Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measured with a thermometer . It reflects the average kinetic energy of the vibrating and colliding atoms making up a substance.
136-631: Lake Chillisquaque (also known as Montour Lake ) is a lake and reservoir in Montour County, Pennsylvania , in the United States. It has a surface area of 165 acres. The lake is situated on Middle Branch Chillisquaque Creek , which it is named after. Nearby communities include Danville and Washingtonville. The lake has an elevation of 567 feet (173 m) above sea level and is up to 40 feet (12 m) deep. It has several coves, including Goose Cove, Heron Cove, and Jellyfish Cove. The lake
272-409: A body of water from 2 hectares (5 acres) to 8 hectares (20 acres). Pioneering animal ecologist Charles Elton regarded lakes as waterbodies of 40 hectares (99 acres) or more. The term lake is also used to describe a feature such as Lake Eyre , which is a dry basin most of the time but may become filled under seasonal conditions of heavy rainfall. In common usage, many lakes bear names ending with
408-500: A comprehensive analysis of the origin of lakes and proposed what is a widely accepted classification of lakes according to their origin. This classification recognizes 11 major lake types that are divided into 76 subtypes. The 11 major lake types are: Tectonic lakes are lakes formed by the deformation and resulting lateral and vertical movements of the Earth's crust. These movements include faulting, tilting, folding, and warping. Some of
544-410: A cycle of states of its working body. The engine takes in a quantity of heat Q 1 from a hot reservoir and passes out a lesser quantity of waste heat Q 2 < 0 to a cold reservoir. The net heat energy absorbed by the working body is passed, as thermodynamic work, to a work reservoir, and is considered to be the output of the engine. The cycle is imagined to run so slowly that at each point of
680-474: A fish habitat. There are also basking platforms for turtles on the lake. Lake Chillisquaque is dammed by an earth-fill dam known as the Lake Chillisquaque Dam. Located on the southern side of the lake, the dam is 2,000 feet (610 m) long and 54 feet (16 m) high. The dam is 12 feet (3.7 m) wide at its highest point and the top of the dam forms an access road. The inner part of
816-402: A fixed volume and mass of an ideal gas is directly proportional to its temperature. Some natural gases show so nearly ideal properties over suitable temperature range that they can be used for thermometry; this was important during the development of thermodynamics and is still of practical importance today. The ideal gas thermometer is, however, not theoretically perfect for thermodynamics. This
952-402: A form of organic lake. They form where a buildup of partly decomposed plant material in a wet environment leaves the vegetated surface below the water table for a sustained period of time. They are often low in nutrients and mildly acidic, with bottom waters low in dissolved oxygen. Artificial lakes or anthropogenic lakes are large waterbodies created by human activity . They can be formed by
1088-488: A gas can be calculated theoretically from the gas's molecular character, temperature, pressure, and the Boltzmann constant. For a gas of known molecular character and pressure, this provides a relation between temperature and the Boltzmann constant. Those quantities can be known or measured more precisely than can the thermodynamic variables that define the state of a sample of water at its triple point. Consequently, taking
1224-538: A higher perimeter to area ratio than other lake types. These form where sediment from a tributary blocks the main river. These form where sediment from the main river blocks a tributary, usually in the form of a levee . Lakes formed by other processes responsible for floodplain basin creation. During high floods they are flushed with river water. There are four types: 1. Confluent floodplain lake, 2. Contrafluent-confluent floodplain lake, 3. Contrafluent floodplain lake, 4. Profundal floodplain lake. A solution lake
1360-510: A hypolimnion; accordingly, very shallow lakes are excluded from this classification system. Based upon their thermal stratification, lakes are classified as either holomictic , with a uniform temperature and density from top to bottom at a given time of year, or meromictic , with layers of water of different temperature and density that do not intermix. The deepest layer of water in a meromictic lake does not contain any dissolved oxygen so there are no living aerobic organisms . Consequently,
1496-428: A lake consists of a large area of standing water that occupies an extensive closed depression in limestone, it is also called a karst lake . Smaller solution lakes that consist of a body of standing water in a closed depression within a karst region are known as karst ponds. Limestone caves often contain pools of standing water, which are known as underground lakes . Classic examples of solution lakes are abundant in
SECTION 10
#17328016825081632-470: A large number of studies agree that small ponds are much more abundant than large lakes. For example, one widely cited study estimated that Earth has 304 million lakes and ponds, and that 91% of these are 1 hectare (2.5 acres) or less in area. Despite the overwhelming abundance of ponds, almost all of Earth's lake water is found in fewer than 100 large lakes; this is because lake volume scales superlinearly with lake area. Extraterrestrial lakes exist on
1768-406: A linear relation between their numerical scale readings, but it does require that the relation between their numerical readings shall be strictly monotonic . A definite sense of greater hotness can be had, independently of calorimetry , of thermodynamics, and of properties of particular materials, from Wien's displacement law of thermal radiation : the temperature of a bath of thermal radiation
1904-415: A loss of heat from a closed system, without phase change, without change of volume, and without a change in external force fields acting on it, decreases its temperature. While for bodies in their own thermodynamic equilibrium states, the notion of temperature requires that all empirical thermometers must agree as to which of two bodies is the hotter or that they are at the same temperature, this requirement
2040-489: A natural outflow and lose water solely by evaporation or underground seepage, or both. These are termed endorheic lakes. Many lakes are artificial and are constructed for hydroelectric power generation, aesthetic purposes, recreational purposes, industrial use, agricultural use, or domestic water supply . The number of lakes on Earth is undetermined because most lakes and ponds are very small and do not appear on maps or satellite imagery . Despite this uncertainty,
2176-485: A reference temperature at the triple point of water, the numerical value of which is defined by measurements using the aforementioned internationally agreed Kelvin scale. Many scientific measurements use the Kelvin temperature scale (unit symbol: K), named in honor of the physicist who first defined it . It is an absolute scale. Its numerical zero point, 0 K , is at the absolute zero of temperature. Since May 2019,
2312-524: A reference temperature. It is known as the Kelvin scale , widely used in science and technology. The kelvin (the unit name is spelled with a lower-case 'k') is the unit of temperature in the International System of Units (SI). The temperature of a body in a state of thermodynamic equilibrium is always positive relative to absolute zero. Besides the internationally agreed Kelvin scale, there
2448-403: A result of meandering. The slow-moving river forms a sinuous shape as the outer side of bends are eroded away more rapidly than the inner side. Eventually a horseshoe bend is formed and the river cuts through the narrow neck. This new passage then forms the main passage for the river and the ends of the bend become silted up, thus forming a bow-shaped lake. Their crescent shape gives oxbow lakes
2584-535: A result of the 1959 Hebgen Lake earthquake . Most landslide lakes disappear in the first few months after formation, but a landslide dam can burst suddenly at a later stage and threaten the population downstream when the lake water drains out. In 1911, an earthquake triggered a landslide that blocked a deep valley in the Pamir Mountains region of Tajikistan , forming the Sarez Lake . The Usoi Dam at
2720-613: A single green sunfish . An electrofishing survey done by the Pennsylvania Fish and Boat Commission on Lake Chillisquaque discovered 54 walleyes from 5 to 23 inches (13 to 58 cm) long and 48 largemouth bass from 8 to 18 inches (20 to 46 cm). Twelve tree species have been observed near Lake Chillisquaque. These include two oak species, two maple spaces, red elm , boxelder , shagbark hickory , black tupelo , American basswood , eastern hop-hornbeam , black ash , and musclewood . Ten shrub species also grow near
2856-462: A spatially varying local property in that body, and this is because the temperature is an intensive variable. Temperature is a measure of a quality of a state of a material. The quality may be regarded as a more abstract entity than any particular temperature scale that measures it, and is called hotness by some writers. The quality of hotness refers to the state of material only in a particular locality, and in general, apart from bodies held in
SECTION 20
#17328016825082992-551: A species being all alike. It explains macroscopic phenomena through the classical mechanics of the microscopic particles. The equipartition theorem of kinetic theory asserts that each classical degree of freedom of a freely moving particle has an average kinetic energy of k B T /2 where k B denotes the Boltzmann constant . The translational motion of the particle has three degrees of freedom, so that, except at very low temperatures where quantum effects predominate,
3128-415: A specific intensive variable. An example is a diathermic wall that is permeable only to heat; the intensive variable for this case is temperature. When the two bodies have been connected through the specifically permeable wall for a very long time, and have settled to a permanent steady state, the relevant intensive variables are equal in the two bodies; for a diathermal wall, this statement is sometimes called
3264-400: A steady state of thermodynamic equilibrium, hotness varies from place to place. It is not necessarily the case that a material in a particular place is in a state that is steady and nearly homogeneous enough to allow it to have a well-defined hotness or temperature. Hotness may be represented abstractly as a one-dimensional manifold . Every valid temperature scale has its own one-to-one map into
3400-435: A system undergoing a first-order phase change such as the melting of ice, as a closed system receives heat, without a change in its volume and without a change in external force fields acting on it, its temperature rises. For a system undergoing such a phase change so slowly that departure from thermodynamic equilibrium can be neglected, its temperature remains constant as the system is supplied with latent heat . Conversely,
3536-422: A variation in density because of thermal gradients. Stratification can also result from a density variation caused by gradients in salinity. In this case, the hypolimnion and epilimnion are separated not by a thermocline but by a halocline , which is sometimes referred to as a chemocline . Lakes are informally classified and named according to the seasonal variation in their lake level and volume. Some of
3672-511: Is proportional , by a universal constant, to the frequency of the maximum of its frequency spectrum ; this frequency is always positive, but can have values that tend to zero . Thermal radiation is initially defined for a cavity in thermodynamic equilibrium. These physical facts justify a mathematical statement that hotness exists on an ordered one-dimensional manifold . This is a fundamental character of temperature and thermometers for bodies in their own thermodynamic equilibrium. Except for
3808-443: Is sag ponds . Volcanic lakes are lakes that occupy either local depressions, e.g. craters and maars , or larger basins, e.g. calderas , created by volcanism . Crater lakes are formed in volcanic craters and calderas, which fill up with precipitation more rapidly than they empty via either evaporation, groundwater discharge, or a combination of both. Sometimes the latter are called caldera lakes, although often no distinction
3944-611: Is a dimictic lake . The concentration of suspended solids in Lake Chillisquaque ranges from less than 2 to 58 milligrams per liter. The concentration of water hardness is between 54 and 78 milligrams per liter. It experiences agricultural runoff due to the presence of large tracts of agricultural land near the lake. The concentration of hydrogen ions in the waters of Lake Chillisquaque ranges from 0.00011 to 0.00031 milligrams per liter. The concentration of dissolved oxygen ranges from 0.1 to 10.8 milligrams per liter and
4080-403: Is a lake occupying a basin formed by surface dissolution of bedrock. In areas underlain by soluble bedrock, its solution by precipitation and percolating water commonly produce cavities. These cavities frequently collapse to form sinkholes that form part of the local karst topography . Where groundwater lies near the grounds surface, a sinkhole will be filled water as a solution lake. If such
4216-604: Is also a thermodynamic temperature scale , invented by Lord Kelvin , also with its numerical zero at the absolute zero of temperature, but directly relating to purely macroscopic thermodynamic concepts, including the macroscopic entropy , though microscopically referable to the Gibbs statistical mechanical definition of entropy for the canonical ensemble , that takes interparticle potential energy into account, as well as independent particle motion so that it can account for measurements of temperatures near absolute zero. This scale has
Lake Chillisquaque - Misplaced Pages Continue
4352-750: Is also forbidden in Goose Cove year round. The only area for boating access on the lake is on the eastern side of the lake, at the Heron Cove Boat Access Area. The paddling and running stages of the Chilli Challenge triathlon are on Lake Chillisquaque and the Chillisuagi Trail, respectively. Lake Chillisquaque is surrounded by a thousand-acre nature preserve known as the Montour Preserve, which
4488-531: Is also owned by the PPL. A 148-acre wildlife refuge is also located near the lake. A pair of hiking trails known as the Chillisuagi Trail and the Ridgefield Point Trail circumnavigate the lake. Their combined length is 4.8 miles (7.7 km). The latter trail is not blazed . The Chillisuagi Trail is wide and fairly flat for part of its length, but is hillier near Goose Cove. On the eastern side of
4624-537: Is also used for recreation. As is typical of manmade lakes, however, this use of the lake only started several years after its creation. One person drowned in a boating accident on February 16, 2006, and there was another accidental death in April 2011. A total of approximately 200 bird species have been observed on or near Lake Chillisquaque, which has been described as "a mecca for migrating birds". Numerous species, including more than 50 species of waterfowl pass by
4760-409: Is an intensive variable because it is equal to a differential coefficient of one extensive variable with respect to another, for a given body. It thus has the dimensions of a ratio of two extensive variables. In thermodynamics, two bodies are often considered as connected by contact with a common wall, which has some specific permeability properties. Such specific permeability can be referred to
4896-424: Is an often naturally occurring, relatively large and fixed body of water on or near the Earth's surface. It is localized in a basin or interconnected basins surrounded by dry land . Lakes lie completely on land and are separate from the ocean , although they may be connected with the ocean by rivers . Lakes, as with other bodies of water , are part of the water cycle , the processes by which water moves around
5032-518: Is arbitrary, and an alternate, less widely used absolute temperature scale exists called the Rankine scale , made to be aligned with the Fahrenheit scale as Kelvin is with Celsius. The thermodynamic definition of temperature is due to Kelvin. It is framed in terms of an idealized device called a Carnot engine , imagined to run in a fictive continuous cycle of successive processes that traverse
5168-454: Is because the entropy of an ideal gas at its absolute zero of temperature is not a positive semi-definite quantity, which puts the gas in violation of the third law of thermodynamics. In contrast to real materials, the ideal gas does not liquefy or solidify, no matter how cold it is. Alternatively thinking, the ideal gas law, refers to the limit of infinitely high temperature and zero pressure; these conditions guarantee non-interactive motions of
5304-468: Is dammed behind an ice shelf that is attached to the coastline. They are mostly found in Antarctica. Fluvial (or riverine) lakes are lakes produced by running water. These lakes include plunge pool lakes , fluviatile dams and meander lakes. The most common type of fluvial lake is a crescent-shaped lake called an oxbow lake due to the distinctive curved shape. They can form in river valleys as
5440-421: Is dammed on its southern side by the Lake Chillisquaque Dam, which is 2,000 feet (610 m) long and 54 feet (16 m) high. The metals with the highest concentrations are calcium and iron . Nonmetals such as nitrogen and phosphorus are also found in the lake. It experiences agricultural runoff as well. Lake Chillisquaque is owned by Pennsylvania energy company Talen . It was constructed in 1972 and
5576-547: Is directly proportional to the temperature of the black body; this is known as Wien's displacement law and has a theoretical explanation in Planck's law and the Bose–Einstein law . Measurement of the spectrum of noise-power produced by an electrical resistor can also provide accurate temperature measurement. The resistor has two terminals and is in effect a one-dimensional body. The Bose-Einstein law for this case indicates that
Lake Chillisquaque - Misplaced Pages Continue
5712-436: Is disregarded. In an ideal gas , and in other theoretically understood bodies, the Kelvin temperature is defined to be proportional to the average kinetic energy of non-interactively moving microscopic particles, which can be measured by suitable techniques. The proportionality constant is a simple multiple of the Boltzmann constant. If molecules, atoms, or electrons are emitted from material and their velocities are measured,
5848-434: Is important in all fields of natural science , including physics , chemistry , Earth science , astronomy , medicine , biology , ecology , material science , metallurgy , mechanical engineering and geography as well as most aspects of daily life. Many physical processes are related to temperature; some of them are given below: Temperature scales need two values for definition: the point chosen as zero degrees and
5984-452: Is made. An example is Crater Lake in Oregon , in the caldera of Mount Mazama . The caldera was created in a massive volcanic eruption that led to the subsidence of Mount Mazama around 4860 BCE. Other volcanic lakes are created when either rivers or streams are dammed by lava flows or volcanic lahars . The basin which is now Malheur Lake , Oregon was created when a lava flow dammed
6120-555: Is named after Middle Branch Chillisquaque Creek, which in turn is derived from a chillisuagi , a Native American word for "song of the wild goose". It was built in 1972 by the PPL , with the dam having been constructed in 1971. The lake is also owned by this organization. The lake's original purpose was as a secondary supply of cooling water for the Montour Power Plant. Still used as a supply of cooling water in emergencies, it
6256-455: Is not safe for bodies that are in steady states though not in thermodynamic equilibrium. It can then well be that different empirical thermometers disagree about which is hotter, and if this is so, then at least one of the bodies does not have a well-defined absolute thermodynamic temperature. Nevertheless, any one given body and any one suitable empirical thermometer can still support notions of empirical, non-absolute, hotness, and temperature, for
6392-418: Is one of the seven base units in the International System of Units (SI). Absolute zero , i.e., zero kelvin or −273.15 °C, is the lowest point in the thermodynamic temperature scale. Experimentally, it can be approached very closely but not actually reached, as recognized in the third law of thermodynamics . It would be impossible to extract energy as heat from a body at that temperature. Temperature
6528-551: Is only one degree of freedom left to arbitrary choice, rather than two as in relative scales. For the Kelvin scale since May 2019, by international convention, the choice has been made to use knowledge of modes of operation of various thermometric devices, relying on microscopic kinetic theories about molecular motion. The numerical scale is settled by a conventional definition of the value of the Boltzmann constant , which relates macroscopic temperature to average microscopic kinetic energy of particles such as molecules. Its numerical value
6664-419: Is said to prevail throughout the body. It makes good sense, for example, to say of the extensive variable U , or of the extensive variable S , that it has a density per unit volume or a quantity per unit mass of the system, but it makes no sense to speak of the density of temperature per unit volume or quantity of temperature per unit mass of the system. On the other hand, it makes no sense to speak of
6800-476: Is the only reservoir in Montour County. Lake Chillisquaque is surrounded by forested hills and agricultural land. The Muncy Hills are situated to the north of the lake. Large parts of Lake Chillisquaque are fairly shallow. Most of Heron Cove is less than 10 feet (3.0 m) deep and a large area near the lake's boat ramp is approximately 20 feet (6.1 m) deep. The deepest parts of the lake, near
6936-429: Is unknown but is estimated to be at least 2 million. Finland has 168,000 lakes of 500 square metres (5,400 sq ft) in area, or larger, of which 57,000 are large (10,000 square metres (110,000 sq ft) or larger). Most lakes have at least one natural outflow in the form of a river or stream , which maintain a lake's average level by allowing the drainage of excess water. Some lakes do not have
SECTION 50
#17328016825087072-572: The Boltzmann constant , to the Maxwell–Boltzmann distribution , and to the Boltzmann statistical mechanical definition of entropy , as distinct from the Gibbs definition, for independently moving microscopic particles, disregarding interparticle potential energy, by international agreement, a temperature scale is defined and said to be absolute because it is independent of the characteristics of particular thermometric substances and thermometer mechanisms. Apart from absolute zero, it does not have
7208-525: The Boltzmann constant . That constant refers to chosen kinds of motion of microscopic particles in the constitution of the body. In those kinds of motion, the particles move individually, without mutual interaction. Such motions are typically interrupted by inter-particle collisions, but for temperature measurement, the motions are chosen so that, between collisions, the non-interactive segments of their trajectories are known to be accessible to accurate measurement. For this purpose, interparticle potential energy
7344-759: The Malheur River . Among all lake types, volcanic crater lakes most closely approximate a circular shape. Glacial lakes are lakes created by the direct action of glaciers and continental ice sheets. A wide variety of glacial processes create enclosed basins. As a result, there are a wide variety of different types of glacial lakes and it is often difficult to define clear-cut distinctions between different types of glacial lakes and lakes influenced by other activities. The general types of glacial lakes that have been recognized are lakes in direct contact with ice, glacially carved rock basins and depressions, morainic and outwash lakes, and glacial drift basins. Glacial lakes are
7480-554: The Proto-Indo-European root * leǵ- ('to leak, drain'). Cognates include Dutch laak ('lake, pond, ditch'), Middle Low German lāke ('water pooled in a riverbed, puddle') as in: de:Wolfslake , de:Butterlake , German Lache ('pool, puddle'), and Icelandic lækur ('slow flowing stream'). Also related are the English words leak and leach . There is considerable uncertainty about defining
7616-399: The density of water varies with temperature, with a maximum at +4 degrees Celsius, thermal stratification is an important physical characteristic of a lake that controls the fauna and flora , sedimentation, chemistry, and other aspects of individual lakes. First, the colder, denser water typically forms a layer near the bottom, which is called the hypolimnion . Second, normally overlying
7752-464: The zeroth law of thermodynamics says that they all measure the same quality. This means that for a body in its own state of internal thermodynamic equilibrium, every correctly calibrated thermometer, of whatever kind, that measures the temperature of the body, records one and the same temperature. For a body that is not in its own state of internal thermodynamic equilibrium, different thermometers can record different temperatures, depending respectively on
7888-483: The 100-degree interval. Since the standardization of the kelvin in the International System of Units, it has subsequently been redefined in terms of the equivalent fixing points on the Kelvin scale, so that a temperature increment of one degree Celsius is the same as an increment of one kelvin, though numerically the scales differ by an exact offset of 273.15. The Fahrenheit scale is in common use in
8024-409: The Boltzmann constant. Taking the value of the Boltzmann constant as a primarily defined reference of exactly defined value, a measurement of the speed of sound can provide a more precise measurement of the temperature of the gas. It is possible to measure the average kinetic energy of constituent microscopic particles if they are allowed to escape from the bulk of the system, through a small hole in
8160-597: The Earth by extraterrestrial objects (either meteorites or asteroids ). Examples of meteorite lakes are Lonar Lake in India, Lake El'gygytgyn in northeast Siberia, and the Pingualuit crater lake in Quebec, Canada. As in the cases of El'gygytgyn and Pingualuit, meteorite lakes can contain unique and scientifically valuable sedimentary deposits associated with long records of paleoclimatic changes. In addition to
8296-420: The Earth. Most lakes are freshwater and account for almost all the world's surface freshwater, but some are salt lakes with salinities even higher than that of seawater . Lakes vary significantly in surface area and volume of water. Lakes are typically larger and deeper than ponds , which are also water-filled basins on land, although there are no official definitions or scientific criteria distinguishing
SECTION 60
#17328016825088432-760: The International System of Units defined a scale and unit for the kelvin as a thermodynamic temperature , by using the reliably reproducible temperature of the triple point of water as a second reference point, the first reference point being 0 K at absolute zero. Historically, the temperature of the triple point of water was defined as exactly 273.16 K. Today it is an empirically measured quantity. The freezing point of water at sea-level atmospheric pressure occurs at very close to 273.15 K ( 0 °C ). There are various kinds of temperature scale. It may be convenient to classify them as empirically and theoretically based. Empirical temperature scales are historically older, while theoretically based scales arose in
8568-571: The Lusatian Lake District, Germany. In India, Sudarshana Lake is a historical artificial lake located in the semi-arid region of Girnar, Gujarat, originally constructed during the reign of Chandragupta Maurya. See: List of notable artificial lakes in the United States Meteorite lakes, also known as crater lakes (not to be confused with volcanic crater lakes ), are created by catastrophic impacts with
8704-499: The Pennsylvania Fish and Boat Commission showed that the most common fish species in Lake Chillisquaque was the black crappie , of which 717 individuals were observed. These ranged between 3 inches (7.6 cm) and 19 inches (48 cm) long. 290 golden shiners were also observed in the survey, as were 168 bluegills , which ranged between 2 inches (5.1 cm) and 9 inches (23 cm). 106 walleyes from 7 to 28 inches (18 to 71 cm) were also observed. Less common fish species in
8840-496: The Pennsylvania Fish and Boat Commission. Various trees, shrubs, and herbaceous plants live in the vicinity of the lake as well. The main recreational activities on or near Lake Chillisquaque include fishing, boating, and hiking. The lake is also surrounded by the Montour Preserve, a nature preserve . Lake Chillisquaque is located on Middle Branch Chillisquaque Creek, in Anthony Township . However, other streams feed into
8976-452: The United States. Water freezes at 32 °F and boils at 212 °F at sea-level atmospheric pressure. At the absolute zero of temperature, no energy can be removed from matter as heat, a fact expressed in the third law of thermodynamics . At this temperature, matter contains no macroscopic thermal energy, but still has quantum-mechanical zero-point energy as predicted by the uncertainty principle , although this does not enter into
9112-527: The area. A severe failure of the dam is considered by the Multi-jurisdictional Hazard Mitigation Plan to be the most dangerous threat to Montour County. The water temperature of Lake Chillisquaque ranges from 10.4 °C (50.7 °F) to 28.7 °C (83.7 °F) in the summer. The specific conductance of the lake ranges from 135 to 202 micro-siemens per centimeter. The lake's pH is between 6.6 and 9.3. It
9248-412: The average translational kinetic energy of a freely moving particle in a system with temperature T will be 3 k B T /2 . Molecules, such as oxygen (O 2 ), have more degrees of freedom than single spherical atoms: they undergo rotational and vibrational motions as well as translations. Heating results in an increase of temperature due to an increase in the average translational kinetic energy of
9384-866: The base of the valley has remained in place for more than 100 years but the terrain below the lake is in danger of a catastrophic flood if the dam were to fail during a future earthquake. Tal-y-llyn Lake in north Wales is a landslide lake dating back to the last glaciation in Wales some 20000 years ago. Aeolian lakes are produced by wind action . These lakes are found mainly in arid environments, although some aeolian lakes are relict landforms indicative of arid paleoclimates . Aeolian lakes consist of lake basins dammed by wind-blown sand; interdunal lakes that lie between well-oriented sand dunes ; and deflation basins formed by wind action under previously arid paleoenvironments. Moses Lake in Washington , United States,
9520-411: The body is described by stating its entropy S as a function of its internal energy U , and other state variables V , N , with S = S ( U , V , N ) , then the reciprocal of the temperature is equal to the partial derivative of the entropy with respect to the internal energy: The above definition, equation (1), of the absolute temperature, is due to Kelvin. It refers to systems closed to
9656-483: The boiling point of mercury , a mercury-in-glass thermometer is impracticable. Most materials expand with temperature increase, but some materials, such as water, contract with temperature increase over some specific range, and then they are hardly useful as thermometric materials. A material is of no use as a thermometer near one of its phase-change temperatures, for example, its boiling-point. In spite of these limitations, most generally used practical thermometers are of
9792-719: The concentration of carbon dioxide in the lake is between 0.1 and 41 milligrams per liter. There are between 3.0 and 5.8 milligrams per liter of organic carbon in the lake. The total concentration of nitrogen in the lake's waters ranges from 0.34 to 3.1 milligrams per liter, while the concentration of ammonia ranges from less than 0.026 to 3.21 milligrams per liter. The phosphorus concentration ranges from 0.015 to 0.172 milligrams per liter. The waters of Lake Chillisquaque also contain varying amounts of metals . These include calcium , whose concentration ranges from 15.6 to 20.9 milligrams per liter and magnesium , whose concentration ranges from 3.7 to 6.2 milligrams per liter. Additionally,
9928-486: The concentration of copper is less than four milligrams per liter and the lead concentration is less than one microgram per liter. The lake's iron concentration ranges from 30 to 13,000 micrograms per liter, its manganese concentration ranges from less than 2 to 4620 micrograms per liter, its zinc concentration ranges from less than 10 to 57 micrograms per liter. The lake's concentration of aluminum ranges from 200 to 1400 micrograms per liter. The light intensity on
10064-408: The constituent molecules. The magnitude of the kelvin is now defined in terms of kinetic theory, derived from the value of the Boltzmann constant . Kinetic theory provides a microscopic account of temperature for some bodies of material, especially gases, based on macroscopic systems' being composed of many microscopic particles, such as molecules and ions of various species, the particles of
10200-501: The constituent particles of matter, so that they have a limiting specific heat of zero for zero temperature, according to the third law of thermodynamics. Nevertheless, a thermodynamic temperature does in fact have a definite numerical value that has been arbitrarily chosen by tradition and is dependent on the property of particular materials; it is simply less arbitrary than relative "degrees" scales such as Celsius and Fahrenheit . Being an absolute scale with one fixed point (zero), there
10336-410: The containing wall. The spectrum of velocities has to be measured, and the average calculated from that. It is not necessarily the case that the particles that escape and are measured have the same velocity distribution as the particles that remain in the bulk of the system, but sometimes a good sample is possible. Temperature is one of the principal quantities in the study of thermodynamics . Formerly,
10472-915: The courses of mature rivers, where a river channel has widened over a basin formed by eroded floodplains and wetlands . Some lakes are found in caverns underground . Some parts of the world have many lakes formed by the chaotic drainage patterns left over from the last ice age . All lakes are temporary over long periods of time , as they will slowly fill in with sediments or spill out of the basin containing them. Artificially controlled lakes are known as reservoirs , and are usually constructed for industrial or agricultural use, for hydroelectric power generation, for supplying domestic drinking water , for ecological or recreational purposes, or for other human activities. The word lake comes from Middle English lake ('lake, pond, waterway'), from Old English lacu ('pond, pool, stream'), from Proto-Germanic * lakō ('pond, ditch, slow moving stream'), from
10608-518: The creation of lakes by the disruption of preexisting drainage networks, it also creates within arid regions endorheic basins that contain salt lakes (also called saline lakes). They form where there is no natural outlet, a high evaporation rate and the drainage surface of the water table has a higher-than-normal salt content. Examples of these salt lakes include Great Salt Lake and the Dead Sea . Another type of tectonic lake caused by faulting
10744-426: The cycle the working body is in a state of thermodynamic equilibrium. The successive processes of the cycle are thus imagined to run reversibly with no entropy production . Then the quantity of entropy taken in from the hot reservoir when the working body is heated is equal to that passed to the cold reservoir when the working body is cooled. Then the absolute or thermodynamic temperatures, T 1 and T 2 , of
10880-530: The dam is a silty clay material, while the outside is made of weathered shale . According to the Montour County Multi-jurisdictional Hazard Mitigation Plan, a major failure in the Lake Chillisquaque Dam could cause damage to several nearby communities, such as Strawberry Ridge and Washingtonville. It could also result in a decrease in the output of the Montour Power Plant, causing a brownout in
11016-442: The definition just stated, was printed in 1853, a paper read in 1851. Numerical details were formerly settled by making one of the heat reservoirs a cell at the triple point of water, which was defined to have an absolute temperature of 273.16 K. Nowadays, the numerical value is instead obtained from measurement through the microscopic statistical mechanical international definition, as above. In thermodynamic terms, temperature
11152-472: The definition of absolute temperature. Experimentally, absolute zero can be approached only very closely; it can never be reached (the lowest temperature attained by experiment is 38 pK). Theoretically, in a body at a temperature of absolute zero, all classical motion of its particles has ceased and they are at complete rest in this classical sense. Absolute zero, defined as 0 K , is exactly equal to −273.15 °C , or −459.67 °F . Referring to
11288-622: The difference between lakes and ponds , and neither term has an internationally accepted definition across scientific disciplines or political boundaries. For example, limnologists have defined lakes as water bodies that are simply a larger version of a pond, which can have wave action on the shoreline or where wind-induced turbulence plays a major role in mixing the water column. None of these definitions completely excludes ponds and all are difficult to measure. For this reason, simple size-based definitions are increasingly used to separate ponds and lakes. Definitions for lake range in minimum sizes for
11424-863: The empirically based kind. Especially, it was used for calorimetry , which contributed greatly to the discovery of thermodynamics. Nevertheless, empirical thermometry has serious drawbacks when judged as a basis for theoretical physics. Empirically based thermometers, beyond their base as simple direct measurements of ordinary physical properties of thermometric materials, can be re-calibrated, by use of theoretical physical reasoning, and this can extend their range of adequacy. Theoretically based temperature scales are based directly on theoretical arguments, especially those of kinetic theory and thermodynamics. They are more or less ideally realized in practically feasible physical devices and materials. Theoretically based temperature scales are used to provide calibrating standards for practical empirically based thermometers. In physics,
11560-536: The exception of criterion 3, the others have been accepted or elaborated upon by other hydrology publications. The majority of lakes on Earth are freshwater , and most lie in the Northern Hemisphere at higher latitudes . Canada , with a deranged drainage system , has an estimated 31,752 lakes larger than 3 square kilometres (1.2 sq mi) in surface area. The total number of lakes in Canada
11696-455: The formulation of the first law of thermodynamics. Carnot had no sound understanding of heat and no specific concept of entropy. He wrote of 'caloric' and said that all the caloric that passed from the hot reservoir was passed into the cold reservoir. Kelvin wrote in his 1848 paper that his scale was absolute in the sense that it was defined "independently of the properties of any particular kind of matter". His definitive publication, which sets out
11832-494: The hotness manifold. When two systems in thermal contact are at the same temperature no heat transfers between them. When a temperature difference does exist heat flows spontaneously from the warmer system to the colder system until they are in thermal equilibrium . Such heat transfer occurs by conduction or by thermal radiation. Experimental physicists, for example Galileo and Newton , found that there are indefinitely many empirical temperature scales . Nevertheless,
11968-422: The hypolimnion is a transition zone known as the metalimnion . Finally, overlying the metalimnion is a surface layer of warmer water with a lower density, called the epilimnion . This typical stratification sequence can vary widely, depending on the specific lake or the time of year, or a combination of both. The classification of lakes by thermal stratification presupposes lakes with sufficient depth to form
12104-907: The intentional damming of rivers and streams, rerouting of water to inundate a previously dry basin , or the deliberate filling of abandoned excavation pits by either precipitation runoff , ground water , or a combination of both. Artificial lakes may be used as storage reservoirs that provide drinking water for nearby settlements , to generate hydroelectricity , for flood management , for supplying agriculture or aquaculture , or to provide an aquatic sanctuary for parks and nature reserves . The Upper Silesian region of southern Poland contains an anthropogenic lake district consisting of more than 4,000 water bodies created by human activity. The diverse origins of these lakes include: reservoirs retained by dams, flooded mines, water bodies formed in subsidence basins and hollows, levee ponds, and residual water bodies following river regulation. Same for
12240-419: The internal energy at a point, while when local thermodynamic equilibrium prevails, it makes good sense to speak of the temperature at a point. Consequently, the temperature can vary from point to point in a medium that is not in global thermodynamic equilibrium, but in which there is local thermodynamic equilibrium. Thus, when local thermodynamic equilibrium prevails in a body, the temperature can be regarded as
12376-409: The internationally agreed conventional temperature scale is called the Kelvin scale. It is calibrated through the internationally agreed and prescribed value of the Boltzmann constant, referring to motions of microscopic particles, such as atoms, molecules, and electrons, constituent in the body whose temperature is to be measured. In contrast with the thermodynamic temperature scale invented by Kelvin,
12512-471: The karst regions at the Dalmatian coast of Croatia and within large parts of Florida . A landslide lake is created by the blockage of a river valley by either mudflows , rockslides , or screes . Such lakes are most common in mountainous regions. Although landslide lakes may be large and quite deep, they are typically short-lived. An example of a landslide lake is Quake Lake , which formed as
12648-453: The kelvin has been defined through particle kinetic theory , and statistical mechanics. In the International System of Units (SI), the magnitude of the kelvin is defined in terms of the Boltzmann constant , the value of which is defined as fixed by international convention. Since May 2019, the magnitude of the kelvin is defined in relation to microscopic phenomena, characterized in terms of statistical mechanics. Previously, but since 1954,
12784-423: The lake as well. It is 11 miles (18 km) north of Danville and 4 miles (6.4 km) north of Washingtonville . The lake can be accessed via Pennsylvania Route 44 and Pennsylvania Route 54 . The nearest road is Preserve Road/State Route 1006. The lake has an elevation of 567 feet (173 m). With a surface area of 165 acres, the lake is the largest of 82 bodies of water in Montour County. Lake Chillisquaque
12920-798: The lake during migration in March. These include ducks , geese , swans , and other species. Shorebirds are also common on the lake. The Montour Preserve and the lake are in the Central Susquehanna Wild Pheasant Recovery Area. A sizable population of ringneck pheasants can be found near the lake. Additionally, numerous species of fish are stocked in Lake Chillisquaque by the Pennsylvania Fish and Boat Commission . These include bullhead catfish , largemouth bass , yellow perch , northern pike , and several other species. A 2005 trapnet survey by
13056-487: The lake include yellow perch, of which 83 specimens between 3 inches (7.6 cm) and 14 inches (36 cm) long were observed; pumpkinseeds , 21 of which were observed; northern pikes, 19 of which between 15 inches (38 cm) and 35 inches (89 cm) long were observed; and white suckers , 16 of which were observed. Additionally, eight quillback carpsuckers , five largemouth bass, four rock bass , three bluntnose minnows , three common carp , two fathead minnows , and
13192-548: The lake level. Temperature Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade ), the Fahrenheit scale (°F), and the Kelvin scale (K), with the third being used predominantly for scientific purposes. The kelvin
13328-400: The lake vary at different times of the year and also at different depths within the lake. Due to the presence of light attenuation in the lake, light plays a role in determining which species of cyanobacteria inhabit it. In September 2009, the most common type of microbe on the surface of Lake Chillisquaque was Oscillatoria , which made up approximately 75 percent of the total. Raphidiopsis
13464-412: The lake's dam, are 40 feet (12 m) deep. Lake Chillisquaque has a number of coves , including Heron Cove and the nearby Jellyfish Cove. Goose Cove is another cove on the lake. It is located in the lake's northwestern section. There are numerous other smaller coves and bays . Numerous objects, including tire reefs and cement blocks, have been placed in Lake Chillisquaque to increase its suitability as
13600-553: The lake, the trail stays close to the shoreline, but it passes through fields , meadows , and forests on the western side. The scenery on Lake Chillisquauque is described as "good to very good" by Jeff Mitchell in his book Paddling Pennsylvania: Canoeing and Kayaking the Keystone State's Rivers and Lakes . The lake is one of 18 lakes in Pennsylvania with Panfish Enhancement Special Regulations. Lake A lake
13736-499: The lake. These include three dogwood species, two holly species, multiflora rose , Morrow's honeysuckle , speckled alder , spicebush , and mayberry . Eighteen species of herbs live on the lake, as well. Five of these species are sedges . Cattails and beds of grass grow along the shores of Lake Chillisquaque. Additionally, a sizable population of Rotala ramosior grows on the lake. Various types of cyanobacteria inhabit Lake Chillisquaque. The specific genera that inhabit
13872-657: The largest lakes on Earth are rift lakes occupying rift valleys, e.g. Central African Rift lakes and Lake Baikal . Other well-known tectonic lakes, Caspian Sea , the Sea of Aral , and other lakes from the Pontocaspian occupy basins that have been separated from the sea by the tectonic uplift of the sea floor above the ocean level. Often, the tectonic action of crustal extension has created an alternating series of parallel grabens and horsts that form elongate basins alternating with mountain ranges. Not only does this promote
14008-528: The layers of sediment at the bottom of a meromictic lake remain relatively undisturbed, which allows for the development of lacustrine deposits . In a holomictic lake, the uniformity of temperature and density allows the lake waters to completely mix. Based upon thermal stratification and frequency of turnover, holomictic lakes are divided into amictic lakes , cold monomictic lakes , dimictic lakes , warm monomictic lakes, polymictic lakes , and oligomictic lakes. Lake stratification does not always result from
14144-560: The level of a lake are controlled by the difference between the input and output compared to the total volume of the lake. Significant input sources are precipitation onto the lake, runoff carried by streams and channels from the lake's catchment area, groundwater channels and aquifers, and artificial sources from outside the catchment area. Output sources are evaporation from the lake, surface and groundwater flows, and any extraction of lake water by humans. As climate conditions and human water requirements vary, these will create fluctuations in
14280-428: The magnitude of the kelvin was defined in thermodynamic terms, but nowadays, as mentioned above, it is defined in terms of kinetic theory. The thermodynamic temperature is said to be absolute for two reasons. One is that its formal character is independent of the properties of particular materials. The other reason is that its zero is, in a sense, absolute, in that it indicates absence of microscopic classical motion of
14416-427: The magnitudes of the incremental unit of temperature. The Celsius scale (°C) is used for common temperature measurements in most of the world. It is an empirical scale that developed historically, which led to its zero point 0 °C being defined as the freezing point of water , and 100 °C as the boiling point of water, both at atmospheric pressure at sea level. It was called a centigrade scale because of
14552-481: The mainland; lakes cut off from larger lakes by a bar; or lakes divided by the meeting of two spits. Organic lakes are lakes created by the actions of plants and animals. On the whole they are relatively rare in occurrence and quite small in size. In addition, they typically have ephemeral features relative to the other types of lakes. The basins in which organic lakes occur are associated with beaver dams, coral lakes, or dams formed by vegetation. Peat lakes are
14688-419: The mechanisms of operation of the thermometers. For experimental physics, hotness means that, when comparing any two given bodies in their respective separate thermodynamic equilibria , any two suitably given empirical thermometers with numerical scale readings will agree as to which is the hotter of the two given bodies, or that they have the same temperature. This does not require the two thermometers to have
14824-512: The microbes 15 feet (4.6 m) under the surface of Lake Chillisquaque were of the genus Oscillatoria in September 2009. Slightly more than 10 percent each of the microbes were of the genera Xylophilus and Verrucomicrobium . In May 2010, slightly less than 40 percent of the microbes in the depths of the lake were of the genus Dolichospermum . The genera Synechococcus , Navicula , and Xylophilus each made up approximately 20 percent of
14960-432: The microbes. In July 2010, nearly 85 percent of the microbes were of the genus Xylophilus and less than 10 percent were of the genus Oscillatoria . Fishing, including ice fishing , is a common pastime on Lake Chillisquaque. Fishing and boating are permitted on the lake at any time of day, although boats fueled by gasoline are forbidden. Boating of any kind is also forbidden annually between March 15 and April 30 and
15096-444: The middle of the nineteenth century. Empirically based temperature scales rely directly on measurements of simple macroscopic physical properties of materials. For example, the length of a column of mercury, confined in a glass-walled capillary tube, is dependent largely on temperature and is the basis of the very useful mercury-in-glass thermometer. Such scales are valid only within convenient ranges of temperature. For example, above
15232-424: The mode of origin, lakes have been named and classified according to various other important factors such as thermal stratification , oxygen saturation, seasonal variations in lake volume and water level, salinity of the water mass, relative seasonal permanence, degree of outflow, and so on. The names used by the lay public and in the scientific community for different types of lakes are often informally derived from
15368-435: The molecules. Heating will also cause, through equipartitioning , the energy associated with vibrational and rotational modes to increase. Thus a diatomic gas will require more energy input to increase its temperature by a certain amount, i.e. it will have a greater heat capacity than a monatomic gas. As noted above, the speed of sound in a gas can be calculated from the gas's molecular character, temperature, pressure, and
15504-485: The moon Titan , which orbits the planet Saturn . The shape of lakes on Titan is very similar to those on Earth. Lakes were formerly present on the surface of Mars, but are now dry lake beds . In 1957, G. Evelyn Hutchinson published a monograph titled A Treatise on Limnology , which is regarded as a landmark discussion and classification of all major lake types, their origin, morphometric characteristics, and distribution. Hutchinson presented in his publication
15640-415: The morphology of the lakes' physical characteristics or other factors. Also, different cultures and regions of the world have their own popular nomenclature. One important method of lake classification is on the basis of thermal stratification, which has a major influence on the animal and plant life inhabiting a lake, and the fate and distribution of dissolved and suspended material in the lake. For example,
15776-406: The most numerous lakes in the world. Most lakes in northern Europe and North America have been either influenced or created by the latest, but not last, glaciation, to have covered the region. Glacial lakes include proglacial lakes , subglacial lakes , finger lakes , and epishelf lakes. Epishelf lakes are highly stratified lakes in which a layer of freshwater, derived from ice and snow melt,
15912-791: The names include: Lakes may be informally classified and named according to the general chemistry of their water mass. Using this classification method, the lake types include: A paleolake (also palaeolake ) is a lake that existed in the past when hydrological conditions were different. Quaternary paleolakes can often be identified on the basis of relict lacustrine landforms, such as relict lake plains and coastal landforms that form recognizable relict shorelines called paleoshorelines . Paleolakes can also be recognized by characteristic sedimentary deposits that accumulated in them and any fossils that might be contained in these sediments. The paleoshorelines and sedimentary deposits of paleolakes provide evidence for prehistoric hydrological changes during
16048-400: The noise-power is directly proportional to the temperature of the resistor and to the value of its resistance and to the noise bandwidth. In a given frequency band, the noise-power has equal contributions from every frequency and is called Johnson noise . If the value of the resistance is known then the temperature can be found. Historically, till May 2019, the definition of the Kelvin scale
16184-562: The organic-rich deposits of pre-Quaternary paleolakes are important either for the thick deposits of oil shale and shale gas contained in them, or as source rocks of petroleum and natural gas . Although of significantly less economic importance, strata deposited along the shore of paleolakes sometimes contain coal seams . Lakes have numerous features in addition to lake type, such as drainage basin (also known as catchment area), inflow and outflow, nutrient content, dissolved oxygen , pollutants , pH , and sedimentation . Changes in
16320-454: The presently conventional Kelvin temperature is not defined through comparison with the temperature of a reference state of a standard body, nor in terms of macroscopic thermodynamics. Apart from the absolute zero of temperature, the Kelvin temperature of a body in a state of internal thermodynamic equilibrium is defined by measurements of suitably chosen of its physical properties, such as have precisely known theoretical explanations in terms of
16456-403: The reservoirs are defined such that The zeroth law of thermodynamics allows this definition to be used to measure the absolute or thermodynamic temperature of an arbitrary body of interest, by making the other heat reservoir have the same temperature as the body of interest. Kelvin's original work postulating absolute temperature was published in 1848. It was based on the work of Carnot, before
16592-453: The spectrum of their velocities often nearly obeys a theoretical law called the Maxwell–Boltzmann distribution , which gives a well-founded measurement of temperatures for which the law holds. There have not yet been successful experiments of this same kind that directly use the Fermi–Dirac distribution for thermometry, but perhaps that will be achieved in the future. The speed of sound in
16728-407: The study by methods of classical irreversible thermodynamics, a body is usually spatially and temporally divided conceptually into 'cells' of small size. If classical thermodynamic equilibrium conditions for matter are fulfilled to good approximation in such a 'cell', then it is homogeneous and a temperature exists for it. If this is so for every 'cell' of the body, then local thermodynamic equilibrium
16864-459: The surface of Lake Chillisquaque is 1200 micro-moles per square meter. 15 feet (4.6 m) below the surface of the lake, the light intensity is only 100 micro-moles per square meter. At this depth, only light wavelengths between 450 and 700 nanometers are visible, with 550-millimeter wavelengths (green light) being the most common. The Sechhi depth of the lake ranges from 1.20 metres (3.9 ft) to 3.80 metres (12.5 ft). Lake Chillisquaque
17000-404: The thermal stratification, as well as the degree and frequency of mixing, has a strong control over the distribution of oxygen within the lake. Professor F.-A. Forel , also referred to as the "Father of limnology", was the first scientist to classify lakes according to their thermal stratification. His system of classification was later modified and improved upon by Hutchinson and Löffler. As
17136-456: The times that they existed. There are two types of paleolake: Paleolakes are of scientific and economic importance. For example, Quaternary paleolakes in semidesert basins are important for two reasons: they played an extremely significant, if transient, role in shaping the floors and piedmonts of many basins; and their sediments contain enormous quantities of geologic and paleontologic information concerning past environments. In addition,
17272-428: The transfer of matter and has a special emphasis on directly experimental procedures. A presentation of thermodynamics by Gibbs starts at a more abstract level and deals with systems open to the transfer of matter; in this development of thermodynamics, the equations (2) and (3) above are actually alternative definitions of temperature. Real-world bodies are often not in thermodynamic equilibrium and not homogeneous. For
17408-641: The two. Lakes are also distinct from lagoons , which are generally shallow tidal pools dammed by sandbars or other material at coastal regions of oceans or large lakes. Most lakes are fed by springs , and both fed and drained by creeks and rivers , but some lakes are endorheic without any outflow, while volcanic lakes are filled directly by precipitation runoffs and do not have any inflow streams. Natural lakes are generally found in mountainous areas (i.e. alpine lakes ), dormant volcanic craters , rift zones and areas with ongoing glaciation . Other lakes are found in depressed landforms or along
17544-428: The value of the Boltzmann constant as a primarily defined reference of exactly defined value, a measurement of the speed of sound can provide a more precise measurement of the temperature of the gas. Measurement of the spectrum of electromagnetic radiation from an ideal three-dimensional black body can provide an accurate temperature measurement because the frequency of maximum spectral radiance of black-body radiation
17680-467: The word pond , and a lesser number of names ending with lake are, in quasi-technical fact, ponds. One textbook illustrates this point with the following: "In Newfoundland, for example, almost every lake is called a pond, whereas in Wisconsin, almost every pond is called a lake." One hydrology book proposes to define the term "lake" as a body of water with the following five characteristics: With
17816-411: The zeroth law of thermodynamics. In particular, when the body is described by stating its internal energy U , an extensive variable, as a function of its entropy S , also an extensive variable, and other state variables V , N , with U = U ( S , V , N ), then the temperature is equal to the partial derivative of the internal energy with respect to the entropy: Likewise, when
17952-421: Was defined to be exactly 273.16 K . Since May 2019, that value has not been fixed by definition but is to be measured through microscopic phenomena, involving the Boltzmann constant, as described above. The microscopic statistical mechanical definition does not have a reference temperature. A material on which a macroscopically defined temperature scale may be based is the ideal gas . The pressure exerted by
18088-617: Was originally a shallow natural lake and an example of a lake basin dammed by wind-blown sand. China's Badain Jaran Desert is a unique landscape of megadunes and elongated interdunal aeolian lakes, particularly concentrated in the southeastern margin of the desert. Shoreline lakes are generally lakes created by blockage of estuaries or by the uneven accretion of beach ridges by longshore and other currents. They include maritime coastal lakes, ordinarily in drowned estuaries; lakes enclosed by two tombolos or spits connecting an island to
18224-403: Was originally created to serve as a supply of cooling water for the Montour Power Plant (a purpose which it still serves), but has also come to be used for recreational purposes. Approximately 200 bird species have been observed on or near the lake and more than 50 species of waterfowl pass by the lake during migration. It is also inhabited by numerous species of fish , some of which are stocked by
18360-411: Was that invented by Kelvin, based on a ratio of quantities of energy in processes in an ideal Carnot engine, entirely in terms of macroscopic thermodynamics. That Carnot engine was to work between two temperatures, that of the body whose temperature was to be measured, and a reference, that of a body at the temperature of the triple point of water. Then the reference temperature, that of the triple point,
18496-440: Was the second most common type, making up approximately 15 percent of the total. In May 2010, approximately 40 percent of the microbes were Navicula and 35 percent were Oscillatoria . Slightly less than 10 percent of the microbes are Anabaena . In July 2010, Oscillatoria and Synechococcus each made up approximately 25 percent of the microbes and between 10 and 15 percent were Anabaena . Slightly less than 60 percent of
#507492