Misplaced Pages

Light Airborne Multi-Purpose System

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Light Airborne Multi-Purpose System ( LAMPS ) is the United States Navy 's program that develops crewed helicopters to assist the surface fleet in anti-submarine warfare .

#217782

63-399: The purpose of LAMPS is to scout outside the limits of a fleet's radar and sonar range to detect and track enemy submarines or missile-equipped escort ships and feed the real-time data back to their LAMPS mothership. They also have the capability to directly engage enemy targets with depth charges or torpedoes, or indirectly engage the enemy by coordinating fleet assets on site. A Mk II version

126-413: A casing, nozzle , grain ( propellant charge ), and igniter . The solid grain mass burns in a predictable fashion to produce exhaust gases, the flow of which is described by Taylor–Culick flow . The nozzle dimensions are calculated to maintain a design chamber pressure, while producing thrust from the exhaust gases. Once ignited, a simple solid rocket motor cannot be shut off, as it contains all

189-487: A control moment. For example, the Titan III C solid boosters injected nitrogen tetroxide for LITV; the tanks can be seen on the sides of the rocket between the main center stage and the boosters. An early Minuteman first stage used a single motor with four gimballed nozzles to provide pitch, yaw, and roll control. A typical, well-designed ammonium perchlorate composite propellant (APCP) first-stage motor may have

252-429: A crewed helicopter that would be capable of supporting a non-aviation vessel and serve as its tactical Anti-Submarine Warfare arm. Widely referred to as LAMPS Mark I , the advanced sensors, processors, and display capabilities aboard the helicopter enabled such equipped ships to extend their situational awareness beyond the line-of-sight limitations that unavoidably hampered the performance of shipboard radars, as well as

315-541: A high-energy (yet unstable) monopropellant and the other acts as a lower-energy stabilizing (and gelling) monopropellant. In typical circumstances, nitroglycerin is dissolved in a nitrocellulose gel and solidified with additives. DB propellants are implemented in applications where minimal smoke is required yet a medium-high I sp of roughly 235 s (2.30 km/s) is required. The addition of metal fuels (such as aluminium ) can increase performance to around 250 s (2.5 km/s), though metal oxide nucleation in

378-564: A long history as the final boost stage for satellites due to their simplicity, reliability, compactness and reasonably high mass fraction . A spin-stabilized solid rocket motor is sometimes added when extra velocity is required, such as for a mission to a comet or the outer solar system, because a spinner does not require a guidance system (on the newly added stage). Thiokol's extensive family of mostly titanium-cased Star space motors has been widely used, especially on Delta launch vehicles and as spin-stabilized upper stages to launch satellites from

441-499: A loss in motor performance. Polyurethane-bound aluminium-APCP solid fuel was used in the submarine-launched Polaris missiles . APCP used in the space shuttle Solid Rocket Boosters consisted of ammonium perchlorate (oxidizer, 69.6% by weight), aluminium (fuel, 16%), iron oxide (a catalyst, 0.4%), polybutadiene acrylonitrile (PBAN) polymer (a non-urethane rubber binder that held the mixture together and acted as secondary fuel, 12.04%), and an epoxy curing agent (1.96%). It developed

504-594: A propellant mass fraction of 92.23% while the 14,000-kilogram (31,000 lb) Castor 30 upper stage developed for Orbital Science's Taurus II COTS (Commercial Off The Shelf) (International Space Station resupply) launch vehicle has a 91.3% propellant fraction with 2.9% graphite epoxy motor casing, 2.4% nozzle, igniter and thrust vector actuator, and 3.4% non-motor hardware including such things as payload mount, interstage adapter, cable raceway, instrumentation, etc. Castor 120 and Castor 30 are 2.36 and 2.34 meters (93 and 92 in) in diameter, respectively, and serve as stages on

567-895: A range of 5,500 metres (3.4 mi). By the end of World War II total production of rocket launchers reached about 10,000. with 12 million rockets of the RS type produced for the Soviet armed forces. In the United States modern castable composite solid rocket motors were invented by the American aerospace engineer Jack Parsons at Caltech in 1942 when he replaced double base propellant with roofing asphalt and potassium perchlorate . This made possible slow-burning rocket motors of adequate size and with sufficient shelf-life for jet-assisted take off applications. Charles Bartley , employed at JPL (Caltech), substituted curable synthetic rubber for

630-492: A simple, solid-propellant rocket tube that was filled with gunpowder. One open end allowed the gas to escape and was attached to a long stick that acted as a guidance system for flight direction control. The first rockets with tubes of cast iron were used by the Kingdom of Mysore under Hyder Ali and Tipu Sultan in the 1750s. These rockets had a reach of targets up to a mile and a half away. These were extremely effective in

693-414: A single-piece nozzle or 304 s (2.98 km/s) with a high-area-ratio telescoping nozzle. Aluminium is used as fuel because it has a reasonable specific energy density, a high volumetric energy density, and is difficult to ignite accidentally. Composite propellants are cast, and retain their shape after the rubber binder, such as Hydroxyl-terminated polybutadiene (HTPB), cross-links (solidifies) with

SECTION 10

#1732772268218

756-943: A small charge that is set off when the propellant is exhausted after a time delay. This charge can be used to trigger a camera , or deploy a parachute . Without this charge and delay, the motor may ignite a second stage (black powder only). In mid- and high-power rocketry , commercially made APCP motors are widely used. They can be designed as either single-use or reloadables. These motors are available in impulse ranges from "A" (1.26 Ns– 2.50 Ns) to "O" (20.48 kNs – 40.96 kNs), from several manufacturers. They are manufactured in standardized diameters and varying lengths depending on required impulse. Standard motor diameters are 13, 18, 24, 29, 38, 54, 75, 98, and 150 millimeters. Different propellant formulations are available to produce different thrust profiles, as well as special effects such as colored flames, smoke trails, or large quantities of sparks (produced by adding titanium sponge to

819-406: A specific impulse of 242 seconds (2.37 km/s) at sea level or 268 seconds (2.63 km/s) in a vacuum. The 2005-2009 Constellation Program was to use a similar PBAN-bound APCP. In 2009, a group succeeded in creating a propellant of water and nanoaluminium ( ALICE ). Typical HEC propellants start with a standard composite propellant mixture (such as APCP) and add a high-energy explosive to

882-466: A sugar fuel (typically dextrose , sorbitol , or sucrose ) that are cast into shape by gently melting the propellant constituents together and pouring or packing the amorphous colloid into a mold. Candy propellants generate a low-medium specific impulse of roughly 130 s (1.3 km/s) and, thus, are used primarily by amateur and experimental rocketeers. DB propellants are composed of two monopropellant fuel components where one typically acts as

945-684: A vacuum specific impulse ( I sp ) as high as 285.6 seconds (2.801 km/s) (Titan IVB SRMU). This compares to 339.3 s (3.327 km/s) for RP1/LOX (RD-180) and 452.3 s (4.436 km/s) for LH 2 /LOX (Block II RS-25 ) bipropellant engines. Upper stage specific impulses are somewhat greater: as much as 303.8 s (2.979 km/s) for APCP (Orbus 6E), 359 s (3.52 km/s) for RP1/LOX (RD-0124) and 465.5 s (4.565 km/s) for LH 2 /LOX (RL10B-2). Propellant fractions are usually somewhat higher for (non-segmented) solid propellant first stages than for upper stages. The 53,000-kilogram (117,000 lb) Castor 120 first stage has

1008-619: A very primitive form of solid-propellant rocket. Illustrations and descriptions in the 14th century Chinese military treatise Huolongjing by the Ming dynasty military writer and philosopher Jiao Yu confirm that the Chinese in 1232 used proto solid propellant rockets then known as " fire arrows " to drive back the Mongols during the Mongol siege of Kaifeng . Each arrow took a primitive form of

1071-492: Is another pressed propellant that does not find any practical application outside specialized amateur rocketry circles due to its poor performance (as most ZS burns outside the combustion chamber) and fast linear burn rates on the order of 2 m/s. ZS is most often employed as a novelty propellant as the rocket accelerates extremely quickly leaving a spectacular large orange fireball behind it. In general, rocket candy propellants are an oxidizer (typically potassium nitrate) and

1134-552: Is cheap and fairly easy to produce. The fuel grain is typically a mixture of pressed fine powder (into a solid, hard slug), with a burn rate that is highly dependent upon exact composition and operating conditions. The specific impulse of black powder is low, around 80 s (0.78 km/s). The grain is sensitive to fracture and, therefore, catastrophic failure. Black powder does not typically find use in motors above 40 newtons (9.0 pounds-force) thrust. Composed of powdered zinc metal and powdered sulfur (oxidizer), ZS or "micrograin"

1197-408: Is equal to the volumetric rate times the fuel density ρ {\displaystyle \rho } : Several geometric configurations are often used depending on the application and desired thrust curve : The casing may be constructed from a range of materials. Cardboard is used for small black powder model motors, whereas aluminium is used for larger composite-fuel hobby motors. Steel

1260-428: Is non-polluting: acid-free, solid particulates-free, and lead-free. It is also smokeless and has only a faint shock diamond pattern that is visible in the otherwise transparent exhaust. Without the bright flame and dense smoke trail produced by the burning of aluminized propellants, these smokeless propellants all but eliminate the risk of giving away the positions from which the missiles are fired. The new CL-20 propellant

1323-411: Is shock-insensitive (hazard class 1.3) as opposed to current HMX smokeless propellants which are highly detonable (hazard class 1.1). CL-20 is considered a major breakthrough in solid rocket propellant technology but has yet to see widespread use because costs remain high. Electric solid propellants (ESPs) are a family of high performance plastisol solid propellants that can be ignited and throttled by

SECTION 20

#1732772268218

1386-434: Is to achieve mid-course exo-atmospheric ABM capability from missiles small enough to fit in existing ship-based below-deck vertical launch tubes and air-mobile truck-mounted launch tubes. CL-20 propellant compliant with Congress' 2004 insensitive munitions (IM) law has been demonstrated and may, as its cost comes down, be suitable for use in commercial launch vehicles, with a very significant increase in performance compared with

1449-565: The AGM-12 Bullpup , built under license by Kongsberg) detonates inside the target ship by using a delay fuze . The MK3, when launched from high altitudes, can initially act as a glidebomb, only firing its rocket engine to extend range, or ideally to achieve maximum speed before hitting the target; for better penetration. In its various versions, the Penguin can be launched from a number of different weapons platforms: KDA's successor to

1512-664: The Battle of Khalkhin Gol . In June 1938, the RNII began developing a multiple rocket launcher based on the RS-132 rocket. In August 1939, the completed product was the BM-13 / Katyusha rocket launcher . Towards the end of 1938 the first significant large scale testing of the rocket launchers took place, 233 rockets of various types were used. A salvo of rockets could completely straddle a target at

1575-668: The Reactive Scientific Research Institute (RNII) with the development of the RS-82 and RS-132 rockets , including designing several variations for ground-to-air, ground-to-ground, air-to-ground and air-to-air combat. The earliest known use by the Soviet Air Force of aircraft-launched unguided anti-aircraft rockets in combat against heavier-than-air aircraft took place in August 1939 , during

1638-788: The Second Anglo-Mysore War that ended in a humiliating defeat for the British East India Company . Word of the success of the Mysore rockets against the British triggered research in England, France, Ireland and elsewhere. When the British finally conquered the fort of Srirangapatana in 1799, hundreds of rockets were shipped off to the Royal Arsenal near London to be reverse-engineered. This led to

1701-500: The fuel and oxidizer mass. Grain geometry and chemistry are then chosen to satisfy the required motor characteristics. The following are chosen or solved simultaneously. The results are exact dimensions for grain, nozzle, and case geometries: The grain may or may not be bonded to the casing. Case-bonded motors are more difficult to design, since the deformation of the case and the grain under flight must be compatible. Common modes of failure in solid rocket motors include fracture of

1764-582: The 2010s include the European Ariane 5 , US Atlas V and Space Shuttle , and Japan's H-II . The largest solid rocket motors ever built were Aerojet's three 6.60-meter (260 in) monolithic solid motors cast in Florida. Motors 260 SL-1 and SL-2 were 6.63 meters (261 in) in diameter, 24.59 meters (80 ft 8 in) long, weighed 842,900 kilograms (1,858,300 lb), and had a maximum thrust of 16 MN (3,500,000 lbf). Burn duration

1827-769: The Army evaluated the Sikorsky YUH-60 and Boeing Vertol YUH-61 for its Utility Tactical Transport Aircraft System (UTTAS) competition. Navy based its requirements on the Army's UTTAS specification to decrease costs from commonality to be the new airframe to carry the Lamps MK III avionics. Sikorsky and Boeing-Vertol submitted proposals for Navy versions of their Army UTTAS helicopters in April 1977 for review. The Navy also looked at helicopters being produced by Bell , Kaman , Westland and MBB , but these were too small for

1890-667: The Athena IC and IIC commercial launch vehicles. A four-stage Athena II using Castor 120s as both first and second stages became the first commercially developed launch vehicle to launch a lunar probe ( Lunar Prospector ) in 1998. Solid rockets can provide high thrust for relatively low cost. For this reason, solids have been used as initial stages in rockets (for example the Space Shuttle ), while reserving high specific impulse engines, especially less massive hydrogen-fueled engines, for higher stages. In addition, solid rockets have

1953-644: The Naval Air Development Center. The Navy then conducted a competition in 1974 to develop the Lamps MK III concept which would integrate both the aircraft and shipboard systems. The Navy selected IBM Federal Systems to be the Prime systems integrator for the Lamps MK III concept. Since the SH-2 was not large enough to carry the Navy's required equipment, a new airframe was required. In the mid-1970s,

Light Airborne Multi-Purpose System - Misplaced Pages Continue

2016-539: The Norwegian Navy. The first airborne installations were on F-104Gs of the Norwegian Air Force , the missiles being fitted to standard Bullpup rails on the two underwing hardpoints. Fire-control was provided by a Kongsberg SM-3 computer which could cue the missiles based on either active radar or passive ESM data. The Penguin can be fired singly or in coordinated-arrival salvoes. Once launched

2079-680: The Penguin is the Naval Strike Missile (NSM), offered from 2007 onwards. NSM features an imaging IR-seeker, GPS navigation , a turbojet sustainer engine (for much longer ranges, 185 kilometres [115 mi] or more), and significantly more computer performance and digital signal processing power. Penguin missiles were donated to Ukraine in May 2022. Kongsberg Defence & Aerospace (KDA) stated in November 2022 that Penguin Mk 2 mod 7

2142-493: The aid of a curative additive. Because of its high performance, moderate ease of manufacturing, and moderate cost, APCP finds widespread use in space, military, and amateur rockets, whereas cheaper and less efficient ANCP finds use in amateur rocketry and gas generators . Ammonium dinitramide , NH 4 N(NO 2 ) 2 , is being considered as a 1-to-1 chlorine-free substitute for ammonium perchlorate in composite propellants. Unlike ammonium nitrate, ADN can be substituted for AP without

2205-1310: The ancient Chinese, and in the 13th century, the Mongols played a pivotal role in facilitating their westward adoption. All rockets used some form of solid or powdered propellant until the 20th century, when liquid-propellant rockets offered more efficient and controllable alternatives. Because of their simplicity and reliability, solid rockets are still used today in military armaments worldwide, model rockets , solid rocket boosters and on larger applications. Since solid-fuel rockets can remain in storage for an extended period without much propellant degradation, and since they almost always launch reliably, they have been frequently used in military applications such as missiles . The lower performance of solid propellants (as compared to liquids) does not favor their use as primary propulsion in modern medium-to-large launch vehicles customarily used for commercial satellites and major space probes. Solids are, however, frequently used as strap-on boosters to increase payload capacity or as spin-stabilized add-on upper stages when higher-than-normal velocities are required. Solid rockets are used as light launch vehicles for low Earth orbit (LEO) payloads under 2 tons or escape payloads up to 500 kilograms (1,100 lb). A simple solid rocket motor consists of

2268-459: The application of electric current. Unlike conventional rocket motor propellants that are difficult to control and extinguish, ESPs can be ignited reliably at precise intervals and durations. It requires no moving parts and the propellant is insensitive to flames or electrical sparks. Solid propellant rocket motors can be bought for use in model rocketry ; they are normally small cylinders of black powder fuel with an integral nozzle and optionally

2331-467: The cargo bay of the Space Shuttle. Star motors have propellant fractions as high as 94.6% but add-on structures and equipment reduce the operating mass fraction by 2% or more. Higher performing solid rocket propellants are used in large strategic missiles (as opposed to commercial launch vehicles). HMX , C 4 H 8 N 4 (NO 2 ) 4 , a nitramine with greater energy than ammonium perchlorate,

2394-452: The casing is often implemented, which ablates to prolong the life of the motor casing. A convergent-divergent design accelerates the exhaust gas out of the nozzle to produce thrust. The nozzle must be constructed from a material that can withstand the heat of the combustion gas flow. Often, heat-resistant carbon-based materials are used, such as amorphous graphite or reinforced carbon–carbon . Some designs include directional control of

2457-454: The currently favored APCP solid propellants. With a specific impulse of 309 s already demonstrated by Peacekeeper's second stage using HMX propellant, the higher energy of CL-20 propellant can be expected to increase specific impulse to around 320 s in similar ICBM or launch vehicle upper stage applications, without the explosive hazard of HMX. An attractive attribute for military use is the ability for solid rocket propellant to remain loaded in

2520-667: The early 1960s, with financial support from the U.S. and West Germany. US Navy test facilities and technical assistance were made available to facilitate development. It was the first NATO anti-shipping missile with an IR seeker instead of the commonly used active radar seeker . Both hardware and software have been updated since entering series production in 1972. Initial installation was in 500-kilogram (1,100 lb) deck-mounted box launchers with snap-open doors. These were designed for minimal deck intrusion, allowing them to be retrofitted to existing small ships. The first such installations were on Snøgg-class and Storm-class patrol boats of

2583-611: The exhaust can turn the smoke opaque. A powdered oxidizer and powdered metal fuel are intimately mixed and immobilized with a rubbery binder (that also acts as a fuel). Composite propellants are often either ammonium-nitrate -based (ANCP) or ammonium-perchlorate -based (APCP). Ammonium nitrate composite propellant often uses magnesium and/or aluminium as fuel and delivers medium performance (I sp of about 210 s (2.1 km/s)) whereas ammonium perchlorate composite propellant often uses aluminium fuel and delivers high performance: vacuum I sp up to 296 s (2.90 km/s) with

Light Airborne Multi-Purpose System - Misplaced Pages Continue

2646-542: The exhaust. This can be accomplished by gimballing the nozzle, as in the Space Shuttle SRBs, by the use of jet vanes in the exhaust as in the V-2 rocket, or by liquid injection thrust vectoring (LITV). LITV consists of injecting a liquid into the exhaust stream after the nozzle throat. The liquid then vaporizes, and in most cases chemically reacts, adding mass flow to one side of the exhaust stream and thus providing

2709-563: The first industrial manufacture of military rockets with the Congreve rocket in 1804. In 1921 the Soviet research and development laboratory Gas Dynamics Laboratory began developing solid-propellant rockets, which resulted in the first launch in 1928, that flew for approximately 1,300 metres. These rockets were used in 1931 for the world's first successful use of rockets to assist take-off of aircraft . The research continued from 1933 by

2772-445: The functional definition of double base propellants. One of the most active areas of solid propellant research is the development of high-energy, minimum-signature propellant using C 6 H 6 N 6 (NO 2 ) 6 CL-20 nitroamine ( China Lake compound #20), which has 14% higher energy per mass and 20% higher energy density than HMX. The new propellant has been successfully developed and tested in tactical rocket motors. The propellant

2835-470: The gooey asphalt, creating a flexible but geometrically stable load-bearing propellant grain that bonded securely to the motor casing. This made possible much larger solid rocket motors. Atlantic Research Corporation significantly boosted composite propellant I sp in 1954 by increasing the amount of powdered aluminium in the propellant to as much as 20%. Solid-propellant rocket technology got its largest boost in technical innovation, size and capability with

2898-440: The grain, failure of case bonding, and air pockets in the grain. All of these produce an instantaneous increase in burn surface area and a corresponding increase in exhaust gas production rate and pressure, which may rupture the casing. Another failure mode is casing seal failure. Seals are required in casings that have to be opened to load the grain. Once a seal fails, hot gas will erode the escape path and result in failure. This

2961-658: The ingredients necessary for combustion within the chamber in which they are burned. More advanced solid rocket motors can be throttled , or extinguished and re-ignited, by control of the nozzle geometry or through the use of vent ports. Further, pulsed rocket motors that burn in segments, and that can be ignited upon command are available. Modern designs may also include a steerable nozzle for guidance, avionics , recovery hardware ( parachutes ), self-destruct mechanisms, APUs , controllable tactical motors, controllable divert and attitude control motors, and thermal management materials. The medieval Song dynasty Chinese invented

3024-410: The launching craft is free to turn away as the missile is inertially guided until the autonomous terminal homing phase. Propelled by a solid rocket engine, latest variants of Penguin can perform random weaving manoeuvres at target approach and strike the target close to the waterline. It can perform a terminal bunt and weave manoeuvre. The 120-kilogram (260 lb) warhead (originally based on that of

3087-605: The mission. In early 1978 the Navy selected Sikorsky's S-70B design, which was designated "SH-60B Seahawk". Penguin (missile) The Penguin anti-ship missile , designated AGM-119 by the U.S. military, is a Norwegian passive IR seeker -based short-to-medium range anti-ship guided missile , designed for naval use. Penguin was originally developed in a collaboration between the Norwegian Defence Research Establishment (NDRE; Norw. FFI ) and Kongsberg Våpenfabrikk starting in

3150-560: The mix. This extra component usually is in the form of small crystals of RDX or HMX , both of which have higher energy than ammonium perchlorate. Despite a modest increase in specific impulse, implementation is limited due to the increased hazards of the high-explosive additives. Composite modified double base propellants start with a nitrocellulose/nitroglycerin double base propellant as a binder and add solids (typically ammonium perchlorate (AP) and powdered aluminium ) normally used in composite propellants. The ammonium perchlorate makes up

3213-420: The next 50 years. By the later 1980s and continuing to 2020, these government-developed highly-capable solid rocket technologies have been applied to orbital spaceflight by many government-directed programs , most often as booster rockets to add extra thrust during the early ascent of their primarily liquid rocket launch vehicles . Some designs have had solid rocket upper stages as well. Examples flying in

SECTION 50

#1732772268218

3276-569: The oxygen deficit introduced by using nitrocellulose , improving the overall specific impulse. The aluminium improves specific impulse as well as combustion stability. High performing propellants such as NEPE-75 used to fuel the Trident II D-5 SLBM replace most of the AP with polyethylene glycol -bound HMX , further increasing specific impulse. The mixing of composite and double base propellant ingredients has become so common as to blur

3339-463: The propellant surface area exposed to the combustion gases. Since the propellant volume is equal to the cross sectional area A s {\displaystyle A_{s}} times the fuel length, the volumetric propellant consumption rate is the cross section area times the linear burn rate b ˙ {\displaystyle {\dot {b}}} , and the instantaneous mass flow rate of combustion gases generated

3402-417: The retired Peacekeeper ICBMs). The Naval Air Weapons Station at China Lake, California, developed a new compound, C 6 H 6 N 6 (NO 2 ) 6 , called simply CL-20 (China Lake compound 20). Compared to HMX, CL-20 has 14% more energy per mass, 20% more energy per volume, and a higher oxygen-to-fuel ratio. One of the motivations for development of these very high energy density military solid propellants

3465-403: The rocket for long durations and then be reliably launched at a moment's notice. Black powder (gunpowder) is composed of charcoal (fuel), potassium nitrate (oxidizer), and sulfur (fuel and catalyst). It is one of the oldest pyrotechnic compositions with application to rocketry. In modern times, black powder finds use in low-power model rockets (such as Estes and Quest rockets), as it

3528-586: The short distances involved in the acoustic detection and prosecution of underwater threats associated with hull-mounted sonars . Those H-2s that were reconfigured to perform the LAMPS mission were accordingly re-designated as SH-2D s. During the 1970s, the U.S. Navy began looking for a new helicopter to replace the SH-2F. Advances in sensor and avionic technology lead to the LAMPS Mk II suite being developed by

3591-616: The various mid-20th century government initiatives to develop increasingly capable military missiles. After initial designs of ballistic missile military technology designed with liquid-propellant rockets in the 1940s and 1950s, both the Soviet Union and the United States embarked on major initiatives to develop solid-propellant local , regional , and intercontinental ballistic missiles, including solid-propellant missiles that could be launched from air or sea . Many other governments also developed these military technologies over

3654-512: Was in service in Brazil, Greece, New Zealand, Spain and Turkey and had been phased out by the US Navy. Solid rocket A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants ( fuel / oxidizer ). The earliest rockets were solid-fuel rockets powered by gunpowder . The inception of gunpowder rockets in warfare can be credited to

3717-557: Was planned, but was canceled in favor of the more advanced Mk III. LAMPS III added the capabilities to use anti-ship missile systems (like the AGM-119 Penguin anti-ship missile) and night vision capability. In October 1970, the UH-2 was selected to be the platform to function as the interim Light Airborne Multi-Purpose System (LAMPS) helicopter. During the course of the 1960s, LAMPS had evolved out of an urgent requirement to develop

3780-488: Was the cause of the Space Shuttle Challenger disaster . Solid rocket fuel deflagrates from the surface of exposed propellant in the combustion chamber. In this fashion, the geometry of the propellant inside the rocket motor plays an important role in the overall motor performance. As the surface of the propellant burns, the shape evolves (a subject of study in internal ballistics), most often changing

3843-423: Was two minutes. The nozzle throat was large enough to walk through standing up. The motor was capable of serving as a 1-to-1 replacement for the 8-engine Saturn I liquid-propellant first stage but was never used as such. Motor 260 SL-3 was of similar length and weight but had a maximum thrust of 24 MN (5,400,000 lbf) and a shorter duration. Design begins with the total impulse required, which determines

SECTION 60

#1732772268218

3906-407: Was used for the space shuttle boosters . Filament-wound graphite epoxy casings are used for high-performance motors. The casing must be designed to withstand the pressure and resulting stresses of the rocket motor, possibly at elevated temperature. For design, the casing is considered a pressure vessel . To protect the casing from corrosive hot gases, a sacrificial thermal liner on the inside of

3969-673: Was used in the propellant of the Peacekeeper ICBM and is the main ingredient in NEPE-75 propellant used in the Trident II D-5 Fleet Ballistic Missile. It is because of explosive hazard that the higher energy military solid propellants containing HMX are not used in commercial launch vehicles except when the LV is an adapted ballistic missile already containing HMX propellant (Minotaur IV and V based on

#217782