Geology (from Ancient Greek γῆ ( gê ) 'earth' and λoγία ( -logía ) 'study of, discourse') is a branch of natural science concerned with the Earth and other astronomical objects , the rocks of which they are composed, and the processes by which they change over time. Modern geology significantly overlaps all other Earth sciences , including hydrology . It is integrated with Earth system science and planetary science .
107-499: In geology , a lode is a deposit of metalliferous ore that fills or is embedded in a fracture (or crack) in a rock formation or a vein of ore that is deposited or embedded between layers of rock . The current meaning (ore vein) dates from the 17th century, being an expansion of an earlier sense of a "channel, watercourse" in Late Middle English , which in turn is from the 11th-century meaning of lode as
214-535: A characteristic fabric . All three types may melt again, and when this happens, new magma is formed, from which an igneous rock may once again solidify. Organic matter, such as coal, bitumen, oil, and natural gas, is linked mainly to organic-rich sedimentary rocks. To study all three types of rock, geologists evaluate the minerals of which they are composed and their other physical properties, such as texture and fabric . Geologists also study unlithified materials (referred to as superficial deposits ) that lie above
321-485: A petrographic microscope , where the minerals can be identified through their different properties in plane-polarized and cross-polarized light, including their birefringence , pleochroism , twinning , and interference properties with a conoscopic lens . In the electron microprobe, individual locations are analyzed for their exact chemical compositions and variation in composition within individual crystals. Stable and radioactive isotope studies provide insight into
428-738: A pure element . In chemistry, a pure element means a substance whose atoms all (or in practice almost all) have the same atomic number, or number of protons . Nuclear scientists, however, define a pure element as one that consists of only one isotope. For example, a copper wire is 99.99% chemically pure if 99.99% of its atoms are copper, with 29 protons each. However it is not isotopically pure since ordinary copper consists of two stable isotopes, 69% Cu and 31% Cu, with different numbers of neutrons. However, pure gold would be both chemically and isotopically pure, since ordinary gold consists only of one isotope, Au. Atoms of chemically pure elements may bond to each other chemically in more than one way, allowing
535-463: A "course, way". The generally accepted hydrothermal model of lode deposition posits that metals dissolved in hydrothermal solutions (hot spring fluids) deposit the gold or other metallic minerals inside the fissures in the pre-existing rocks. Lode deposits are distinguished primarily from placer deposits , where the ore has been eroded out from its original depositional environment and redeposited by sedimentation . A third process for ore deposition
642-549: A considerable amount of time. (See element naming controversy ). Precursors of such controversies involved the nationalistic namings of elements in the late 19th century. For example, lutetium was named in reference to Paris, France. The Germans were reluctant to relinquish naming rights to the French, often calling it cassiopeium . Similarly, the British discoverer of niobium originally named it columbium , in reference to
749-434: A definite homogeneous chemical composition and an ordered atomic arrangement. Each mineral has distinct physical properties, and there are many tests to determine each of them. Minerals are often identified through these tests. The specimens can be tested for: A rock is any naturally occurring solid mass or aggregate of minerals or mineraloids . Most research in geology is associated with the study of rocks, as they provide
856-477: A different element in nuclear reactions , which change an atom's atomic number. Historically, the term "chemical element" meant a substance that cannot be broken down into constituent substances by chemical reactions, and for most practical purposes this definition still has validity. There was some controversy in the 1920s over whether isotopes deserved to be recognized as separate elements if they could be separated by chemical means. The term "(chemical) element"
963-652: A few decay products, to have been differentiated from other elements. Most recently, the synthesis of element 118 (since named oganesson ) was reported in October 2006, and the synthesis of element 117 ( tennessine ) was reported in April 2010. Of these 118 elements, 94 occur naturally on Earth. Six of these occur in extreme trace quantities: technetium , atomic number 43; promethium , number 61; astatine , number 85; francium , number 87; neptunium , number 93; and plutonium , number 94. These 94 elements have been detected in
1070-529: A few elements, such as silver and gold , are found uncombined as relatively pure native element minerals . Nearly all other naturally occurring elements occur in the Earth as compounds or mixtures. Air is mostly a mixture of molecular nitrogen and oxygen , though it does contain compounds including carbon dioxide and water , as well as atomic argon , a noble gas which is chemically inert and therefore does not undergo chemical reactions. The history of
1177-574: A length of less than a meter. Rocks at the depth to be ductilely stretched are often also metamorphosed. These stretched rocks can also pinch into lenses, known as boudins , after the French word for "sausage" because of their visual similarity. Where rock units slide past one another, strike-slip faults develop in shallow regions, and become shear zones at deeper depths where the rocks deform ductilely. The addition of new rock units, both depositionally and intrusively, often occurs during deformation. Faulting and other deformational processes result in
SECTION 10
#17327731696571284-452: A means to provide information about geological history and the timing of geological events. The principle of uniformitarianism states that the geological processes observed in operation that modify the Earth's crust at present have worked in much the same way over geological time. A fundamental principle of geology advanced by the 18th-century Scottish physician and geologist James Hutton
1391-608: A number of fields, laboratory, and numerical modeling methods to decipher Earth history and to understand the processes that occur on and inside the Earth. In typical geological investigations, geologists use primary information related to petrology (the study of rocks), stratigraphy (the study of sedimentary layers), and structural geology (the study of positions of rock units and their deformation). In many cases, geologists also study modern soils, rivers , landscapes , and glaciers ; investigate past and current life and biogeochemical pathways, and use geophysical methods to investigate
1498-500: A pressure of 1 bar and a given temperature (typically at 298.15K). However, for phosphorus, the reference state is white phosphorus even though it is not the most stable allotrope, and the reference state for carbon is graphite, because the structure of graphite is more stable than that of the other allotropes. In thermochemistry , an element is defined to have an enthalpy of formation of zero in its reference state. Several kinds of descriptive categorizations can be applied broadly to
1605-483: A pressure of one atmosphere, are commonly used in characterizing the various elements. While known for most elements, either or both of these measurements is still undetermined for some of the radioactive elements available in only tiny quantities. Since helium remains a liquid even at absolute zero at atmospheric pressure, it has only a boiling point, and not a melting point, in conventional presentations. The density at selected standard temperature and pressure (STP)
1712-451: A sedimentary rock. Sedimentary rocks are mainly divided into four categories: sandstone, shale, carbonate, and evaporite. This group of classifications focuses partly on the size of sedimentary particles (sandstone and shale), and partly on mineralogy and formation processes (carbonation and evaporation). Igneous and sedimentary rocks can then be turned into metamorphic rocks by heat and pressure that change its mineral content, resulting in
1819-499: A single environment and do not necessarily occur in a single order. The Hawaiian Islands , for example, consist almost entirely of layered basaltic lava flows. The sedimentary sequences of the mid-continental United States and the Grand Canyon in the southwestern United States contain almost-undeformed stacks of sedimentary rocks that have remained in place since Cambrian time. Other areas are much more geologically complex. In
1926-456: A small group, (the metalloids ), having intermediate properties and often behaving as semiconductors . A more refined classification is often shown in colored presentations of the periodic table. This system restricts the terms "metal" and "nonmetal" to only certain of the more broadly defined metals and nonmetals, adding additional terms for certain sets of the more broadly viewed metals and nonmetals. The version of this classification used in
2033-400: A variety of applications. Dating of lava and volcanic ash layers found within a stratigraphic sequence can provide absolute age data for sedimentary rock units that do not contain radioactive isotopes and calibrate relative dating techniques. These methods can also be used to determine ages of pluton emplacement. Thermochemical techniques can be used to determine temperature profiles within
2140-474: A whole number. For example, the relative atomic mass of chlorine is 35.453 u, which differs greatly from a whole number as it is an average of about 76% chlorine-35 and 24% chlorine-37. Whenever a relative atomic mass value differs by more than ~1% from a whole number, it is due to this averaging effect, as significant amounts of more than one isotope are naturally present in a sample of that element. Chemists and nuclear scientists have different definitions of
2247-404: Is 10 (for tin , element 50). The mass number of an element, A , is the number of nucleons (protons and neutrons) in the atomic nucleus. Different isotopes of a given element are distinguished by their mass number, which is written as a superscript on the left hand side of the chemical symbol (e.g., U). The mass number is always an integer and has units of "nucleons". Thus, magnesium-24 (24
SECTION 20
#17327731696572354-606: Is a mixture of C (about 98.9%), C (about 1.1%) and about 1 atom per trillion of C. Most (54 of 94) naturally occurring elements have more than one stable isotope. Except for the isotopes of hydrogen (which differ greatly from each other in relative mass—enough to cause chemical effects), the isotopes of a given element are chemically nearly indistinguishable. All elements have radioactive isotopes (radioisotopes); most of these radioisotopes do not occur naturally. Radioisotopes typically decay into other elements via alpha decay , beta decay , or inverse beta decay ; some isotopes of
2461-406: Is a dimensionless number equal to the atomic mass divided by the atomic mass constant , which equals 1 Da. In general, the mass number of a given nuclide differs in value slightly from its relative atomic mass, since the mass of each proton and neutron is not exactly 1 Da; since the electrons contribute a lesser share to the atomic mass as neutron number exceeds proton number; and because of
2568-422: Is accomplished in two primary ways: through faulting and folding . In the shallow crust, where brittle deformation can occur, thrust faults form, which causes the deeper rock to move on top of the shallower rock. Because deeper rock is often older, as noted by the principle of superposition , this can result in older rocks moving on top of younger ones. Movement along faults can result in folding, either because
2675-460: Is an intimate coupling between the movement of the plates on the surface and the convection of the mantle (that is, the heat transfer caused by the slow movement of ductile mantle rock). Thus, oceanic parts of plates and the adjoining mantle convection currents always move in the same direction – because the oceanic lithosphere is actually the rigid upper thermal boundary layer of the convecting mantle. This coupling between rigid plates moving on
2782-812: Is an ongoing area of scientific study. The lightest elements are hydrogen and helium , both created by Big Bang nucleosynthesis in the first 20 minutes of the universe in a ratio of around 3:1 by mass (or 12:1 by number of atoms), along with tiny traces of the next two elements, lithium and beryllium . Almost all other elements found in nature were made by various natural methods of nucleosynthesis . On Earth, small amounts of new atoms are naturally produced in nucleogenic reactions, or in cosmogenic processes, such as cosmic ray spallation . New atoms are also naturally produced on Earth as radiogenic daughter isotopes of ongoing radioactive decay processes such as alpha decay , beta decay , spontaneous fission , cluster decay , and other rarer modes of decay. Of
2889-550: Is as an evaporite . A stringer lode is one in which the rock is so permeated by small veinlets that rather than mining the veins, the entire mass of ore and the enveined country rock is mined. It is so named because of the irregular branching of the veins into many anastomosis stringers, so that the ore is not separable from the country rock. One of the largest silver lodes was the Comstock Lode in Nevada, although it
2996-460: Is based on a Latin or other traditional word, for example adopting "gold" rather than "aurum" as the name for the 79th element (Au). IUPAC prefers the British spellings " aluminium " and "caesium" over the U.S. spellings "aluminum" and "cesium", and the U.S. "sulfur" over British "sulphur". However, elements that are practical to sell in bulk in many countries often still have locally used national names, and countries whose national language does not use
3103-433: Is horizontal). The principle of superposition states that a sedimentary rock layer in a tectonically undisturbed sequence is younger than the one beneath it and older than the one above it. Logically a younger layer cannot slip beneath a layer previously deposited. This principle allows sedimentary layers to be viewed as a form of the vertical timeline, a partial or complete record of the time elapsed from deposition of
3210-616: Is important for mineral and hydrocarbon exploration and exploitation, evaluating water resources , understanding natural hazards , remediating environmental problems, and providing insights into past climate change . Geology is a major academic discipline , and it is central to geological engineering and plays an important role in geotechnical engineering . The majority of geological data comes from research on solid Earth materials. Meteorites and other extraterrestrial natural materials are also studied by geological methods. Minerals are naturally occurring elements and compounds with
3317-436: Is often used in characterizing the elements. Density is often expressed in grams per cubic centimetre (g/cm ). Since several elements are gases at commonly encountered temperatures, their densities are usually stated for their gaseous forms; when liquefied or solidified, the gaseous elements have densities similar to those of the other elements. When an element has allotropes with different densities, one representative allotrope
Lode - Misplaced Pages Continue
3424-664: Is overshadowed by the more recently discovered Cannington Lode in Queensland, Australia. The largest gold lode in the United States was the Homestake Lode . The Broken Hill Lode in South Australia is the largest lead-zinc lode ever discovered. Geology Geology describes the structure of the Earth on and beneath its surface and the processes that have shaped that structure. Geologists study
3531-484: Is primarily accomplished through normal faulting and through the ductile stretching and thinning. Normal faults drop rock units that are higher below those that are lower. This typically results in younger units ending up below older units. Stretching of units can result in their thinning. In fact, at one location within the Maria Fold and Thrust Belt , the entire sedimentary sequence of the Grand Canyon appears over
3638-568: Is that "the present is the key to the past." In Hutton's words: "the past history of our globe must be explained by what can be seen to be happening now." The principle of intrusive relationships concerns crosscutting intrusions. In geology, when an igneous intrusion cuts across a formation of sedimentary rock , it can be determined that the igneous intrusion is younger than the sedimentary rock. Different types of intrusions include stocks, laccoliths , batholiths , sills and dikes . The principle of cross-cutting relationships pertains to
3745-426: Is the mass number) is an atom with 24 nucleons (12 protons and 12 neutrons). Whereas the mass number simply counts the total number of neutrons and protons and is thus an integer, the atomic mass of a particular isotope (or "nuclide") of the element is the mass of a single atom of that isotope, and is typically expressed in daltons (symbol: Da), or universal atomic mass units (symbol: u). Its relative atomic mass
3852-518: Is to demonstrate the age of the Earth . Geology provides evidence for plate tectonics , the evolutionary history of life , and the Earth's past climates . Geologists broadly study the properties and processes of Earth and other terrestrial planets. Geologists use a wide variety of methods to understand the Earth's structure and evolution, including fieldwork , rock description , geophysical techniques , chemical analysis , physical experiments , and numerical modelling . In practical terms, geology
3959-532: Is typically selected in summary presentations, while densities for each allotrope can be stated where more detail is provided. For example, the three familiar allotropes of carbon ( amorphous carbon , graphite , and diamond ) have densities of 1.8–2.1, 2.267, and 3.515 g/cm , respectively. The elements studied to date as solid samples have eight kinds of crystal structures : cubic , body-centered cubic , face-centered cubic, hexagonal , monoclinic , orthorhombic , rhombohedral , and tetragonal . For some of
4066-523: Is used for geologically young materials containing organic carbon . The geology of an area changes through time as rock units are deposited and inserted, and deformational processes alter their shapes and locations. Rock units are first emplaced either by deposition onto the surface or intrusion into the overlying rock . Deposition can occur when sediments settle onto the surface of the Earth and later lithify into sedimentary rock, or when as volcanic material such as volcanic ash or lava flows blanket
4173-417: Is used in two different but closely related meanings: it can mean a chemical substance consisting of a single kind of atoms, or it can mean that kind of atoms as a component of various chemical substances. For example, molecules of water (H 2 O) contain atoms of hydrogen (H) and oxygen (O), so water can be said as a compound consisting of the elements hydrogen (H) and oxygen (O) even though it does not contain
4280-429: Is very strong; fullerenes , which have nearly spherical shapes; and carbon nanotubes , which are tubes with a hexagonal structure (even these may differ from each other in electrical properties). The ability of an element to exist in one of many structural forms is known as 'allotropy'. The reference state of an element is defined by convention, usually as the thermodynamically most stable allotrope and physical state at
4387-590: Is widely used. For example, the French chemical terminology distinguishes élément chimique (kind of atoms) and corps simple (chemical substance consisting of a single kind of atoms); the Russian chemical terminology distinguishes химический элемент and простое вещество . Almost all baryonic matter in the universe is composed of elements (among rare exceptions are neutron stars ). When different elements undergo chemical reactions, atoms are rearranged into new compounds held together by chemical bonds . Only
Lode - Misplaced Pages Continue
4494-489: The International Union of Pure and Applied Chemistry (IUPAC) had recognized a total of 118 elements. The first 94 occur naturally on Earth , and the remaining 24 are synthetic elements produced in nuclear reactions. Save for unstable radioactive elements (radioelements) which decay quickly, nearly all elements are available industrially in varying amounts. The discovery and synthesis of further new elements
4601-638: The Latin alphabet are likely to use the IUPAC element names. According to IUPAC, element names are not proper nouns; therefore, the full name of an element is not capitalized in English, even if derived from a proper noun , as in californium and einsteinium . Isotope names are also uncapitalized if written out, e.g., carbon-12 or uranium-235 . Chemical element symbols (such as Cf for californium and Es for einsteinium), are always capitalized (see below). In
4708-506: The bedrock . This study is often known as Quaternary geology , after the Quaternary period of geologic history, which is the most recent period of geologic time. Magma is the original unlithified source of all igneous rocks . The active flow of molten rock is closely studied in volcanology , and igneous petrology aims to determine the history of igneous rocks from their original molten source to their final crystallization. In
4815-512: The geochemical evolution of rock units. Petrologists can also use fluid inclusion data and perform high temperature and pressure physical experiments to understand the temperatures and pressures at which different mineral phases appear, and how they change through igneous and metamorphic processes. This research can be extrapolated to the field to understand metamorphic processes and the conditions of crystallization of igneous rocks. This work can also help to explain processes that occur within
4922-423: The kinetic isotope effect is significant). Thus, all carbon isotopes have nearly identical chemical properties because they all have six electrons, even though they may have 6 to 8 neutrons. That is why atomic number, rather than mass number or atomic weight , is considered the identifying characteristic of an element. The symbol for atomic number is Z . Isotopes are atoms of the same element (that is, with
5029-402: The mantle below (separated within itself by seismic discontinuities at 410 and 660 kilometers), and the outer core and inner core below that. More recently, seismologists have been able to create detailed images of wave speeds inside the earth in the same way a doctor images a body in a CT scan . These images have led to a much more detailed view of the interior of the Earth, and have replaced
5136-405: The nuclear binding energy and electron binding energy. For example, the atomic mass of chlorine-35 to five significant digits is 34.969 Da and that of chlorine-37 is 36.966 Da. However, the relative atomic mass of each isotope is quite close to its mass number (always within 1%). The only isotope whose atomic mass is exactly a natural number is C, which has a mass of 12 Da; because
5243-440: The 1960s, it was discovered that the Earth's lithosphere , which includes the crust and rigid uppermost portion of the upper mantle , is separated into tectonic plates that move across the plastically deforming, solid, upper mantle, which is called the asthenosphere . This theory is supported by several types of observations, including seafloor spreading and the global distribution of mountain terrain and seismicity. There
5350-638: The 94 naturally occurring elements, those with atomic numbers 1 through 82 each have at least one stable isotope (except for technetium , element 43 and promethium , element 61, which have no stable isotopes). Isotopes considered stable are those for which no radioactive decay has yet been observed. Elements with atomic numbers 83 through 94 are unstable to the point that radioactive decay of all isotopes can be detected. Some of these elements, notably bismuth (atomic number 83), thorium (atomic number 90), and uranium (atomic number 92), have one or more isotopes with half-lives long enough to survive as remnants of
5457-424: The Earth, such as subduction and magma chamber evolution. Structural geologists use microscopic analysis of oriented thin sections of geological samples to observe the fabric within the rocks, which gives information about strain within the crystalline structure of the rocks. They also plot and combine measurements of geological structures to better understand the orientations of faults and folds to reconstruct
SECTION 50
#17327731696575564-487: The French, Italians, Greeks, Portuguese and Poles prefer "azote/azot/azoto" (from roots meaning "no life") for "nitrogen". For purposes of international communication and trade, the official names of the chemical elements both ancient and more recently recognized are decided by the International Union of Pure and Applied Chemistry (IUPAC), which has decided on a sort of international English language, drawing on traditional English names even when an element's chemical symbol
5671-484: The Grand Canyon in the southwestern United States being a very visible example, the lower rock units were metamorphosed and deformed, and then deformation ended and the upper, undeformed units were deposited. Although any amount of rock emplacement and rock deformation can occur, and they can occur any number of times, these concepts provide a guide to understanding the geological history of an area. Geologists use
5778-487: The atomic masses of the elements (their atomic weights or atomic masses) do not always increase monotonically with their atomic numbers. The naming of various substances now known as elements precedes the atomic theory of matter, as names were given locally by various cultures to various minerals, metals, compounds, alloys, mixtures, and other materials, though at the time it was not known which chemicals were elements and which compounds. As they were identified as elements,
5885-537: The beginning of the 20th century, advancement in geological science was facilitated by the ability to obtain accurate absolute dates to geological events using radioactive isotopes and other methods. This changed the understanding of geological time. Previously, geologists could only use fossils and stratigraphic correlation to date sections of rock relative to one another. With isotopic dates, it became possible to assign absolute ages to rock units, and these absolute dates could be applied to fossil sequences in which there
5992-413: The chemical substances (di)hydrogen (H 2 ) and (di)oxygen (O 2 ), as H 2 O molecules are different from H 2 and O 2 molecules. For the meaning "chemical substance consisting of a single kind of atoms", the terms "elementary substance" and "simple substance" have been suggested, but they have not gained much acceptance in English chemical literature, whereas in some other languages their equivalent
6099-515: The creation of topographic gradients, causing material on the rock unit that is increasing in elevation to be eroded by hillslopes and channels. These sediments are deposited on the rock unit that is going down. Continual motion along the fault maintains the topographic gradient in spite of the movement of sediment and continues to create accommodation space for the material to deposit. Deformational events are often also associated with volcanism and igneous activity. Volcanic ashes and lavas accumulate on
6206-437: The crust, the uplift of mountain ranges, and paleo-topography. Fractionation of the lanthanide series elements is used to compute ages since rocks were removed from the mantle. Other methods are used for more recent events. Optically stimulated luminescence and cosmogenic radionuclide dating are used to date surfaces and/or erosion rates. Dendrochronology can also be used for the dating of landscapes. Radiocarbon dating
6313-408: The dalton is defined as 1/12 of the mass of a free neutral carbon-12 atom in the ground state. The standard atomic weight (commonly called "atomic weight") of an element is the average of the atomic masses of all the chemical element's isotopes as found in a particular environment, weighted by isotopic abundance, relative to the atomic mass unit. This number may be a fraction that is not close to
6420-416: The discovery and use of elements began with early human societies that discovered native minerals like carbon , sulfur , copper and gold (though the modern concept of an element was not yet understood). Attempts to classify materials such as these resulted in the concepts of classical elements , alchemy , and similar theories throughout history. Much of the modern understanding of elements developed from
6527-406: The elements are available by name, atomic number, density, melting point, boiling point and chemical symbol , as well as ionization energy . The nuclides of stable and radioactive elements are also available as a list of nuclides , sorted by length of half-life for those that are unstable. One of the most convenient, and certainly the most traditional presentation of the elements, is in the form of
SECTION 60
#17327731696576634-470: The elements are often summarized using the periodic table, which powerfully and elegantly organizes the elements by increasing atomic number into rows ( "periods" ) in which the columns ( "groups" ) share recurring ("periodic") physical and chemical properties. The table contains 118 confirmed elements as of 2021. Although earlier precursors to this presentation exist, its invention is generally credited to Russian chemist Dmitri Mendeleev in 1869, who intended
6741-480: The elements can be uniquely sequenced by atomic number, conventionally from lowest to highest (as in a periodic table), sets of elements are sometimes specified by such notation as "through", "beyond", or "from ... through", as in "through iron", "beyond uranium", or "from lanthanum through lutetium". The terms "light" and "heavy" are sometimes also used informally to indicate relative atomic numbers (not densities), as in "lighter than carbon" or "heavier than lead", though
6848-413: The elements without any stable isotopes are technetium (atomic number 43), promethium (atomic number 61), and all observed elements with atomic number greater than 82. Of the 80 elements with at least one stable isotope, 26 have only one stable isotope. The mean number of stable isotopes for the 80 stable elements is 3.1 stable isotopes per element. The largest number of stable isotopes for a single element
6955-474: The elements, including consideration of their general physical and chemical properties, their states of matter under familiar conditions, their melting and boiling points, their densities, their crystal structures as solids, and their origins. Several terms are commonly used to characterize the general physical and chemical properties of the chemical elements. A first distinction is between metals , which readily conduct electricity , nonmetals , which do not, and
7062-492: The existing names for anciently known elements (e.g., gold, mercury, iron) were kept in most countries. National differences emerged over the element names either for convenience, linguistic niceties, or nationalism. For example, German speakers use "Wasserstoff" (water substance) for "hydrogen", "Sauerstoff" (acid substance) for "oxygen" and "Stickstoff" (smothering substance) for "nitrogen"; English and some other languages use "sodium" for "natrium", and "potassium" for "kalium"; and
7169-630: The explosive stellar nucleosynthesis that produced the heavy metals before the formation of our Solar System . At over 1.9 × 10 years, over a billion times longer than the estimated age of the universe, bismuth-209 has the longest known alpha decay half-life of any isotope, and is almost always considered on par with the 80 stable elements. The heaviest elements (those beyond plutonium, element 94) undergo radioactive decay with half-lives so short that they are not found in nature and must be synthesized . There are now 118 known elements. In this context, "known" means observed well enough, even from just
7276-570: The fault is a normal fault or a thrust fault . The principle of inclusions and components states that, with sedimentary rocks, if inclusions (or clasts ) are found in a formation, then the inclusions must be older than the formation that contains them. For example, in sedimentary rocks, it is common for gravel from an older formation to be ripped up and included in a newer layer. A similar situation with igneous rocks occurs when xenoliths are found. These foreign bodies are picked up as magma or lava flows, and are incorporated, later to cool in
7383-403: The faults are not planar or because rock layers are dragged along, forming drag folds as slip occurs along the fault. Deeper in the Earth, rocks behave plastically and fold instead of faulting. These folds can either be those where the material in the center of the fold buckles upwards, creating " antiforms ", or where it buckles downwards, creating " synforms ". If the tops of the rock units within
7490-483: The folds remain pointing upwards, they are called anticlines and synclines , respectively. If some of the units in the fold are facing downward, the structure is called an overturned anticline or syncline, and if all of the rock units are overturned or the correct up-direction is unknown, they are simply called by the most general terms, antiforms, and synforms. Even higher pressures and temperatures during horizontal shortening can cause both folding and metamorphism of
7597-404: The formation of faults and the age of the sequences through which they cut. Faults are younger than the rocks they cut; accordingly, if a fault is found that penetrates some formations but not those on top of it, then the formations that were cut are older than the fault, and the ones that are not cut must be younger than the fault. Finding the key bed in these situations may help determine whether
7704-529: The formation of Earth, they are certain to have completely decayed, and if present in novae, are in quantities too small to have been noted. Technetium was the first purportedly non-naturally occurring element synthesized, in 1937, though trace amounts of technetium have since been found in nature (and also the element may have been discovered naturally in 1925). This pattern of artificial production and later natural discovery has been repeated with several other radioactive naturally occurring rare elements. List of
7811-431: The half-lives predicted for the observationally stable lead isotopes range from 10 to 10 years. Elements with atomic numbers 43, 61, and 83 through 94 are unstable enough that their radioactive decay can be detected. Three of these elements, bismuth (element 83), thorium (90), and uranium (92) have one or more isotopes with half-lives long enough to survive as remnants of the explosive stellar nucleosynthesis that produced
7918-399: The heaviest elements also undergo spontaneous fission . Isotopes that are not radioactive, are termed "stable" isotopes. All known stable isotopes occur naturally (see primordial nuclide ). The many radioisotopes that are not found in nature have been characterized after being artificially produced. Certain elements have no stable isotopes and are composed only of radioisotopes: specifically
8025-549: The heavy elements before the formation of the Solar System. For example, at over 1.9 × 10 years, over a billion times longer than the estimated age of the universe, bismuth-209 has the longest known alpha decay half-life of any isotope. The last 24 elements (those beyond plutonium, element 94) undergo radioactive decay with short half-lives and cannot be produced as daughters of longer-lived elements, and thus are not known to occur in nature at all. 1 The properties of
8132-465: The history of rock deformation in the area. In addition, they perform analog and numerical experiments of rock deformation in large and small settings. Chemical element A chemical element is a chemical substance whose atoms all have the same number of protons . The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8, meaning each oxygen atom has 8 protons in its nucleus. Atoms of
8239-423: The internal composition and structure of the Earth. Seismologists can use the arrival times of seismic waves to image the interior of the Earth. Early advances in this field showed the existence of a liquid outer core (where shear waves were not able to propagate) and a dense solid inner core . These advances led to the development of a layered model of the Earth, with a lithosphere (including crust) on top,
8346-464: The later end of the scale, it is marked by the present day (in the Holocene epoch ). The following five timelines show the geologic time scale to scale. The first shows the entire time from the formation of the Earth to the present, but this gives little space for the most recent eon. The second timeline shows an expanded view of the most recent eon. In a similar way, the most recent era is expanded in
8453-454: The lowest layer to deposition of the highest bed. The principle of faunal succession is based on the appearance of fossils in sedimentary rocks. As organisms exist during the same period throughout the world, their presence or (sometimes) absence provides a relative age of the formations where they appear. Based on principles that William Smith laid out almost a hundred years before the publication of Charles Darwin 's theory of evolution ,
8560-497: The mantle and show the crystallographic structures expected in the inner core of the Earth. The geological time scale encompasses the history of the Earth. It is bracketed at the earliest by the dates of the first Solar System material at 4.567 Ga (or 4.567 billion years ago) and the formation of the Earth at 4.54 Ga (4.54 billion years), which is the beginning of the Hadean eon – a division of geological time. At
8667-405: The matrix. As a result, xenoliths are older than the rock that contains them. The principle of original horizontality states that the deposition of sediments occurs as essentially horizontal beds. Observation of modern marine and non-marine sediments in a wide variety of environments supports this generalization (although cross-bedding is inclined, the overall orientation of cross-bedded units
8774-418: The mineralogical composition of rocks in order to get insight into their history of formation. Geology determines the relative ages of rocks found at a given location; geochemistry (a branch of geology) determines their absolute ages . By combining various petrological, crystallographic, and paleontological tools, geologists are able to chronicle the geological history of the Earth as a whole. One aspect
8881-418: The periodic table, which groups together elements with similar chemical properties (and usually also similar electronic structures). The atomic number of an element is equal to the number of protons in each atom, and defines the element. For example, all carbon atoms contain 6 protons in their atomic nucleus ; so the atomic number of carbon is 6. Carbon atoms may have different numbers of neutrons; atoms of
8988-426: The periodic tables presented here includes: actinides , alkali metals , alkaline earth metals , halogens , lanthanides , transition metals , post-transition metals , metalloids , reactive nonmetals , and noble gases . In this system, the alkali metals, alkaline earth metals, and transition metals, as well as the lanthanides and the actinides, are special groups of the metals viewed in a broader sense. Similarly,
9095-413: The primary record of the majority of the geological history of the Earth. There are three major types of rock: igneous , sedimentary , and metamorphic . The rock cycle illustrates the relationships among them (see diagram). When a rock solidifies or crystallizes from melt ( magma or lava ), it is an igneous rock . This rock can be weathered and eroded , then redeposited and lithified into
9202-569: The principles of succession developed independently of evolutionary thought. The principle becomes quite complex, however, given the uncertainties of fossilization, localization of fossil types due to lateral changes in habitat ( facies change in sedimentary strata), and that not all fossils formed globally at the same time. Geologists also use methods to determine the absolute age of rock samples and geological events. These dates are useful on their own and may also be used in conjunction with relative dating methods or to calibrate relative methods. At
9309-412: The pure element to exist in multiple chemical structures ( spatial arrangements of atoms ), known as allotropes , which differ in their properties. For example, carbon can be found as diamond , which has a tetrahedral structure around each carbon atom; graphite , which has layers of carbon atoms with a hexagonal structure stacked on top of each other; graphene , which is a single layer of graphite that
9416-772: The reactive nonmetals and the noble gases are nonmetals viewed in the broader sense. In some presentations, the halogens are not distinguished, with astatine identified as a metalloid and the others identified as nonmetals. Another commonly used basic distinction among the elements is their state of matter (phase), whether solid , liquid , or gas , at standard temperature and pressure (STP). Most elements are solids at STP, while several are gases. Only bromine and mercury are liquid at 0 degrees Celsius (32 degrees Fahrenheit) and 1 atmosphere pressure; caesium and gallium are solid at that temperature, but melt at 28.4°C (83.2°F) and 29.8°C (85.6°F), respectively. Melting and boiling points , typically expressed in degrees Celsius at
9523-919: The remaining 11 elements have half lives too short for them to have been present at the beginning of the Solar System, and are therefore considered transient elements. Of these 11 transient elements, five ( polonium , radon , radium , actinium , and protactinium ) are relatively common decay products of thorium and uranium . The remaining six transient elements (technetium, promethium, astatine, francium , neptunium , and plutonium ) occur only rarely, as products of rare decay modes or nuclear reaction processes involving uranium or other heavy elements. Elements with atomic numbers 1 through 82, except 43 (technetium) and 61 (promethium), each have at least one isotope for which no radioactive decay has been observed. Observationally stable isotopes of some elements (such as tungsten and lead ), however, are predicted to be slightly radioactive with very long half-lives: for example,
9630-428: The rocks. This metamorphism causes changes in the mineral composition of the rocks; creates a foliation , or planar surface, that is related to mineral growth under stress. This can remove signs of the original textures of the rocks, such as bedding in sedimentary rocks, flow features of lavas , and crystal patterns in crystalline rocks . Extension causes the rock units as a whole to become longer and thinner. This
9737-624: The same element can have different numbers of neutrons in their nuclei, known as isotopes of the element. Two or more atoms can combine to form molecules . Some elements are formed from molecules of identical atoms , e. g. atoms of hydrogen (H) form diatomic molecules (H 2 ). Chemical compounds are substances made of atoms of different elements; they can have molecular or non-molecular structure. Mixtures are materials containing different chemical substances; that means (in case of molecular substances) that they contain different types of molecules. Atoms of one element can be transformed into atoms of
9844-495: The same element having different numbers of neutrons are known as isotopes of the element. The number of protons in the nucleus also determines its electric charge , which in turn determines the number of electrons of the atom in its non-ionized state. The electrons are placed into atomic orbitals that determine the atom's chemical properties . The number of neutrons in a nucleus usually has very little effect on an element's chemical properties; except for hydrogen (for which
9951-404: The same number of protons in their nucleus), but having different numbers of neutrons . Thus, for example, there are three main isotopes of carbon. All carbon atoms have 6 protons, but they can have either 6, 7, or 8 neutrons. Since the mass numbers of these are 12, 13 and 14 respectively, said three isotopes are known as carbon-12 , carbon-13 , and carbon-14 ( C, C, and C). Natural carbon
10058-457: The second half of the 20th century, physics laboratories became able to produce elements with half-lives too short for an appreciable amount of them to exist at any time. These are also named by IUPAC, which generally adopts the name chosen by the discoverer. This practice can lead to the controversial question of which research group actually discovered an element, a question that delayed the naming of elements with atomic number of 104 and higher for
10165-433: The simplified layered model with a much more dynamic model. Mineralogists have been able to use the pressure and temperature data from the seismic and modeling studies alongside knowledge of the elemental composition of the Earth to reproduce these conditions in experimental settings and measure changes within the crystal structure. These studies explain the chemical changes associated with the major seismic discontinuities in
10272-532: The southwestern United States, sedimentary, volcanic, and intrusive rocks have been metamorphosed, faulted, foliated, and folded. Even older rocks, such as the Acasta gneiss of the Slave craton in northwestern Canada , the oldest known rock in the world have been metamorphosed to the point where their origin is indiscernible without laboratory analysis. In addition, these processes can occur in stages. In many places,
10379-550: The subsurface. Sub-specialities of geology may distinguish endogenous and exogenous geology. Geological field work varies depending on the task at hand. Typical fieldwork could consist of: In addition to identifying rocks in the field ( lithology ), petrologists identify rock samples in the laboratory. Two of the primary methods for identifying rocks in the laboratory are through optical microscopy and by using an electron microprobe . In an optical mineralogy analysis, petrologists analyze thin sections of rock samples using
10486-407: The surface of the Earth and the convecting mantle is called plate tectonics . The development of plate tectonics has provided a physical basis for many observations of the solid Earth . Long linear regions of geological features are explained as plate boundaries: Plate tectonics has provided a mechanism for Alfred Wegener 's theory of continental drift , in which the continents move across
10593-488: The surface of the Earth over geological time. They also provided a driving force for crustal deformation, and a new setting for the observations of structural geology. The power of the theory of plate tectonics lies in its ability to combine all of these observations into a single theory of how the lithosphere moves over the convecting mantle. Advances in seismology , computer modeling , and mineralogy and crystallography at high temperatures and pressures give insights into
10700-479: The surface, and igneous intrusions enter from below. Dikes , long, planar igneous intrusions, enter along cracks, and therefore often form in large numbers in areas that are being actively deformed. This can result in the emplacement of dike swarms , such as those that are observable across the Canadian shield, or rings of dikes around the lava tube of a volcano. All of these processes do not necessarily occur in
10807-742: The surface. Igneous intrusions such as batholiths , laccoliths , dikes , and sills , push upwards into the overlying rock, and crystallize as they intrude. After the initial sequence of rocks has been deposited, the rock units can be deformed and/or metamorphosed . Deformation typically occurs as a result of horizontal shortening, horizontal extension , or side-to-side ( strike-slip ) motion. These structural regimes broadly relate to convergent boundaries , divergent boundaries , and transform boundaries, respectively, between tectonic plates. When rock units are placed under horizontal compression , they shorten and become thicker. Because rock units, other than muds, do not significantly change in volume , this
10914-496: The synthetically produced transuranic elements, available samples have been too small to determine crystal structures. Chemical elements may also be categorized by their origin on Earth, with the first 94 considered naturally occurring, while those with atomic numbers beyond 94 have only been produced artificially via human-made nuclear reactions. Of the 94 naturally occurring elements, 83 are considered primordial and either stable or weakly radioactive. The longest-lived isotopes of
11021-955: The table to illustrate recurring trends in the properties of the elements. The layout of the table has been refined and extended over time as new elements have been discovered and new theoretical models have been developed to explain chemical behavior. Use of the periodic table is now ubiquitous in chemistry, providing an extremely useful framework to classify, systematize and compare all the many different forms of chemical behavior. The table has also found wide application in physics , geology , biology , materials science , engineering , agriculture , medicine , nutrition , environmental health , and astronomy . Its principles are especially important in chemical engineering . The various chemical elements are formally identified by their unique atomic numbers, their accepted names, and their chemical symbols . The known elements have atomic numbers from 1 to 118, conventionally presented as Arabic numerals . Since
11128-407: The third timeline, the most recent period is expanded in the fourth timeline, and the most recent epoch is expanded in the fifth timeline. Horizontal scale is Millions of years (above timelines) / Thousands of years (below timeline) Epochs: Methods for relative dating were developed when geology first emerged as a natural science . Geologists still use the following principles today as
11235-621: The universe at large, in the spectra of stars and also supernovae, where short-lived radioactive elements are newly being made. The first 94 elements have been detected directly on Earth as primordial nuclides present from the formation of the Solar System , or as naturally occurring fission or transmutation products of uranium and thorium. The remaining 24 heavier elements, not found today either on Earth or in astronomical spectra, have been produced artificially: all are radioactive, with short half-lives; if any of these elements were present at
11342-528: The work of Dmitri Mendeleev , a Russian chemist who published the first recognizable periodic table in 1869. This table organizes the elements by increasing atomic number into rows (" periods ") in which the columns (" groups ") share recurring ("periodic") physical and chemical properties . The periodic table summarizes various properties of the elements, allowing chemists to derive relationships between them and to make predictions about elements not yet discovered, and potential new compounds. By November 2016,
11449-615: Was datable material, converting the old relative ages into new absolute ages. For many geological applications, isotope ratios of radioactive elements are measured in minerals that give the amount of time that has passed since a rock passed through its particular closure temperature , the point at which different radiometric isotopes stop diffusing into and out of the crystal lattice . These are used in geochronologic and thermochronologic studies. Common methods include uranium–lead dating , potassium–argon dating , argon–argon dating and uranium–thorium dating . These methods are used for
#656343