Misplaced Pages

Laramide orogeny

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Laramide orogeny was a time period of mountain building in western North America , which started in the Late Cretaceous , 80 to 70 million years ago, and ended 55 to 35 million years ago. The exact duration and ages of beginning and end of the orogeny are in dispute. The Laramide orogeny occurred in a series of pulses, with quiescent phases intervening. The major feature that was created by this orogeny was deep-seated, thick-skinned deformation , with evidence of this orogeny found from Canada to northern Mexico , with the easternmost extent of the mountain-building represented by the Black Hills of South Dakota . The phenomenon is named for the Laramie Mountains of eastern Wyoming . The Laramide orogeny is sometimes confused with the Sevier orogeny , which partially overlapped in time and space.

#504495

43-557: The orogeny is commonly attributed to events off the west coast of North America, where the Kula and Farallon Plates were sliding under the North American Plate . Most hypotheses propose that oceanic crust was undergoing flat-slab subduction , that is, subduction at a shallow angle. As a consequence, no magmatism occurred in the central west of the continent, and the underlying oceanic lithosphere actually caused drag on

86-405: A fault as oblique requires both dip and strike components to be measurable and significant. Some oblique faults occur within transtensional and transpressional regimes, and others occur where the direction of extension or shortening changes during the deformation but the earlier formed faults remain active. The hade angle is defined as the complement of the dip angle; it is the angle between

129-582: A fault hosting valuable porphyry copper deposits is northern Chile's Domeyko Fault with deposits at Chuquicamata , Collahuasi , El Abra , El Salvador , La Escondida and Potrerillos . Further south in Chile Los Bronces and El Teniente porphyry copper deposit lie each at the intersection of two fault systems. Faults may not always act as conduits to surface. It has been proposed that deep-seated "misoriented" faults may instead be zones where magmas forming porphyry copper stagnate achieving

172-489: A fault plane, where it becomes locked, are called asperities . Stress builds up when a fault is locked, and when it reaches a level that exceeds the strength threshold, the fault ruptures and the accumulated strain energy is released in part as seismic waves , forming an earthquake . Strain occurs accumulatively or instantaneously, depending on the liquid state of the rock; the ductile lower crust and mantle accumulate deformation gradually via shearing , whereas

215-408: A fault's age by studying soil features seen in shallow excavations and geomorphology seen in aerial photographs. Subsurface clues include shears and their relationships to carbonate nodules , eroded clay, and iron oxide mineralization, in the case of older soil, and lack of such signs in the case of younger soil. Radiocarbon dating of organic material buried next to or over a fault shear

258-427: A hanging wall or foot wall where a thrust fault formed along a relatively weak bedding plane is known as a flat and a section where the thrust fault cut upward through the stratigraphic sequence is known as a ramp . Typically, thrust faults move within formations by forming flats and climbing up sections with ramps. This results in the hanging wall flat (or a portion thereof) lying atop the foot wall ramp as shown in

301-531: A lack of volcanic activity near a subduction zone a magmatic gap . This particular gap may have occurred because the subducted slab was in contact with relatively cool continental lithosphere, not hotter asthenosphere . One result of shallow angle of subduction and the drag that it caused was a broad belt of mountains, some of which were the progenitors of the Rocky Mountains . Part of the proto-Rocky Mountains would be later modified by extension to become

344-484: A major fault. Synthetic faults dip in the same direction as the major fault while the antithetic faults dip in the opposite direction. These faults may be accompanied by rollover anticlines (e.g. the Niger Delta Structural Style). All faults have a measurable thickness, made up of deformed rock characteristic of the level in the crust where the faulting happened, of the rock types affected by

387-400: A manner that creates multiple listric faults. The fault panes of listric faults can further flatten and evolve into a horizontal or near-horizontal plane, where slip progresses horizontally along a decollement . Extensional decollements can grow to great dimensions and form detachment faults , which are low-angle normal faults with regional tectonic significance. Due to the curvature of

430-421: A non-vertical fault are known as the hanging wall and footwall . The hanging wall occurs above the fault plane and the footwall occurs below it. This terminology comes from mining: when working a tabular ore body, the miner stood with the footwall under his feet and with the hanging wall above him. These terms are important for distinguishing different dip-slip fault types: reverse faults and normal faults. In

473-464: A reverse fault, the hanging wall displaces upward, while in a normal fault the hanging wall displaces downward. Distinguishing between these two fault types is important for determining the stress regime of the fault movement. Faults are mainly classified in terms of the angle that the fault plane makes with the Earth's surface, known as the dip , and the direction of slip along the fault plane. Based on

SECTION 10

#1732769437505

516-422: Is a horst . A sequence of grabens and horsts on the surface of the Earth produces a characteristic basin and range topography . Normal faults can evolve into listric faults, with their plane dip being steeper near the surface, then shallower with increased depth, with the fault plane curving into the Earth. They can also form where the hanging wall is absent (such as on a cliff), where the footwall may slump in

559-423: Is a zone of folding close to a fault that likely arises from frictional resistance to movement on the fault. The direction and magnitude of heave and throw can be measured only by finding common intersection points on either side of the fault (called a piercing point ). In practice, it is usually only possible to find the slip direction of faults, and an approximation of the heave and throw vector. The two sides of

602-544: Is defined by the direction of movement of the ground as would be seen by an observer on the opposite side of the fault. A special class of strike-slip fault is the transform fault when it forms a plate boundary. This class is related to an offset in a spreading center , such as a mid-ocean ridge , or, less common, within continental lithosphere , such as the Dead Sea Transform in the Middle East or

645-543: Is often critical in distinguishing active from inactive faults. From such relationships, paleoseismologists can estimate the sizes of past earthquakes over the past several hundred years, and develop rough projections of future fault activity. Many ore deposits lie on or are associated with faults. This is because the fractured rock associated with fault zones allow for magma ascent or the circulation of mineral-bearing fluids. Intersections of near-vertical faults are often locations of significant ore deposits. An example of

688-492: Is particularly clear in the case of detachment faults and major thrust faults . The main types of fault rock include: In geotechnical engineering , a fault often forms a discontinuity that may have a large influence on the mechanical behavior (strength, deformation, etc.) of soil and rock masses in, for example, tunnel , foundation , or slope construction. The level of a fault's activity can be critical for (1) locating buildings, tanks, and pipelines and (2) assessing

731-425: Is the cause of most earthquakes . Faults may also displace slowly, by aseismic creep . A fault plane is the plane that represents the fracture surface of a fault. A fault trace or fault line is a place where the fault can be seen or mapped on the surface. A fault trace is also the line commonly plotted on geologic maps to represent a fault. A fault zone is a cluster of parallel faults. However,

774-762: The Alpine Fault in New Zealand. Transform faults are also referred to as "conservative" plate boundaries since the lithosphere is neither created nor destroyed. Dip-slip faults can be either normal (" extensional ") or reverse . The terminology of "normal" and "reverse" comes from coal mining in England, where normal faults are the most common. With the passage of time, a regional reversal between tensional and compressional stresses (or vice-versa) might occur, and faults may be reactivated with their relative block movement inverted in opposite directions to

817-459: The Basin and Range Province . The Laramide orogeny produced intermontane structural basins and adjacent mountain blocks by means of deformation. This style of deformation is typical of continental plates adjacent to convergent margins of long duration that have not sustained continent/continent collisions. This tectonic setting produces a pattern of compressive uplifts and basins, with most of

860-460: The Bighorn , Powder River , and Wind River being the largest. Topographically, the basin floors resemble the surface of the western Great Plains, except for vistas of surrounding mountains. At most boundaries, Paleozoic through Paleogene units dip steeply into the basins off uplifted blocks cored by Precambrian rocks. The eroded steeply dipping units form hogbacks and flatirons . Many of

903-746: The North American plate at the Aleutian Trench , being replaced by the Pacific plate . The name Kula is from a Tlingit language word meaning "all gone". As the name suggests, the Kula plate was entirely subducted around 48 Ma and today only a slab in the mantle under the Bering Sea remains. There is some evidence of a Resurrection plate broken off from the Kula plate and also subducted. The Kula plate began subducting under

SECTION 20

#1732769437505

946-669: The Pacific Northwest region of North America during the Late Cretaceous period much like the Pacific plate does today, supporting a large volcanic arc system from northern Washington to southwestern Yukon called the Coast Range Arc . There was a triple junction of three ridges between the Kula plate to the north, the Pacific plate to the west and the Farallon plate to the east. The Kula plate

989-563: The Pacific plate . Reverse fault In geology , a fault is a planar fracture or discontinuity in a volume of rock across which there has been significant displacement as a result of rock-mass movements. Large faults within Earth 's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as the megathrust faults of subduction zones or transform faults . Energy release associated with rapid movement on active faults

1032-657: The seismic shaking and tsunami hazard to infrastructure and people in the vicinity. In California, for example, new building construction has been prohibited directly on or near faults that have moved within the Holocene Epoch (the last 11,700 years) of the Earth's geological history. Also, faults that have shown movement during the Holocene plus Pleistocene Epochs (the last 2.6 million years) may receive consideration, especially for critical structures such as power plants, dams, hospitals, and schools. Geologists assess

1075-471: The Kula plate was the Pacific Rim Terrane consisting of volcanic and sedimentary rock . It was scraped off and plastered against the continental margin , forming what is today Vancouver Island . By 40 million years ago, the compressional force of the Kula plate ceased. The existence of the Kula plate was inferred from the westward bend in the alternating pattern of magnetic anomalies in

1118-657: The Laramide orogeny, basin floors and mountain summits were much closer to sea level than today. After the seas retreated from the Rocky Mountain region, floodplains , swamps , and vast lakes developed in the basins. Drainage systems imposed at that time persist today. Since the Oligocene , episodic epeirogenic uplift gradually raised the entire region, including the Great Plains, to present elevations. Most of

1161-608: The boundaries are thrust or reverse faults . Although other boundaries appear to be monoclinal flexures , faulting is suspected at depth. Most bounding faults show evidence of at least two episodes of Laramide ( Late Cretaceous and Eocene ) movement, suggesting both thrust and strike-slip types of displacement. According to paleontologist Thomas M. Lehman, the Laramide orogeny triggered "the most dramatic event that affected Late Cretaceous dinosaur communities in North America prior to their extinction." This turnover event saw

1204-403: The brittle upper crust reacts by fracture – instantaneous stress release – resulting in motion along the fault. A fault in ductile rocks can also release instantaneously when the strain rate is too great. Slip is defined as the relative movement of geological features present on either side of a fault plane. A fault's sense of slip is defined as the relative motion of the rock on each side of

1247-473: The deformation confined to block edges. Twelve kilometers of structural relief between basins and adjacent uplifts is not uncommon. The basins contain several thousand meters of Paleozoic and Mesozoic sedimentary rocks that predate the Laramide orogeny. As much as 5,000 meters (16,000 ft) of Cretaceous and Cenozoic sediments filled these orogenically-defined basins. Deformed Paleocene and Eocene deposits record continuing orogenic activity. During

1290-436: The direction of slip, faults can be categorized as: In a strike-slip fault (also known as a wrench fault , tear fault or transcurrent fault ), the fault surface (plane) is usually near vertical, and the footwall moves laterally either left or right with very little vertical motion. Strike-slip faults with left-lateral motion are also known as sinistral faults and those with right-lateral motion as dextral faults. Each

1333-456: The fault and of the presence and nature of any mineralising fluids . Fault rocks are classified by their textures and the implied mechanism of deformation. A fault that passes through different levels of the lithosphere will have many different types of fault rock developed along its surface. Continued dip-slip displacement tends to juxtapose fault rocks characteristic of different crustal levels, with varying degrees of overprinting. This effect

Laramide orogeny - Misplaced Pages Continue

1376-402: The fault concerning the other side. In measuring the horizontal or vertical separation, the throw of the fault is the vertical component of the separation and the heave of the fault is the horizontal component, as in "Throw up and heave out". The vector of slip can be qualitatively assessed by studying any drag folding of strata, which may be visible on either side of the fault. Drag folding

1419-576: The fault plane and a vertical plane that strikes parallel to the fault. Ring faults , also known as caldera faults , are faults that occur within collapsed volcanic calderas and the sites of bolide strikes, such as the Chesapeake Bay impact crater . Ring faults are the result of a series of overlapping normal faults, forming a circular outline. Fractures created by ring faults may be filled by ring dikes . Synthetic and antithetic are terms used to describe minor faults associated with

1462-401: The fault plane, the horizontal extensional displacement on a listric fault implies a geometric "gap" between the hanging and footwalls of the fault forms when the slip motion occurs. To accommodate into the geometric gap, and depending on its rheology , the hanging wall might fold and slide downwards into the gap and produce rollover folding , or break into further faults and blocks which fil in

1505-427: The fault-bend fold diagram. Thrust faults form nappes and klippen in the large thrust belts. Subduction zones are a special class of thrusts that form the largest faults on Earth and give rise to the largest earthquakes. A fault which has a component of dip-slip and a component of strike-slip is termed an oblique-slip fault . Nearly all faults have some component of both dip-slip and strike-slip; hence, defining

1548-475: The gap. If faults form, imbrication fans or domino faulting may form. A reverse fault is the opposite of a normal fault—the hanging wall moves up relative to the footwall. Reverse faults indicate compressive shortening of the crust. A thrust fault has the same sense of motion as a reverse fault, but with the dip of the fault plane at less than 45°. Thrust faults typically form ramps, flats and fault-bend (hanging wall and footwall) folds. A section of

1591-554: The modern topography is the result of Pliocene and Pleistocene events, including additional uplift, glaciation of the high country, and denudation and dissection of older Cenozoic surfaces in the basin by fluvial processes. In the United States, these distinctive intermontane basins occur principally in the central Rocky Mountains from Colorado and Utah ( Uinta Basin ) to Montana and are best developed in Wyoming , with

1634-500: The original movement (fault inversion). In such a way, a normal fault may therefore become a reverse fault and vice versa. In a normal fault, the hanging wall moves downward, relative to the footwall. The dip of most normal faults is at least 60 degrees but some normal faults dip at less than 45 degrees. A downthrown block between two normal faults dipping towards each other is a graben . A block stranded between two grabens, and therefore two normal faults dipping away from each other,

1677-568: The replacement of specialized and highly ornamented centrosaurine and lambeosaurines by more basal upland dinosaurs in the south, while northern biomes became dominated by Triceratops with a greatly reduced hadrosaur community. Kula Plate The Kula plate was an oceanic tectonic plate under the northern Pacific Ocean south of the Near Islands segment of the Aleutian Islands . It has been subducted under

1720-412: The right time for—and type of— igneous differentiation . At a given time differentiated magmas would burst violently out of the fault-traps and head to shallower places in the crust where porphyry copper deposits would be formed. As faults are zones of weakness, they facilitate the interaction of water with the surrounding rock and enhance chemical weathering . The enhanced chemical weathering increases

1763-532: The root of the overlying continental lithosphere. One cause for shallow subduction may have been an increased rate of plate convergence. Another proposed cause was subduction of thickened oceanic crust. Magmatism associated with subduction occurred not near the plate edges (as in the volcanic arc of the Andes , for example), but far to the east, along the Colorado Mineral Belt . Geologists call such

Laramide orogeny - Misplaced Pages Continue

1806-468: The term is also used for the zone of crushed rock along a single fault. Prolonged motion along closely spaced faults can blur the distinction, as the rock between the faults is converted to fault-bound lenses of rock and then progressively crushed. Due to friction and the rigidity of the constituent rocks, the two sides of a fault cannot always glide or flow past each other easily, and so occasionally all movement stops. The regions of higher friction along

1849-644: Was subducted under the North American plate at a relatively steep angle, so that the Canadian Rockies are primarily composed of thrusted sedimentary sheets with relatively little contribution of continental uplift , while the American Rockies are characterized by significant continental uplift in response to the shallow subduction of the Farallon plate. About 55 million years ago, the Kula plate began an even more northerly motion. Riding on

#504495