Misplaced Pages

Jamla

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Jamla ( Arabic : جملة , also spelled Gamlah , Jumlah , Jamleh or Al Jamlah ) is a village in southwestern Syria , administratively part of the Daraa Governorate and immediately east of the Israeli-occupied Golan Heights . It is situated on the eastern slopes of the Wadi Ruqqad valley. Nearby localities include Abdin to the south, the nahiyah ("subdistrict") center of al-Shajara to the southwest, Nafia to the east, Ayn Zakar to the northeast and Saida to the north. According to the Syria Central Bureau of Statistics (CBS), Jamla had a population of 1,916 in the 2004 census. Its inhabitants are predominantly Sunni Muslims .

#591408

91-431: The village likely has an ancient history, indicated by the large stone ruins in the vicinity, including that of a rectangular-shaped building. The area is marked by basaltic mounds called rujm , some of which rise to an elevation between 24 and 30 feet. Atop the summits of the rujm are delineated circles and squares stretching to widths up to 10 feet. These shapes were formed by blocks of rudely carved basaltic rock. In

182-447: A color index of 35 or greater. The physical properties of basalt result from its relatively low silica content and typically high iron and magnesium content. The average density of basalt is 2.9 g/cm , compared, for example, to granite ’s typical density of 2.7 g/cm . The viscosity of basaltic magma is relatively low—around 10 to 10 cP —similar to the viscosity of ketchup , but that is still several orders of magnitude higher than

273-423: A mantle wedge above the descending slab. The slab releases water vapor and other volatiles as it descends, which further lowers the melting point, further increasing the amount of decompression melting. Each tectonic setting produces basalt with its own distinctive characteristics. The mineralogy of basalt is characterized by a preponderance of calcic plagioclase feldspar and pyroxene . Olivine can also be

364-493: A basalt is diagnostic of how and where it erupted—for example, whether into the sea, in an explosive cinder eruption or as creeping pāhoehoe lava flows, the classic image of Hawaiian basalt eruptions. Basalt that erupts under open air (that is, subaerially ) forms three distinct types of lava or volcanic deposits: scoria ; ash or cinder ( breccia ); and lava flows. Basalt in the tops of subaerial lava flows and cinder cones will often be highly vesiculated , imparting

455-779: A bomb blast in Jamla; Al-Nusra Front claimed responsibility for the attack. In late 2015, Jamla was reported to be a stronghold of the Yarmouk Martyrs Brigade. When the Brigade merged into the ISIL-affiliated Khalid ibn al-Walid Army , it maintained control of the city through 2016 and 2017. On 28 July 2018, the Syrian army recaptured the village of Jamla from Khalid ibn al-Walid Army . On 21 June 2022, two Syrian soldiers were killed by an IED explosion on

546-419: A continued supply of lava and its pressure on a solidified crust. Most basaltic lavas are of ʻaʻā or pāhoehoe types, rather than block lavas. Underwater, they can form pillow lavas , which are rather similar to entrail-type pahoehoe lavas on land. Ultramafic lavas, such as komatiite and highly magnesian magmas that form boninite , take the composition and temperatures of eruptions to the extreme. All have

637-455: A darker groundmass , including amphibole or pyroxene phenocrysts. Mafic or basaltic lavas are typified by relatively high magnesium oxide and iron oxide content (whose molecular formulas provide the consonants in mafic) and have a silica content limited to a range of 52% to 45%. They generally erupt at temperatures of 1,100 to 1,200 °C (2,010 to 2,190 °F) and at relatively low viscosities, around 10 to 10 cP (10 to 100 Pa⋅s). This

728-442: A distinctive pillow shape, through which the hot lava breaks to form another pillow. This "pillow" texture is very common in underwater basaltic flows and is diagnostic of an underwater eruption environment when found in ancient rocks. Pillows typically consist of a fine-grained core with a glassy crust and have radial jointing. The size of individual pillows varies from 10 cm up to several metres. When pāhoehoe lava enters

819-420: A dome forms on an inclined surface it can flow in short thick flows called coulées (dome flows). These flows often travel only a few kilometres from the vent. Lava tubes are formed when a flow of relatively fluid lava cools on the upper surface sufficiently to form a crust. Beneath this crust, which being made of rock is an excellent insulator, the lava can continue to flow as a liquid. When this flow occurs over

910-427: A flow can shrink in the vertical dimension without fracturing, it cannot easily accommodate shrinking in the horizontal direction unless cracks form; the extensive fracture network that develops results in the formation of columns . These structures, or basalt prisms , are predominantly hexagonal in cross-section, but polygons with three to twelve or more sides can be observed. The size of the columns depends loosely on

1001-430: A high content of augite or other dark-coloured pyroxene minerals, but can exhibit a wide range of shading. Some basalts are quite light-coloured due to a high content of plagioclase; these are sometimes described as leucobasalts . It can be difficult to distinguish between lighter-colored basalt and andesite , so field researchers commonly use a rule of thumb for this purpose, classifying it as basalt if it has

SECTION 10

#1732787307592

1092-621: A lightweight "frothy" texture to the rock. Basaltic cinders are often red, coloured by oxidized iron from weathered iron-rich minerals such as pyroxene . ʻAʻā types of blocky cinder and breccia flows of thick, viscous basaltic lava are common in Hawaiʻi. Pāhoehoe is a highly fluid, hot form of basalt which tends to form thin aprons of molten lava which fill up hollows and sometimes forms lava lakes . Lava tubes are common features of pāhoehoe eruptions. Basaltic tuff or pyroclastic rocks are less common than basaltic lava flows. Usually basalt

1183-623: A lower total content of alkali oxides than trachybasalt and most basanites and tephrites. Basalt generally has a composition of 45–52 wt% SiO 2 , 2–5 wt% total alkalis, 0.5–2.0 wt% TiO 2 , 5–14 wt% FeO and 14 wt% or more Al 2 O 3 . Contents of CaO are commonly near 10 wt%, those of MgO commonly in the range 5 to 12 wt%. High-alumina basalts have aluminium contents of 17–19 wt% Al 2 O 3 ; boninites have magnesium (MgO) contents of up to 15 percent. Rare feldspathoid -rich mafic rocks, akin to alkali basalts, may have Na 2 O + K 2 O contents of 12% or more. The abundances of

1274-465: A massive dense core, which is the most active part of the flow. As pasty lava in the core travels downslope, the clinkers are carried along at the surface. At the leading edge of an ʻaʻā flow, however, these cooled fragments tumble down the steep front and are buried by the advancing flow. This produces a layer of lava fragments both at the bottom and top of an ʻaʻā flow. Accretionary lava balls as large as 3 metres (10 feet) are common on ʻaʻā flows. ʻAʻā

1365-507: A phenocryst, and when present, may have rims of pigeonite. The groundmass contains interstitial quartz or tridymite or cristobalite . Olivine tholeiitic basalt has augite and orthopyroxene or pigeonite with abundant olivine, but olivine may have rims of pyroxene and is unlikely to be present in the groundmass . Alkali basalts typically have mineral assemblages that lack orthopyroxene but contain olivine. Feldspar phenocrysts typically are labradorite to andesine in composition. Augite

1456-478: A population of 160 Muslims. Arable land was relatively scarce, although there was significant pasture areas to the south. Figs and vegetables were cultivated by the residents in fields to the north and the southwest. There was an abundant supply of water deriving from the Ain Hamatah spring which fed a stream that flowed around the village and irrigated its crops. The residents owned the property of Tahunat Jamla,

1547-453: A road near the village. Basalt Basalt ( UK : / ˈ b æ s ɔː l t , - əl t / ; US : / b ə ˈ s ɔː l t , ˈ b eɪ s ɔː l t / ) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low- viscosity lava rich in magnesium and iron ( mafic lava) exposed at or very near the surface of a rocky planet or moon . More than 90% of all volcanic rock on Earth

1638-523: A significant constituent. Accessory minerals present in relatively minor amounts include iron oxides and iron-titanium oxides, such as magnetite , ulvöspinel , and ilmenite . Because of the presence of such oxide minerals, basalt can acquire strong magnetic signatures as it cools, and paleomagnetic studies have made extensive use of basalt. In tholeiitic basalt , pyroxene ( augite and orthopyroxene or pigeonite ) and calcium -rich plagioclase are common phenocryst minerals. Olivine may also be

1729-960: A silica content greater than 63%. They include rhyolite and dacite lavas. With such a high silica content, these lavas are extremely viscous, ranging from 10 cP (10 Pa⋅s) for hot rhyolite lava at 1,200 °C (2,190 °F) to 10 cP (10 Pa⋅s) for cool rhyolite lava at 800 °C (1,470 °F). For comparison, water has a viscosity of about 1 cP (0.001 Pa⋅s). Because of this very high viscosity, felsic lavas usually erupt explosively to produce pyroclastic (fragmental) deposits. However, rhyolite lavas occasionally erupt effusively to form lava spines , lava domes or "coulees" (which are thick, short lava flows). The lavas typically fragment as they extrude, producing block lava flows. These often contain obsidian . Felsic magmas can erupt at temperatures as low as 800 °C (1,470 °F). Unusually hot (>950 °C; >1,740 °F) rhyolite lavas, however, may flow for distances of many tens of kilometres, such as in

1820-450: A silica content under 45%. Komatiites contain over 18% magnesium oxide and are thought to have erupted at temperatures of 1,600 °C (2,910 °F). At this temperature there is practically no polymerization of the mineral compounds, creating a highly mobile liquid. Viscosities of komatiite magmas are thought to have been as low as 100 to 1000 cP (0.1 to 1 Pa⋅s), similar to that of light motor oil. Most ultramafic lavas are no younger than

1911-441: A similar manner to ʻaʻā flows but their more viscous nature causes the surface to be covered in smooth-sided angular fragments (blocks) of solidified lava instead of clinkers. As with ʻaʻā flows, the molten interior of the flow, which is kept insulated by the solidified blocky surface, advances over the rubble that falls off the flow front. They also move much more slowly downhill and are thicker in depth than ʻaʻā flows. Pillow lava

SECTION 20

#1732787307592

2002-541: A small mill turned by the Wadi Seisun waterfall. During the ongoing Syrian civil war , on 6 March 2013, Yarmouk Martyrs Brigade non-FSA-affiliated rebel fighters kidnapped 21 Filipino United Nations peacekeepers patrolling the border between Syria and the Israeli -occupied Golan Heights. The Brigade were reportedly in control of the village itself, but intense clashes were occurring around it. The fighters accused

2093-530: A solid crust that insulates the remaining liquid lava, helping to keep it hot and inviscid enough to continue flowing. The word lava comes from Italian and is probably derived from the Latin word labes , which means a fall or slide. An early use of the word in connection with extrusion of magma from below the surface is found in a short account of the 1737 eruption of Vesuvius , written by Francesco Serao , who described "a flow of fiery lava" as an analogy to

2184-575: A temperature of 1,100 to 1,200 °C (2,010 to 2,190 °F). On the Earth, most lava flows are less than 10 km (6.2 mi) long, but some pāhoehoe flows are more than 50 km (31 mi) long. Some flood basalt flows in the geologic record extend for hundreds of kilometres. The rounded texture makes pāhoehoe a poor radar reflector, and is difficult to see from an orbiting satellite (dark on Magellan picture). Block lava flows are typical of andesitic lavas from stratovolcanoes. They behave in

2275-501: A volcano extrudes silicic lava, it can form an inflation dome or endogenous dome , gradually building up a large, pillow-like structure which cracks, fissures, and may release cooled chunks of rock and rubble. The top and side margins of an inflating lava dome tend to be covered in fragments of rock, breccia and ash. Examples of lava dome eruptions include the Novarupta dome, and successive lava domes of Mount St Helens . When

2366-492: Is a common rock on the surface of Mars . Molten basalt lava has a low viscosity due to its relatively low silica content (between 45% and 52%), resulting in rapidly moving lava flows that can spread over great areas before cooling and solidifying. Flood basalts are thick sequences of many such flows that can cover hundreds of thousands of square kilometres and constitute the most voluminous of all volcanic formations. Basaltic magmas within Earth are thought to originate from

2457-402: Is a large subsidence crater, can form in a stratovolcano, if the magma chamber is partially or wholly emptied by large explosive eruptions; the summit cone no longer supports itself and thus collapses in on itself afterwards. Such features may include volcanic crater lakes and lava domes after the event. However, calderas can also form by non-explosive means such as gradual magma subsidence. This

2548-557: Is also a common rock on the surface of Mars , as determined by data sent back from the planet's surface, and by Martian meteorites . Lava flow Lava is molten or partially molten rock ( magma ) that has been expelled from the interior of a terrestrial planet (such as Earth ) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust , on land or underwater, usually at temperatures from 800 to 1,200 °C (1,470 to 2,190 °F). The volcanic rock resulting from subsequent cooling

2639-456: Is also often called lava . A lava flow is an outpouring of lava during an effusive eruption . (An explosive eruption , by contrast, produces a mixture of volcanic ash and other fragments called tephra , not lava flows.) The viscosity of most lava is about that of ketchup , roughly 10,000 to 100,000 times that of water. Even so, lava can flow great distances before cooling causes it to solidify, because lava exposed to air quickly develops

2730-401: Is also produced by some subglacial volcanic eruptions. Basalt is the most common volcanic rock type on Earth, making up over 90% of all volcanic rock on the planet. The crustal portions of oceanic tectonic plates are composed predominantly of basalt, produced from upwelling mantle below the ocean ridges . Basalt is also the principal volcanic rock in many oceanic islands , including

2821-414: Is at times applied to shallow intrusive rocks with a composition typical of basalt, but rocks of this composition with a phaneritic (coarser) groundmass are more properly referred to either as diabase (also called dolerite) or—when they are more coarse-grained (having crystals over 2 mm across)—as gabbro . Diabase and gabbro are thus the hypabyssal and plutonic equivalents of basalt. During

Jamla - Misplaced Pages Continue

2912-512: Is basalt. Rapid-cooling, fine-grained basalt is chemically equivalent to slow-cooling, coarse-grained gabbro . The eruption of basalt lava is observed by geologists at about 20 volcanoes per year. Basalt is also an important rock type on other planetary bodies in the Solar System . For example, the bulk of the plains of Venus , which cover ~80% of the surface, are basaltic; the lunar maria are plains of flood-basaltic lava flows ; and basalt

3003-415: Is basaltic lava that has a smooth, billowy, undulating, or ropy surface. These surface features are due to the movement of very fluid lava under a congealing surface crust. The Hawaiian word was introduced as a technical term in geology by Clarence Dutton . A pāhoehoe flow typically advances as a series of small lobes and toes that continually break out from a cooled crust. It also forms lava tubes where

3094-545: Is classified as basalt when its QAPF fraction is composed of less than 10% feldspathoid and less than 20% quartz, and plagioclase makes up at least 65% of its feldspar content. This places basalt in the basalt/andesite field of the QAPF diagram. Basalt is further distinguished from andesite by its silica content of under 52%. It is often not practical to determine the mineral composition of volcanic rocks, due to their very small grain size, in which case geologists instead classify

3185-719: Is concentrated in a thin layer in the toothpaste next to the tube and only there does the toothpaste behave as a fluid. Thixotropic behavior also hinders crystals from settling out of the lava. Once the crystal content reaches about 60%, the lava ceases to behave like a fluid and begins to behave like a solid. Such a mixture of crystals with melted rock is sometimes described as crystal mush . Lava flow speeds vary based primarily on viscosity and slope. In general, lava flows slowly, with typical speeds for Hawaiian basaltic flows of 0.40 km/h (0.25 mph) and maximum speeds of 10 to 48 km/h (6 to 30 mph) on steep slopes. An exceptional speed of 32 to 97 km/h (20 to 60 mph)

3276-761: Is considered a key to understanding plate tectonics , its compositions have been much studied. Although MORB compositions are distinctive relative to average compositions of basalts erupted in other environments, they are not uniform. For instance, compositions change with position along the Mid-Atlantic Ridge , and the compositions also define different ranges in different ocean basins. Mid-ocean ridge basalts have been subdivided into varieties such as normal (NMORB) and those slightly more enriched in incompatible elements (EMORB). Isotope ratios of elements such as strontium , neodymium , lead , hafnium , and osmium in basalts have been much studied to learn about

3367-546: Is mostly determined by composition but also depends on temperature and shear rate. Lava viscosity determines the kind of volcanic activity that takes place when the lava is erupted. The greater the viscosity, the greater the tendency for eruptions to be explosive rather than effusive. As a result, most lava flows on Earth, Mars, and Venus are composed of basalt lava. On Earth, 90% of lava flows are mafic or ultramafic, with intermediate lava making up 8% of flows and felsic lava making up just 2% of flows. Viscosity also determines

3458-444: Is one of three basic types of flow lava. ʻAʻā is basaltic lava characterized by a rough or rubbly surface composed of broken lava blocks called clinker. The word is Hawaiian meaning "stony rough lava", but also to "burn" or "blaze"; it was introduced as a technical term in geology by Clarence Dutton . The loose, broken, and sharp, spiny surface of an ʻaʻā flow makes hiking difficult and slow. The clinkery surface actually covers

3549-531: Is rich in titanium compared to augite in tholeiitic basalt. Minerals such as alkali feldspar , leucite , nepheline , sodalite , phlogopite mica, and apatite may be present in the groundmass. Basalt has high liquidus and solidus temperatures—values at the Earth's surface are near or above 1200 °C (liquidus) and near or below 1000 °C (solidus); these values are higher than those of other common igneous rocks. The majority of tholeiitic basalts are formed at approximately 50–100 km depth within

3640-474: Is similar to the viscosity of ketchup , although it is still many orders of magnitude higher than that of water. Mafic lavas tend to produce low-profile shield volcanoes or flood basalts , because the less viscous lava can flow for long distances from the vent. The thickness of a solidified basaltic lava flow, particularly on a low slope, may be much greater than the thickness of the moving molten lava flow at any one time, because basaltic lavas may "inflate" by

3731-402: Is suppressed. Above this depth, submarine eruptions are often explosive, tending to produce pyroclastic rock rather than basalt flows. These eruptions, described as Surtseyan, are characterised by large quantities of steam and gas and the creation of large amounts of pumice . When basalt erupts underwater or flows into the sea, contact with the water quenches the surface and the lava forms

Jamla - Misplaced Pages Continue

3822-454: Is the lava structure typically formed when lava emerges from an underwater volcanic vent or subglacial volcano or a lava flow enters the ocean. The viscous lava gains a solid crust on contact with the water, and this crust cracks and oozes additional large blobs or "pillows" as more lava emerges from the advancing flow. Since water covers the majority of Earth 's surface and most volcanoes are situated near or under bodies of water, pillow lava

3913-440: Is too hot and fluid to build up sufficient pressure to form explosive lava eruptions but occasionally this will happen by trapping of the lava within the volcanic throat and buildup of volcanic gases . Hawaiʻi's Mauna Loa volcano erupted in this way in the 19th century, as did Mount Tarawera , New Zealand in its violent 1886 eruption. Maar volcanoes are typical of small basalt tuffs, formed by explosive eruption of basalt through

4004-422: Is typical of many shield volcanoes. Cinder cones and spatter cones are small-scale features formed by lava accumulation around a small vent on a volcanic edifice. Cinder cones are formed from tephra or ash and tuff which is thrown from an explosive vent. Spatter cones are formed by accumulation of molten volcanic slag and cinders ejected in a more liquid form. Another Hawaiian English term derived from

4095-455: Is ultimately derived from Late Latin basaltes , a misspelling of Latin basanites "very hard stone", which was imported from Ancient Greek βασανίτης ( basanites ), from βάσανος ( basanos , " touchstone "). The modern petrological term basalt , describing a particular composition of lava -derived rock, became standard because of its use by Georgius Agricola in 1546, in his work De Natura Fossilium . Agricola applied

4186-516: Is usually of higher viscosity than pāhoehoe. Pāhoehoe can turn into ʻaʻā if it becomes turbulent from meeting impediments or steep slopes. The sharp, angled texture makes ʻaʻā a strong radar reflector, and can easily be seen from an orbiting satellite (bright on Magellan pictures). ʻAʻā lavas typically erupt at temperatures of 1,050 to 1,150 °C (1,920 to 2,100 °F) or greater. Pāhoehoe (also spelled pahoehoe , from Hawaiian [paːˈhoweˈhowe] meaning "smooth, unbroken lava")

4277-646: Is very common. Because it is formed from viscous molten rock, lava flows and eruptions create distinctive formations, landforms and topographical features from the macroscopic to the microscopic. Volcanoes are the primary landforms built by repeated eruptions of lava and ash over time. They range in shape from shield volcanoes with broad, shallow slopes formed from predominantly effusive eruptions of relatively fluid basaltic lava flows, to steeply-sided stratovolcanoes (also known as composite volcanoes) made of alternating layers of ash and more viscous lava flows typical of intermediate and felsic lavas. A caldera , which

4368-539: The Clementine mission demonstrate that the lunar maria possess a continuum of titanium concentrations, and that the highest concentrations are the least abundant. Lunar basalts show exotic textures and mineralogy, particularly shock metamorphism , lack of the oxidation typical of terrestrial basalts, and a complete lack of hydration . Most of the Moon 's basalts erupted between about 3 and 3.5 billion years ago, but

4459-458: The Hadean , Archean , and early Proterozoic eons of Earth's history, the chemistry of erupted magmas was significantly different from what it is today, due to immature crustal and asthenosphere differentiation. The resulting ultramafic volcanic rocks, with silica (SiO 2 ) contents below 45% and high magnesium oxide (MgO) content, are usually classified as komatiites . The word "basalt"

4550-494: The Hawaiian language , a kīpuka denotes an elevated area such as a hill, ridge or old lava dome inside or downslope from an area of active volcanism. New lava flows will cover the surrounding land, isolating the kīpuka so that it appears as a (usually) forested island in a barren lava flow. Lava domes are formed by the extrusion of viscous felsic magma. They can form prominent rounded protuberances, such as at Valles Caldera . As

4641-542: The Ottoman tax registers of 1596, Jamla was located in the nahiya of Jawlan Sarqi, Qada of Hawran . It had a population of 7 households and 3 bachelors, all Muslims . They paid a fixed tax-rate of 25% on agricultural products, including wheat, barley, summer crops, goats and beehives, in addition to occasional revenues; a total of 2,700 akçes . In the late 19th-century Jamla was described by Gottlieb Schumacher as an impoverished village of 36 hut-like houses and

SECTION 50

#1732787307592

4732-1228: The Paraná Traps in Brazil, the Siberian Traps in Russia , the Karoo flood basalt province in South Africa, and the Columbia River Plateau of Washington and Oregon . Basalt is also prevalent across extensive regions of the Eastern Galilee , Golan , and Bashan in Israel and Syria . Basalt also is common around volcanic arcs, specially those on thin crust . Ancient Precambrian basalts are usually only found in fold and thrust belts, and are often heavily metamorphosed. These are known as greenstone belts , because low-grade metamorphism of basalt produces chlorite , actinolite , epidote and other green minerals. As well as forming large parts of

4823-889: The Proterozoic , with a few ultramafic magmas known from the Phanerozoic in Central America that are attributed to a hot mantle plume . No modern komatiite lavas are known, as the Earth's mantle has cooled too much to produce highly magnesian magmas. Some silicate lavas have an elevated content of alkali metal oxides (sodium and potassium), particularly in regions of continental rifting , areas overlying deeply subducted plates , or at intraplate hotspots . Their silica content can range from ultramafic ( nephelinites , basanites and tephrites ) to felsic ( trachytes ). They are more likely to be generated at greater depths in

4914-520: The Snake River Plain of the northwestern United States. Intermediate or andesitic lavas contain 52% to 63% silica, and are lower in aluminium and usually somewhat richer in magnesium and iron than felsic lavas. Intermediate lavas form andesite domes and block lavas and may occur on steep composite volcanoes , such as in the Andes . They are also commonly hotter than felsic lavas, in

5005-524: The lanthanide or rare-earth elements (REE) can be a useful diagnostic tool to help explain the history of mineral crystallisation as the melt cooled. In particular, the relative abundance of europium compared to the other REE is often markedly higher or lower, and called the europium anomaly . It arises because Eu can substitute for Ca in plagioclase feldspar, unlike any of the other lanthanides, which tend to only form cations . Mid-ocean ridge basalts (MORB) and their intrusive equivalents, gabbros, are

5096-418: The most abundant elements of the Earth's crust , with smaller quantities of aluminium , calcium , magnesium , iron , sodium , and potassium and minor amounts of many other elements. Petrologists routinely express the composition of a silicate lava in terms of the weight or molar mass fraction of the oxides of the major elements (other than oxygen) present in the lava. The silica component dominates

5187-507: The upper mantle . The chemistry of basalts thus provides clues to processes deep in Earth's interior . Basalt is composed mostly of oxides of silicon, iron, magnesium, potassium, aluminum, titanium, and calcium. Geologists classify igneous rock by its mineral content whenever possible; the relative volume percentages of quartz (crystalline silica (SiO 2 )), alkali feldspar , plagioclase , and feldspathoid ( QAPF ) are particularly important. An aphanitic (fine-grained) igneous rock

5278-463: The Earth's crust, basalt also occurs in other parts of the Solar System. Basalt commonly erupts on Io (the third largest moon of Jupiter ), and has also formed on the Moon , Mars , Venus , and the asteroid Vesta . The dark areas visible on Earth's moon , the lunar maria , are plains of flood basaltic lava flows. These rocks were sampled both by the crewed American Apollo program and

5369-989: The aspect (thickness relative to lateral extent) of flows, the speed with which flows move, and the surface character of the flows. When highly viscous lavas erupt effusively rather than in their more common explosive form, they almost always erupt as high-aspect flows or domes. These flows take the form of block lava rather than ʻaʻā or pāhoehoe. Obsidian flows are common. Intermediate lavas tend to form steep stratovolcanoes, with alternating beds of lava from effusive eruptions and tephra from explosive eruptions. Mafic lavas form relatively thin flows that can move great distances, forming shield volcanoes with gentle slopes. In addition to melted rock, most lavas contain solid crystals of various minerals, fragments of exotic rocks known as xenoliths , and fragments of previously solidified lava. The crystal content of most lavas gives them thixotropic and shear thinning properties. In other words, most lavas do not behave like Newtonian fluids, in which

5460-478: The characteristic igneous rocks formed at mid-ocean ridges. They are tholeiitic basalts particularly low in total alkalis and in incompatible trace elements, and they have relatively flat REE patterns normalized to mantle or chondrite values. In contrast, alkali basalts have normalized patterns highly enriched in the light REE, and with greater abundances of the REE and of other incompatible elements. Because MORB basalt

5551-447: The crust, forming an apron of mixed basalt and wall rock breccia and a fan of basalt tuff further out from the volcano. Amygdaloidal structure is common in relict vesicles and beautifully crystallized species of zeolites , quartz or calcite are frequently found. During the cooling of a thick lava flow, contractional joints or fractures form. If a flow cools relatively rapidly, significant contraction forces build up. While

SECTION 60

#1732787307592

5642-418: The eruption. A cooling lava flow shrinks, and this fractures the flow. Basalt flows show a characteristic pattern of fractures. The uppermost parts of the flow show irregular downward-splaying fractures, while the lower part of the flow shows a very regular pattern of fractures that break the flow into five- or six-sided columns. The irregular upper part of the solidified flow is called the entablature , while

5733-494: The evolution of the Earth's mantle . Isotopic ratios of noble gases , such as He / He, are also of great value: for instance, ratios for basalts range from 6 to 10 for mid-ocean ridge tholeiitic basalt (normalized to atmospheric values), but to 15–24 and more for ocean-island basalts thought to be derived from mantle plumes . Source rocks for the partial melts that produce basaltic magma probably include both peridotite and pyroxenite . The shape, structure and texture of

5824-654: The flood basalts of South America formed in this manner. Flood basalts typically crystallize little before they cease flowing, and, as a result, flow textures are uncommon in less silicic flows. On the other hand, flow banding is common in felsic flows. The morphology of lava describes its surface form or texture. More fluid basaltic lava flows tend to form flat sheet-like bodies, whereas viscous rhyolite lava flows form knobbly, blocky masses of rock. Lava erupted underwater has its own distinctive characteristics. ʻAʻā (also spelled aa , aʻa , ʻaʻa , and a-aa , and pronounced [ʔəˈʔaː] or / ˈ ɑː ( ʔ ) ɑː / )

5915-517: The flow of water and mud down the flanks of the volcano (a lahar ) after heavy rain . Solidified lava on the Earth's crust is predominantly silicate minerals : mostly feldspars , feldspathoids , olivine , pyroxenes , amphiboles , micas and quartz . Rare nonsilicate lavas can be formed by local melting of nonsilicate mineral deposits or by separation of a magma into immiscible silicate and nonsilicate liquid phases . Silicate lavas are molten mixtures dominated by oxygen and silicon ,

6006-437: The icy satellites of the Solar System 's giant planets . The lava's viscosity mostly determines the behavior of lava flows. While the temperature of common silicate lava ranges from about 800 °C (1,470 °F) for felsic lavas to 1,200 °C (2,190 °F) for mafic lavas, its viscosity ranges over seven orders of magnitude, from 10 cP (10 Pa⋅s) for felsic lavas to 10 cP (10 Pa⋅s) for mafic lavas. Lava viscosity

6097-740: The islands of Hawaiʻi , the Faroe Islands , and Réunion . The eruption of basalt lava is observed by geologists at about 20 volcanoes per year. Basalt is the rock most typical of large igneous provinces . These include continental flood basalts , the most voluminous basalts found on land. Examples of continental flood basalts included the Deccan Traps in India , the Chilcotin Group in British Columbia , Canada ,

6188-404: The lava's chemical composition. This temperature range is similar to the hottest temperatures achievable with a forced air charcoal forge. Lava is most fluid when first erupted, becoming much more viscous as its temperature drops. Lava flows quickly develop an insulating crust of solid rock as a result of radiative loss of heat. Thereafter, the lava cools by a very slow conduction of heat through

6279-610: The lava. Other cations , such as ferrous iron, calcium, and magnesium, bond much more weakly to oxygen and reduce the tendency to polymerize. Partial polymerization makes the lava viscous, so lava high in silica is much more viscous than lava low in silica. Because of the role of silica in determining viscosity and because many other properties of a lava (such as its temperature) are observed to correlate with silica content, silicate lavas are divided into four chemical types based on silica content: felsic , intermediate , mafic , and ultramafic . Felsic or silicic lavas have

6370-464: The lower and upper boundaries. These are described as pipe-stem vesicles or pipe-stem amygdales . Liquids expelled from the cooling crystal mush rise upwards into the still-fluid center of the cooling flow and produce vertical vesicle cylinders . Where these merge towards the top of the flow, they form sheets of vesicular basalt and are sometimes capped with gas cavities that sometimes fill with secondary minerals. The beautiful amethyst geodes found in

6461-467: The lower part that shows columnar jointing is called the colonnade . (The terms are borrowed from Greek temple architecture.) Likewise, regular vertical patterns on the sides of columns, produced by cooling with periodic fracturing, are described as chisel marks . Despite their names, these are natural features produced by cooling, thermal contraction, and fracturing. As lava cools, crystallizing inwards from its edges, it expels gases to form vesicles at

6552-422: The mantle than subalkaline magmas. Olivine nephelinite lavas are both ultramafic and highly alkaline, and are thought to have come from much deeper in the mantle of the Earth than other lavas. Tholeiitic basalt lava Rhyolite lava Some lavas of unusual composition have erupted onto the surface of the Earth. These include: The term "lava" can also be used to refer to molten "ice mixtures" in eruptions on

6643-710: The mantle. Many alkali basalts may be formed at greater depths, perhaps as deep as 150–200 km. The origin of high-alumina basalt continues to be controversial, with disagreement over whether it is a primary melt or derived from other basalt types by fractionation. Relative to most common igneous rocks, basalt compositions are rich in MgO and CaO and low in SiO 2 and the alkali oxides, i.e., Na 2 O + K 2 O , consistent with their TAS classification . Basalt contains more silica than picrobasalt and most basanites and tephrites but less than basaltic andesite . Basalt has

6734-411: The melt, and which are therefore the first to form solid crystals. Basalt often contains vesicles ; they are formed when dissolved gases bubble out of the magma as it decompresses during its approach to the surface; the erupted lava then solidifies before the gases can escape. When vesicles make up a substantial fraction of the volume of the rock, the rock is described as scoria . The term basalt

6825-521: The minimal heat loss maintains a low viscosity. The surface texture of pāhoehoe flows varies widely, displaying all kinds of bizarre shapes often referred to as lava sculpture. With increasing distance from the source, pāhoehoe flows may change into ʻaʻā flows in response to heat loss and consequent increase in viscosity. Experiments suggest that the transition takes place at a temperature between 1,200 and 1,170 °C (2,190 and 2,140 °F), with some dependence on shear rate. Pahoehoe lavas typically have

6916-410: The oldest samples are 4.2 billion years old, and the youngest flows, based on the age dating method of crater counting , are estimated to have erupted only 1.2 billion years ago. From 1972 to 1985, five Venera and two VEGA landers successfully reached the surface of Venus and carried out geochemical measurements using X-ray fluorescence and gamma-ray analysis. These returned results consistent with

7007-487: The peacekeepers of cooperating with the Syrian authorities in trying to "push the rebels out of Jamla" and demanded that the Syrian Army withdraw from the vicinity of Jamla in return for their release. They were after several days. The town remained under the control of the Brigade, who affiliated to ISIL by late 2014. On 15 November 2015, Brigade head Muhammad "Abu Ali" al-Baridi and five other leaders were killed in

7098-446: The physical behavior of silicate magmas. Silicon ions in lava strongly bind to four oxygen ions in a tetrahedral arrangement. If an oxygen ion is bound to two silicon ions in the melt, it is described as a bridging oxygen, and lava with many clumps or chains of silicon ions connected by bridging oxygen ions is described as partially polymerized. Aluminium in combination with alkali metal oxides (sodium and potassium) also tends to polymerize

7189-440: The range of 850 to 1,100 °C (1,560 to 2,010 °F). Because of their lower silica content and higher eruptive temperatures, they tend to be much less viscous, with a typical viscosity of 3.5 × 10 cP (3,500 Pa⋅s) at 1,200 °C (2,190 °F). This is slightly greater than the viscosity of smooth peanut butter . Intermediate lavas show a greater tendency to form phenocrysts . Higher iron and magnesium tends to manifest as

7280-475: The rate of cooling; very rapid cooling may result in very small (<1 cm diameter) columns, while slow cooling is more likely to produce large columns. The character of submarine basalt eruptions is largely determined by depth of water, since increased pressure restricts the release of volatile gases and results in effusive eruptions. It has been estimated that at depths greater than 500 metres (1,600 ft), explosive activity associated with basaltic magma

7371-409: The rate of flow is proportional to the shear stress . Instead, a typical lava is a Bingham fluid , which shows considerable resistance to flow until a stress threshold, called the yield stress, is crossed. This results in plug flow of partially crystalline lava. A familiar example of plug flow is toothpaste squeezed out of a toothpaste tube. The toothpaste comes out as a semisolid plug, because shear

7462-595: The robotic Russian Luna program , and are represented among the lunar meteorites . Lunar basalts differ from their Earth counterparts principally in their high iron contents, which typically range from about 17 to 22 wt% FeO. They also possess a wide range of titanium concentrations (present in the mineral ilmenite ), ranging from less than 1 wt% TiO 2 , to about 13 wt.%. Traditionally, lunar basalts have been classified according to their titanium content, with classes being named high-Ti, low-Ti, and very-low-Ti. Nevertheless, global geochemical maps of titanium obtained from

7553-403: The rock at the landing sites being basalts, including both tholeiitic and highly alkaline basalts. The landers are thought to have landed on plains whose radar signature is that of basaltic lava flows. These constitute about 80% of the surface of Venus. Some locations show high reflectivity consistent with unweathered basalt, indicating basaltic volcanism within the last 2.5 million years. Basalt

7644-456: The rocks chemically, with particular emphasis on the total content of alkali metal oxides and silica ( TAS ); in that context, basalt is defined as volcanic rock with a content of between 45% and 52% silica and no more than 5% alkali metal oxides. This places basalt in the B field of the TAS diagram. Such a composition is described as mafic . Basalt is usually dark grey to black in colour, due to

7735-625: The rocky crust. For instance, geologists of the United States Geological Survey regularly drilled into the Kilauea Iki lava lake, formed in an eruption in 1959. After three years, the solid surface crust, whose base was at a temperature of 1,065 °C (1,949 °F), was still only 14 m (46 ft) thick, even though the lake was about 100 m (330 ft) deep. Residual liquid was still present at depths of around 80 m (260 ft) nineteen years after

7826-462: The sea it usually forms pillow basalts. However, when ʻaʻā enters the ocean it forms a littoral cone , a small cone-shaped accumulation of tuffaceous debris formed when the blocky ʻaʻā lava enters the water and explodes from built-up steam. The island of Surtsey in the Atlantic Ocean is a basalt volcano which breached the ocean surface in 1963. The initial phase of Surtsey's eruption

7917-670: The term "basalt" to the volcanic black rock beneath the Bishop of Meissen's Stolpen castle , believing it to be the same as the "basaniten" described by Pliny the Elder in AD ;77 in Naturalis Historiae . On Earth, most basalt is formed by decompression melting of the mantle . The high pressure in the upper mantle (due to the weight of the overlying rock ) raises the melting point of mantle rock, so that almost all of

8008-580: The upper mantle is solid. However, mantle rock is ductile (the solid rock slowly deforms under high stress). When tectonic forces cause hot mantle rock to creep upwards, pressure on the ascending rock decreases, and this can lower its melting point enough for the rock to partially melt , producing basaltic magma. Decompression melting can occur in a variety of tectonic settings, including in continental rift zones, at mid-ocean ridges , above geological hotspots , and in back-arc basins . Basalt also forms in subduction zones , where mantle rock rises into

8099-434: The viscosity of water, which is about 1 cP). Basalt is often porphyritic , containing larger crystals ( phenocrysts ) that formed before the extrusion event that brought the magma to the surface, embedded in a finer-grained matrix . These phenocrysts are usually made of augite, olivine , or a calcium-rich plagioclase, which have the highest melting temperatures of any of the minerals that can typically crystallize from

8190-400: Was highly explosive, as the magma was quite fluid, causing the rock to be blown apart by the boiling steam to form a tuff and cinder cone. This has subsequently moved to a typical pāhoehoe-type behaviour. Volcanic glass may be present, particularly as rinds on rapidly chilled surfaces of lava flows, and is commonly (but not exclusively) associated with underwater eruptions. Pillow basalt

8281-480: Was recorded following the collapse of a lava lake at Mount Nyiragongo . The scaling relationship for lavas is that the average speed of a flow scales as the square of its thickness divided by its viscosity. This implies that a rhyolite flow would have to be about a thousand times thicker than a basalt flow to flow at a similar speed. The temperature of most types of molten lava ranges from about 800 °C (1,470 °F) to 1,200 °C (2,190 °F) depending on

#591408