usually after remelting to eliminate non-metallic inclusions, which increases fatigue life). Another major advantage of this steel is that aging, unlike tempering treatments, is carried out at a temperature that can be applied to (nearly) finished parts without distortion and discoloration. Typical heat treatment involves solution treatment and quenching . At this point,
2448-698: The structure remains austenitic. Martensitic transformation is then obtained either by a cryogenic treatment at −75 °C (−103 °F) or by severe cold work (over 70% deformation, usually by cold rolling or wire drawing). Aging at 510 °C (950 °F) — which precipitates the Ni 3 Al intermetallic phase—is carried out as above on nearly finished parts. Yield stress levels above 1400 MPa are then reached. The structure remains austenitic at all temperatures. Typical heat treatment involves solution treatment and quenching, followed by aging at 715 °C (1,319 °F). Aging forms Ni 3 Ti precipitates and increases
2499-487: The use of dissimilar materials (bronze against stainless steel) or using different stainless steels (martensitic against austenitic). Additionally, threaded joints may be lubricated to provide a film between the two parts and prevent galling. Nitronic 60, made by selective alloying with manganese, silicon, and nitrogen, has demonstrated a reduced tendency to gall. The density of stainless steel ranges from 7.5 to 8.0 g/cm (0.27 to 0.29 lb/cu in) depending on
2550-415: The yield strength to about 650 MPa (94,000 psi) at room temperature. Unlike the above grades, the mechanical properties and creep resistance of this steel remain very good at temperatures up to 700 °C (1,300 °F). As a result, A286 is classified as an Fe-based superalloy , used in jet engines, gas turbines, and turbo parts. Over 150 grades of stainless steel are recognized, of which 15 are
2601-476: Was one of the first to extensively use duplex stainless steel. Today, the oil and gas industry is the largest user and has pushed for more corrosion resistant grades, leading to the development of super duplex and hyper duplex grades. More recently, the less expensive (and slightly less corrosion-resistant) lean duplex has been developed, chiefly for structural applications in building and construction (concrete reinforcing bars, plates for bridges, coastal works) and in
SECTION 50
#1732773283336#335664