Misplaced Pages

M code

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#440559

77-532: (Redirected from M-code ) M code or M-Code may refer to: Machine code MATLAB programming language M-code, GPS signals for use by the military M Code, used in conjunction with G-code in the CNC/machining industry M Formula language , sometimes called M code, a mashup query language used in Microsoft's Power Query Topics referred to by

154-533: A basic block , to whole procedures, or even the whole program. There is a trade-off between the granularity of the optimizations and the cost of compilation. For example, peephole optimizations are fast to perform during compilation but only affect a small local fragment of the code, and can be performed independently of the context in which the code fragment appears. In contrast, interprocedural optimization requires more compilation time and memory space, but enable optimizations that are only possible by considering

231-492: A code obfuscation technique as a measure against disassembly and tampering. The principle is also used in shared code sequences of fat binaries which must run on multiple instruction-set-incompatible processor platforms. This property is also used to find unintended instructions called gadgets in existing code repositories and is used in return-oriented programming as alternative to code injection for exploits such as return-to-libc attacks . In some computers,

308-412: A concrete syntax tree (CST, parse tree) and then transforming it into an abstract syntax tree (AST, syntax tree). In some cases additional phases are used, notably line reconstruction and preprocessing, but these are rare. The main phases of the front end include the following: The middle end, also known as optimizer, performs optimizations on the intermediate representation in order to improve

385-422: A PDP-7 in B. Unics eventually became spelled Unix. Bell Labs started the development and expansion of C based on B and BCPL. The BCPL compiler had been transported to Multics by Bell Labs and BCPL was a preferred language at Bell Labs. Initially, a front-end program to Bell Labs' B compiler was used while a C compiler was developed. In 1971, a new PDP-11 provided the resource to define extensions to B and rewrite

462-437: A Production Quality Compiler (PQC) from formal definitions of source language and the target. PQCC tried to extend the term compiler-compiler beyond the traditional meaning as a parser generator (e.g., Yacc ) without much success. PQCC might more properly be referred to as a compiler generator. PQCC research into code generation process sought to build a truly automatic compiler-writing system. The effort discovered and designed

539-405: A compiler up into small programs is a technique used by researchers interested in producing provably correct compilers. Proving the correctness of a set of small programs often requires less effort than proving the correctness of a larger, single, equivalent program. Regardless of the exact number of phases in the compiler design, the phases can be assigned to one of three stages. The stages include

616-432: A component of an IDE (VADS, Eclipse, Ada Pro). The interrelationship and interdependence of technologies grew. The advent of web services promoted growth of web languages and scripting languages. Scripts trace back to the early days of Command Line Interfaces (CLI) where the user could enter commands to be executed by the system. User Shell concepts developed with languages to write shell programs. Early Windows designs offered

693-520: A different CPU or operating system than the one on which the cross-compiler itself runs. A bootstrap compiler is often a temporary compiler, used for compiling a more permanent or better optimised compiler for a language. Related software include decompilers , programs that translate from low-level languages to higher level ones; programs that translate between high-level languages, usually called source-to-source compilers or transpilers ; language rewriters , usually programs that translate

770-416: A direct map between the numerical machine code and a human-readable mnemonic. In assembly, numerical opcodes and operands are replaced with mnemonics and labels. For example, the x86 architecture has available the 0x90 opcode; it is represented as NOP in the assembly source code . While it is possible to write programs directly in machine code, managing individual bits and calculating numerical addresses

847-628: A front end, a middle end, and a back end. This front/middle/back-end approach makes it possible to combine front ends for different languages with back ends for different CPUs while sharing the optimizations of the middle end. Practical examples of this approach are the GNU Compiler Collection , Clang ( LLVM -based C/C++ compiler), and the Amsterdam Compiler Kit , which have multiple front-ends, shared optimizations and multiple back-ends. The front end analyzes

SECTION 10

#1732798826441

924-527: A grammar for the language, though in more complex cases these require manual modification. The lexical grammar and phrase grammar are usually context-free grammars , which simplifies analysis significantly, with context-sensitivity handled at the semantic analysis phase. The semantic analysis phase is generally more complex and written by hand, but can be partially or fully automated using attribute grammars . These phases themselves can be further broken down: lexing as scanning and evaluating, and parsing as building

1001-486: A machine with a single accumulator , the accumulator is implicitly both the left operand and result of most arithmetic instructions. Some other architectures, such as the x86 architecture, have accumulator versions of common instructions, with the accumulator regarded as one of the general registers by longer instructions. A stack machine has most or all of its operands on an implicit stack. Special purpose instructions also often lack explicit operands; for example, CPUID in

1078-433: A one-to-one mapping to machine code. The assembly language decoding method is called disassembly . Machine code may be decoded back to its corresponding high-level language under two conditions: The first condition is to accept an obfuscated reading of the source code. An obfuscated version of source code is displayed if the machine code is sent to a decompiler of the source language. The second condition requires

1155-400: A paging based system, if the current page actually holds machine code by an execute bit — pages have multiple such permission bits (readable, writable, etc.) for various housekeeping functionality. E.g. on Unix-like systems memory pages can be toggled to be executable with the mprotect() system call, and on Windows, VirtualProtect() can be used to achieve a similar result. If an attempt

1232-432: A result, compilers were split up into smaller programs which each made a pass over the source (or some representation of it) performing some of the required analysis and translations. The ability to compile in a single pass has classically been seen as a benefit because it simplifies the job of writing a compiler and one-pass compilers generally perform compilations faster than multi-pass compilers . Thus, partly driven by

1309-431: A simple batch programming capability. The conventional transformation of these language used an interpreter. While not widely used, Bash and Batch compilers have been written. More recently sophisticated interpreted languages became part of the developers tool kit. Modern scripting languages include PHP, Python, Ruby and Lua. (Lua is widely used in game development.) All of these have interpreter and compiler support. "When

1386-444: A tag and a Y field. In addition to transfer (branch) instructions, these machines have skip instruction that conditionally skip one or two words, e.g., Compare Accumulator with Storage (CAS) does a three way compare and conditionally skips to NSI, NSI+1 or NSI+2, depending on the result. The MIPS architecture provides a specific example for a machine code whose instructions are always 32 bits long. The general type of instruction

1463-492: Is Open64 , which is used by many organizations for research and commercial purposes. Due to the extra time and space needed for compiler analysis and optimizations, some compilers skip them by default. Users have to use compilation options to explicitly tell the compiler which optimizations should be enabled. The back end is responsible for the CPU architecture specific optimizations and for code generation . The main phases of

1540-557: Is a computer program that translates computer code written in one programming language (the source language) into another language (the target language). The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language (e.g. assembly language , object code , or machine code ) to create an executable program. There are many different types of compilers which produce output in different useful forms. A cross-compiler produces code for

1617-455: Is actually read and interpreted by the computer. A program in machine code consists of a sequence of machine instructions (possibly interspersed with data). Each machine code instruction causes the CPU to perform a specific task. Examples of such tasks include: In general, each architecture family (e.g., x86 , ARM ) has its own instruction set architecture (ISA), and hence its own specific machine code language. There are exceptions, such as

SECTION 20

#1732798826441

1694-613: Is also commercial support, for example, AdaCore, was founded in 1994 to provide commercial software solutions for Ada. GNAT Pro includes the GNU GCC based GNAT with a tool suite to provide an integrated development environment . High-level languages continued to drive compiler research and development. Focus areas included optimization and automatic code generation. Trends in programming languages and development environments influenced compiler technology. More compilers became included in language distributions (PERL, Java Development Kit) and as

1771-412: Is different from Wikidata All article disambiguation pages All disambiguation pages Machine code In computer programming , machine code is computer code consisting of machine language instructions , which are used to control a computer's central processing unit (CPU). For conventional binary computers , machine code is the binary representation of a computer program which

1848-446: Is favored due to its modularity and separation of concerns . Most commonly, the frontend is broken into three phases: lexical analysis (also known as lexing or scanning), syntax analysis (also known as scanning or parsing), and semantic analysis . Lexing and parsing comprise the syntactic analysis (word syntax and phrase syntax, respectively), and in simple cases, these modules (the lexer and parser) can be automatically generated from

1925-477: Is generally different from bytecode (also known as p-code), which is either executed by an interpreter or itself compiled into machine code for faster (direct) execution. An exception is when a processor is designed to use a particular bytecode directly as its machine code, such as is the case with Java processors . Machine code and assembly code are sometimes called native code when referring to platform-dependent parts of language features or libraries. From

2002-449: Is given by the op (operation) field, the highest 6 bits. J-type (jump) and I-type (immediate) instructions are fully specified by op . R-type (register) instructions include an additional field funct to determine the exact operation. The fields used in these types are: rs , rt , and rd indicate register operands; shamt gives a shift amount; and the address or immediate fields contain an operand directly. For example, adding

2079-428: Is made to execute machine code on a non-executable page, an architecture specific fault will typically occur. Treating data as machine code , or finding new ways to use existing machine code, by various techniques, is the basis of some security vulnerabilities. Similarly, in a segment based system, segment descriptors can indicate whether a segment can contain executable code and in what rings that code can run. From

2156-425: Is rarely a problem. Systems may also differ in other details, such as memory arrangement, operating systems, or peripheral devices . Because a program normally relies on such factors, different systems will typically not run the same machine code, even when the same type of processor is used. A processor's instruction set may have fixed-length or variable-length instructions. How the patterns are organized varies with

2233-512: Is tedious and error-prone. Therefore, programs are rarely written directly in machine code. However, an existing machine code program may be edited if the assembly source code is not available. The majority of programs today are written in a high-level language . A high-level program may be translated into machine code by a compiler . Every processor or processor family has its own instruction set . Instructions are patterns of bits , digits, or characters that correspond to machine commands. Thus,

2310-419: Is typically set to a hard coded value when the CPU is first powered on, and will hence execute whatever machine code happens to be at this address. Similarly, the program counter can be set to execute whatever machine code is at some arbitrary address, even if this is not valid machine code. This will typically trigger an architecture specific protection fault. The CPU is oftentimes told, by page permissions in

2387-539: The Kruskal count , sometimes possible through opcode-level programming to deliberately arrange the resulting code so that two code paths share a common fragment of opcode sequences. These are called overlapping instructions , overlapping opcodes , overlapping code , overlapped code , instruction scission , or jump into the middle of an instruction . In the 1970s and 1980s, overlapping instructions were sometimes used to preserve memory space. One example were in

M code - Misplaced Pages Continue

2464-698: The VAX architecture, which includes optional support of the PDP-11 instruction set; the IA-64 architecture, which includes optional support of the IA-32 instruction set; and the PowerPC 615 microprocessor, which can natively process both PowerPC and x86 instruction sets. Machine code is a strictly numerical language, and it is the lowest-level interface to the CPU intended for a programmer. Assembly language  provides

2541-599: The Zilog Z80 processor, the machine code 00000101 , which causes the CPU to decrement the B general-purpose register , would be represented in assembly language as DEC B . The IBM 704, 709, 704x and 709x store one instruction in each instruction word; IBM numbers the bit from the left as S, 1, ..., 35. Most instructions have one of two formats: For all but the IBM 7094 and 7094 II, there are three index registers designated A, B and C; indexing with multiple 1 bits in

2618-599: The (since 1995, object-oriented) programming language Ada . The Ada STONEMAN document formalized the program support environment (APSE) along with the kernel (KAPSE) and minimal (MAPSE). An Ada interpreter NYU/ED supported development and standardization efforts with the American National Standards Institute (ANSI) and the International Standards Organization (ISO). Initial Ada compiler development by

2695-587: The Early PL/I (EPL) compiler by Doug McIlory and Bob Morris from Bell Labs. EPL supported the project until a boot-strapping compiler for the full PL/I could be developed. Bell Labs left the Multics project in 1969, and developed a system programming language B based on BCPL concepts, written by Dennis Ritchie and Ken Thompson . Ritchie created a boot-strapping compiler for B and wrote Unics (Uniplexed Information and Computing Service) operating system for

2772-528: The Sun 3/60 Solaris targeted to Motorola 68020 in an Army CECOM evaluation. There were soon many Ada compilers available that passed the Ada Validation tests. The Free Software Foundation GNU project developed the GNU Compiler Collection (GCC) which provides a core capability to support multiple languages and targets. The Ada version GNAT is one of the most widely used Ada compilers. GNAT is free but there

2849-670: The U.S. Military Services included the compilers in a complete integrated design environment along the lines of the STONEMAN document. Army and Navy worked on the Ada Language System (ALS) project targeted to DEC/VAX architecture while the Air Force started on the Ada Integrated Environment (AIE) targeted to IBM 370 series. While the projects did not provide the desired results, they did contribute to

2926-471: The University of Cambridge was originally developed as a compiler writing tool. Several compilers have been implemented, Richards' book provides insights to the language and its compiler. BCPL was not only an influential systems programming language that is still used in research but also provided a basis for the design of B and C languages. BLISS (Basic Language for Implementation of System Software)

3003-435: The basis of digital modern computing development during World War II. Primitive binary languages evolved because digital devices only understand ones and zeros and the circuit patterns in the underlying machine architecture. In the late 1940s, assembly languages were created to offer a more workable abstraction of the computer architectures. Limited memory capacity of early computers led to substantial technical challenges when

3080-433: The behavior of multiple functions simultaneously. Interprocedural analysis and optimizations are common in modern commercial compilers from HP , IBM , SGI , Intel , Microsoft , and Sun Microsystems . The free software GCC was criticized for a long time for lacking powerful interprocedural optimizations, but it is changing in this respect. Another open source compiler with full analysis and optimization infrastructure

3157-591: The compiler. By 1973 the design of C language was essentially complete and the Unix kernel for a PDP-11 was rewritten in C. Steve Johnson started development of Portable C Compiler (PCC) to support retargeting of C compilers to new machines. Object-oriented programming (OOP) offered some interesting possibilities for application development and maintenance. OOP concepts go further back but were part of LISP and Simula language science. Bell Labs became interested in OOP with

M code - Misplaced Pages Continue

3234-407: The development of C++ . C++ was first used in 1980 for systems programming. The initial design leveraged C language systems programming capabilities with Simula concepts. Object-oriented facilities were added in 1983. The Cfront program implemented a C++ front-end for C84 language compiler. In subsequent years several C++ compilers were developed as C++ popularity grew. In many application domains,

3311-551: The development of compiler technology: Early operating systems and software were written in assembly language. In the 1960s and early 1970s, the use of high-level languages for system programming was still controversial due to resource limitations. However, several research and industry efforts began the shift toward high-level systems programming languages, for example, BCPL , BLISS , B , and C . BCPL (Basic Combined Programming Language) designed in 1966 by Martin Richards at

3388-424: The development of high-level languages followed naturally from the capabilities offered by digital computers. High-level languages are formal languages that are strictly defined by their syntax and semantics which form the high-level language architecture. Elements of these formal languages include: The sentences in a language may be defined by a set of rules called a grammar. Backus–Naur form (BNF) describes

3465-424: The early days, the approach taken to compiler design was directly affected by the complexity of the computer language to be processed, the experience of the person(s) designing it, and the resources available. Resource limitations led to the need to pass through the source code more than once. A compiler for a relatively simple language written by one person might be a single, monolithic piece of software. However, as

3542-491: The field of compiling began in the late 50s, its focus was limited to the translation of high-level language programs into machine code ... The compiler field is increasingly intertwined with other disciplines including computer architecture, programming languages, formal methods, software engineering, and computer security." The "Compiler Research: The Next 50 Years" article noted the importance of object-oriented languages and Java. Security and parallel computing were cited among

3619-464: The first (algorithmic) programming language for computers called Plankalkül ("Plan Calculus"). Zuse also envisioned a Planfertigungsgerät ("Plan assembly device") to automatically translate the mathematical formulation of a program into machine-readable punched film stock . While no actual implementation occurred until the 1970s, it presented concepts later seen in APL designed by Ken Iverson in

3696-423: The first compilers were designed. Therefore, the compilation process needed to be divided into several small programs. The front end programs produce the analysis products used by the back end programs to generate target code. As computer technology provided more resources, compiler designs could align better with the compilation process. It is usually more productive for a programmer to use a high-level language, so

3773-559: The first pass needs to gather information about declarations appearing after statements that they affect, with the actual translation happening during a subsequent pass. The disadvantage of compiling in a single pass is that it is not possible to perform many of the sophisticated optimizations needed to generate high quality code. It can be difficult to count exactly how many passes an optimizing compiler makes. For instance, different phases of optimization may analyse one expression many times but only analyse another expression once. Splitting

3850-933: The form of expressions without a change of language; and compiler-compilers , compilers that produce compilers (or parts of them), often in a generic and reusable way so as to be able to produce many differing compilers. A compiler is likely to perform some or all of the following operations, often called phases: preprocessing , lexical analysis , parsing , semantic analysis ( syntax-directed translation ), conversion of input programs to an intermediate representation , code optimization and machine specific code generation . Compilers generally implement these phases as modular components, promoting efficient design and correctness of transformations of source input to target output. Program faults caused by incorrect compiler behavior can be very difficult to track down and work around; therefore, compiler implementers invest significant effort to ensure compiler correctness . Compilers are not

3927-454: The future research targets. A compiler implements a formal transformation from a high-level source program to a low-level target program. Compiler design can define an end-to-end solution or tackle a defined subset that interfaces with other compilation tools e.g. preprocessors, assemblers, linkers. Design requirements include rigorously defined interfaces both internally between compiler components and externally between supporting toolsets. In

SECTION 50

#1732798826441

4004-421: The idea of using a higher-level language quickly caught on. Because of the expanding functionality supported by newer programming languages and the increasing complexity of computer architectures, compilers became more complex. DARPA (Defense Advanced Research Projects Agency) sponsored a compiler project with Wulf's CMU research team in 1970. The Production Quality Compiler-Compiler PQCC design would produce

4081-469: The implementation of error tables in Microsoft 's Altair BASIC , where interleaved instructions mutually shared their instruction bytes. The technique is rarely used today, but might still be necessary to resort to in areas where extreme optimization for size is necessary on byte-level such as in the implementation of boot loaders which have to fit into boot sectors . It is also sometimes used as

4158-511: The instruction set is specific to a class of processors using (mostly) the same architecture . Successor or derivative processor designs often include instructions of a predecessor and may add new additional instructions. Occasionally, a successor design will discontinue or alter the meaning of some instruction code (typically because it is needed for new purposes), affecting code compatibility to some extent; even compatible processors may show slightly different behavior for some instructions, but this

4235-434: The late 1950s. APL is a language for mathematical computations. Between 1949 and 1951, Heinz Rutishauser proposed Superplan , a high-level language and automatic translator. His ideas were later refined by Friedrich L. Bauer and Klaus Samelson . High-level language design during the formative years of digital computing provided useful programming tools for a variety of applications: Compiler technology evolved from

4312-526: The machine code of the architecture is implemented by an even more fundamental underlying layer called microcode , providing a common machine language interface across a line or family of different models of computer with widely different underlying dataflows . This is done to facilitate porting of machine language programs between different models. An example of this use is the IBM System/360 family of computers and their successors. Machine code

4389-407: The machine code to have information about the source code encoded within. The information includes a symbol table that contains debug symbols . The symbol table may be stored within the executable, or it may exist in separate files. A debugger can then read the symbol table to help the programmer interactively debug the machine code in execution . Compiler In computing , a compiler

4466-408: The need for a strictly defined transformation of the high-level source program into a low-level target program for the digital computer. The compiler could be viewed as a front end to deal with the analysis of the source code and a back end to synthesize the analysis into the target code. Optimization between the front end and back end could produce more efficient target code. Some early milestones in

4543-570: The only language processor used to transform source programs. An interpreter is computer software that transforms and then executes the indicated operations. The translation process influences the design of computer languages, which leads to a preference of compilation or interpretation. In theory, a programming language can have both a compiler and an interpreter. In practice, programming languages tend to be associated with just one (a compiler or an interpreter). Theoretical computing concepts developed by scientists, mathematicians, and engineers formed

4620-412: The other four index registers. The effective address is normally Y-C(T), where C(T) is either 0 for a tag of 0, the logical or of the selected index regisrs in multiple tag mode or the selected index register if not in multiple tag mode. However, the effective address for index register control instructions is just Y. A flag with both bits 1 selects indirect addressing; the indirect address word has both

4697-667: The overall effort on Ada development. Other Ada compiler efforts got underway in Britain at the University of York and in Germany at the University of Karlsruhe. In the U. S., Verdix (later acquired by Rational) delivered the Verdix Ada Development System (VADS) to the Army. VADS provided a set of development tools including a compiler. Unix/VADS could be hosted on a variety of Unix platforms such as DEC Ultrix and

SECTION 60

#1732798826441

4774-529: The particular architecture and type of instruction. Most instructions have one or more opcode fields that specify the basic instruction type (such as arithmetic, logical, jump , etc.), the operation (such as add or compare), and other fields that may give the type of the operand (s), the addressing mode (s), the addressing offset(s) or index, or the operand value itself (such constant operands contained in an instruction are called immediate ). Not all machines or individual instructions have explicit operands. On

4851-511: The performance and the quality of the produced machine code. The middle end contains those optimizations that are independent of the CPU architecture being targeted. The main phases of the middle end include the following: Compiler analysis is the prerequisite for any compiler optimization, and they tightly work together. For example, dependence analysis is crucial for loop transformation . The scope of compiler analysis and optimizations vary greatly; their scope may range from operating within

4928-646: The phase structure of the PQC. The BLISS-11 compiler provided the initial structure. The phases included analyses (front end), intermediate translation to virtual machine (middle end), and translation to the target (back end). TCOL was developed for the PQCC research to handle language specific constructs in the intermediate representation. Variations of TCOL supported various languages. The PQCC project investigated techniques of automated compiler construction. The design concepts proved useful in optimizing compilers and compilers for

5005-657: The point of view of a process , the code space is the part of its address space where the code in execution is stored. In multitasking systems this comprises the program's code segment and usually shared libraries . In multi-threading environment, different threads of one process share code space along with data space, which reduces the overhead of context switching considerably as compared to process switching. Various tools and methods exist to decode machine code back to its corresponding source code . Machine code can easily be decoded back to its corresponding assembly language source code because assembly language forms

5082-504: The point of view of the CPU, machine code is stored in RAM, but is typically also kept in a set of caches for performance reasons. There may be different caches for instructions and data, depending on the architecture. The CPU knows what machine code to execute, based on its internal program counter. The program counter points to a memory address and is changed based on special instructions which may cause programmatic branches. The program counter

5159-412: The registers 1 and 2 and placing the result in register 6 is encoded: Load a value into register 8, taken from the memory cell 68 cells after the location listed in register 3: Jumping to the address 1024: On processor architectures with variable-length instruction sets (such as Intel 's x86 processor family) it is, within the limits of the control-flow resynchronizing phenomenon known as

5236-429: The resource limitations of early systems, many early languages were specifically designed so that they could be compiled in a single pass (e.g., Pascal ). In some cases, the design of a language feature may require a compiler to perform more than one pass over the source. For instance, consider a declaration appearing on line 20 of the source which affects the translation of a statement appearing on line 10. In this case,

5313-416: The result of a constant expression freed up by replacing it by that constant) and other code enhancements. A much more human-friendly rendition of machine language, named assembly language , uses mnemonic codes to refer to machine code instructions, rather than using the instructions' numeric values directly, and uses symbolic names to refer to storage locations and sometimes registers . For example, on

5390-409: The same term [REDACTED] This disambiguation page lists articles associated with the title M code . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=M_code&oldid=1118302005 " Category : Disambiguation pages Hidden categories: Short description

5467-490: The source code to build an internal representation of the program, called the intermediate representation (IR). It also manages the symbol table , a data structure mapping each symbol in the source code to associated information such as location, type and scope. While the frontend can be a single monolithic function or program, as in a scannerless parser , it was traditionally implemented and analyzed as several phases, which may execute sequentially or concurrently. This method

5544-469: The source language grows in complexity the design may be split into a number of interdependent phases. Separate phases provide design improvements that focus development on the functions in the compilation process. Classifying compilers by number of passes has its background in the hardware resource limitations of computers. Compiling involves performing much work and early computers did not have enough memory to contain one program that did all of this work. As

5621-440: The syntax of "sentences" of a language. It was developed by John Backus and used for the syntax of Algol 60 . The ideas derive from the context-free grammar concepts by linguist Noam Chomsky . "BNF and its extensions have become standard tools for describing the syntax of programming notations. In many cases, parts of compilers are generated automatically from a BNF description." Between 1942 and 1945, Konrad Zuse designed

5698-443: The tag subtracts the logical or of the selected index registers and loading with multiple 1 bits in the tag loads all of the selected index registers. The 7094 and 7094 II have seven index registers, but when they are powered on they are in multiple tag mode , in which they use only the three of the index registers in a fashion compatible with earlier machines, and require a Leave Multiple Tag Mode ( LMTM ) instruction in order to access

5775-406: The x86 architecture writes values into four implicit destination registers. This distinction between explicit and implicit operands is important in code generators, especially in the register allocation and live range tracking parts. A good code optimizer can track implicit and explicit operands which may allow more frequent constant propagation , constant folding of registers (a register assigned

5852-432: Was developed for a Digital Equipment Corporation (DEC) PDP-10 computer by W. A. Wulf's Carnegie Mellon University (CMU) research team. The CMU team went on to develop BLISS-11 compiler one year later in 1970. Multics (Multiplexed Information and Computing Service), a time-sharing operating system project, involved MIT , Bell Labs , General Electric (later Honeywell ) and was led by Fernando Corbató from MIT. Multics

5929-470: Was written in the PL/I language developed by IBM and IBM User Group. IBM's goal was to satisfy business, scientific, and systems programming requirements. There were other languages that could have been considered but PL/I offered the most complete solution even though it had not been implemented. For the first few years of the Multics project, a subset of the language could be compiled to assembly language with

#440559