Misplaced Pages

List of The Inheritance Cycle characters

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is a list of key characters in The Inheritance Cycle , a fantasy adventure series by Christopher Paolini . The series contains several hundred characters, while the following list contains only the most frequently mentioned.

#254745

98-468: Many of the names Paolini has used originate from Old Norse, German, Old English, and Russian sources, as well as the invented languages. With the exception of Angela , the characters' personalities are entirely imagined and not based on actual people. Some characters, like the titular character Eragon were developed before the series was written, while others (such as Angela) were added on an as-needed basis. *Pronounced "AH-zhi-hod". The Dragon Riders are

196-769: A hydrogen -based solution. The hydrogen reduces the growth rate, but the temperature is raised to 850 or even 1050 °C to compensate. Polysilicon may be grown directly with doping, if gases such as phosphine , arsine or diborane are added to the CVD chamber. Diborane increases the growth rate, but arsine and phosphine decrease it. Silicon dioxide (usually called simply "oxide" in the semiconductor industry) may be deposited by several different processes. Common source gases include silane and oxygen , dichlorosilane (SiCl 2 H 2 ) and nitrous oxide (N 2 O), or tetraethylorthosilicate (TEOS; Si(OC 2 H 5 ) 4 ). The reactions are as follows: The choice of source gas depends on

294-408: A subduction zone . Chemical vapor deposition Chemical vapor deposition ( CVD ) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films . In typical CVD, the wafer (substrate) is exposed to one or more volatile precursors , which react and/or decompose on

392-491: A Christie's auction. In May 2009, a 7.03-carat (1.406 g) blue diamond fetched the highest price per carat ever paid for a diamond when it was sold at auction for 10.5 million Swiss francs (6.97 million euros, or US$ 9.5 million at the time). That record was, however, beaten the same year: a 5-carat (1.0 g) vivid pink diamond was sold for US$ 10.8 million in Hong Kong on December 1, 2009. Clarity

490-587: A challenging goal, and the ribbons typically possess rough edges that are detrimental to their performance. CVD can be used to produce a synthetic diamond by creating the circumstances necessary for carbon atoms in a gas to settle on a substrate in crystalline form. CVD of diamonds has received much attention in the materials sciences because it allows many new applications that had previously been considered too expensive. CVD diamond growth typically occurs under low pressure (1–27 kPa ; 0.145–3.926 psi ; 7.5–203 Torr ) and involves feeding varying amounts of gases into

588-407: A chamber, energizing them and providing conditions for diamond growth on the substrate. The gases always include a carbon source, and typically include hydrogen as well, though the amounts used vary greatly depending on the type of diamond being grown. Energy sources include hot filament , microwave power, and arc discharges , among others. The energy source is intended to generate a plasma in which

686-453: A cigarette lighter, but house fires and blow torches are hot enough. Jewelers must be careful when molding the metal in a diamond ring. Diamond powder of an appropriate grain size (around 50   microns) burns with a shower of sparks after ignition from a flame. Consequently, pyrotechnic compositions based on synthetic diamond powder can be prepared. The resulting sparks are of the usual red-orange color, comparable to charcoal, but show

784-727: A continuum with carbonatites , but the latter have too much oxygen for carbon to exist in a pure form. Instead, it is locked up in the mineral calcite ( Ca C O 3 ). All three of the diamond-bearing rocks (kimberlite, lamproite and lamprophyre) lack certain minerals ( melilite and kalsilite ) that are incompatible with diamond formation. In kimberlite , olivine is large and conspicuous, while lamproite has Ti- phlogopite and lamprophyre has biotite and amphibole . They are all derived from magma types that erupt rapidly from small amounts of melt, are rich in volatiles and magnesium oxide , and are less oxidizing than more common mantle melts such as basalt . These characteristics allow

882-452: A diamond to fluoresce. Diamonds can fluoresce in a variety of colors including blue (most common), orange, yellow, white, green and very rarely red and purple. Although the causes are not well understood, variations in the atomic structure, such as the number of nitrogen atoms present are thought to contribute to the phenomenon. Diamonds can be identified by their high thermal conductivity (900– 2320 W·m ·K ). Their high refractive index

980-415: A diamond, the result was typically very small free-standing diamonds of varying sizes. With CVD diamond, growth areas of greater than fifteen centimeters (six inches) in diameter have been achieved, and much larger areas are likely to be successfully coated with diamond in the future. Improving this process is key to enabling several important applications. The growth of diamond directly on a substrate allows

1078-548: A few. The CVD of metal-organic frameworks , a class of crystalline nanoporous materials, has recently been demonstrated. Recently scaled up as an integrated cleanroom process depositing large-area substrates, the applications for these films are anticipated in gas sensing and low-κ dielectrics . CVD techniques are advantageous for membrane coatings as well, such as those in desalination or water treatment, as these coatings can be sufficiently uniform (conformal) and thin that they do not clog membrane pores. Polycrystalline silicon

SECTION 10

#1732787704255

1176-480: A gemstone. Because it can only be scratched by other diamonds, it maintains its polish extremely well. Unlike many other gems, it is well-suited to daily wear because of its resistance to scratching—perhaps contributing to its popularity as the preferred gem in engagement or wedding rings , which are often worn every day. The hardest natural diamonds mostly originate from the Copeton and Bingara fields located in

1274-475: A metallic fluid. The extreme conditions required for this to occur are present in the ice giants Neptune and Uranus . Both planets are made up of approximately 10 percent carbon and could hypothetically contain oceans of liquid carbon. Since large quantities of metallic fluid can affect the magnetic field, this could serve as an explanation as to why the geographic and magnetic poles of the two planets are unaligned. The most common crystal structure of diamond

1372-403: A pale blue flame, and continues to burn after the source of heat is removed. By contrast, in air the combustion will cease as soon as the heat is removed because the oxygen is diluted with nitrogen. A clear, flawless, transparent diamond is completely converted to carbon dioxide; any impurities will be left as ash. Heat generated from cutting a diamond will not ignite the diamond, and neither will

1470-574: A phosphorus concentration of at least 6%, but concentrations above 8% can corrode aluminium. Phosphorus is deposited from phosphine gas and oxygen: Glasses containing both boron and phosphorus (borophosphosilicate glass, BPSG) undergo viscous flow at lower temperatures; around 850 °C is achievable with glasses containing around 5 weight % of both constituents, but stability in air can be difficult to achieve. Phosphorus oxide in high concentrations interacts with ambient moisture to produce phosphoric acid. Crystals of BPO 4 can also precipitate from

1568-554: A relatively high optical dispersion . Most natural diamonds have ages between 1 billion and 3.5 billion years. Most were formed at depths between 150 and 250 kilometres (93 and 155 mi) in the Earth's mantle , although a few have come from as deep as 800 kilometres (500 mi). Under high pressure and temperature, carbon-containing fluids dissolved various minerals and replaced them with diamonds. Much more recently (hundreds to tens of million years ago), they were carried to

1666-524: A semiconductor device, is achieved from tungsten hexafluoride (WF 6 ), which may be deposited in two ways: Other metals, notably aluminium and copper , can be deposited by CVD. As of 2010 , commercially cost-effective CVD for copper did not exist, although volatile sources exist, such as Cu( hfac ) 2 . Copper is typically deposited by electroplating . Aluminium can be deposited from triisobutylaluminium (TIBAL) and related organoaluminium compounds . CVD for molybdenum , tantalum , titanium , nickel

1764-463: A transition between graphite and diamond are well established theoretically and experimentally. The equilibrium pressure varies linearly with temperature, between 1.7  GPa at 0 K and 12 GPa at 5000 K (the diamond/graphite/liquid triple point ). However, the phases have a wide region about this line where they can coexist. At standard temperature and pressure , 20 °C (293 K) and 1 standard atmosphere (0.10 MPa),

1862-467: A very linear trajectory which is explained by their high density. Diamond also reacts with fluorine gas above about 700 °C (1,292 °F). Diamond has a wide band gap of 5.5  eV corresponding to the deep ultraviolet wavelength of 225   nanometers. This means that pure diamond should transmit visible light and appear as a clear colorless crystal. Colors in diamond originate from lattice defects and impurities. The diamond crystal lattice

1960-425: A volcanic rock. There are many theories for its origin, including formation in a star, but no consensus. Diamond is the hardest material on the qualitative Mohs scale . To conduct the quantitative Vickers hardness test , samples of materials are struck with a pyramid of standardized dimensions using a known force – a diamond crystal is used for the pyramid to permit a wide range of materials to be tested. From

2058-449: Is 0.01% for nickel and even less for cobalt. Virtually any element can be introduced to diamond by ion implantation. Nitrogen is by far the most common impurity found in gem diamonds and is responsible for the yellow and brown color in diamonds. Boron is responsible for the blue color. Color in diamond has two additional sources: irradiation (usually by alpha particles), that causes the color in green diamonds, and plastic deformation of

SECTION 20

#1732787704255

2156-415: Is a solid form of pure carbon with its atoms arranged in a crystal. Solid carbon comes in different forms known as allotropes depending on the type of chemical bond. The two most common allotropes of pure carbon are diamond and graphite . In graphite, the bonds are sp orbital hybrids and the atoms form in planes, with each bound to three nearest neighbors, 120 degrees apart. In diamond, they are sp and

2254-420: Is aided by isotopic dating and modeling of the geological history. Then surveyors must go to the area and collect samples, looking for kimberlite fragments or indicator minerals . The latter have compositions that reflect the conditions where diamonds form, such as extreme melt depletion or high pressures in eclogites . However, indicator minerals can be misleading; a better approach is geothermobarometry , where

2352-728: Is also indicative, but other materials have similar refractivity. Diamonds are extremely rare, with concentrations of at most parts per billion in source rock. Before the 20th century, most diamonds were found in alluvial deposits . Loose diamonds are also found along existing and ancient shorelines , where they tend to accumulate because of their size and density. Rarely, they have been found in glacial till (notably in Wisconsin and Indiana ), but these deposits are not of commercial quality. These types of deposit were derived from localized igneous intrusions through weathering and transport by wind or water . Most diamonds come from

2450-405: Is another mechanical property toughness , which is a material's ability to resist breakage from forceful impact. The toughness of natural diamond has been measured as 50–65  MPa ·m . This value is good compared to other ceramic materials, but poor compared to most engineering materials such as engineering alloys, which typically exhibit toughness over 80   MPa·m . As with any material,

2548-474: Is as follows: the decomposition of metal carbonyls is often violently precipitated by moisture or air, where oxygen reacts with the metal precursor to form metal or metal oxide along with carbon dioxide. Niobium(V) oxide layers can be produced by the thermal decomposition of niobium(V) ethoxide with the loss of diethyl ether according to the equation: Many variations of CVD can be utilized to synthesize graphene. Although many advancements have been made,

2646-414: Is called diamond cubic . It is formed of unit cells (see the figure) stacked together. Although there are 18 atoms in the figure, each corner atom is shared by eight unit cells and each atom in the center of a face is shared by two, so there are a total of eight atoms per unit cell. The length of each side of the unit cell is denoted by a and is 3.567  angstroms . The nearest neighbor distance in

2744-454: Is deposited from trichlorosilane (SiHCl 3 ) or silane (SiH 4 ), using the following reactions: This reaction is usually performed in LPCVD systems, with either pure silane feedstock, or a solution of silane with 70–80% nitrogen . Temperatures between 600 and 650 °C and pressures between 25 and 150 Pa yield a growth rate between 10 and 20 nm per minute. An alternative process uses

2842-402: Is exceptionally strong, and only atoms of nitrogen , boron , and hydrogen can be introduced into diamond during the growth at significant concentrations (up to atomic percents). Transition metals nickel and cobalt , which are commonly used for growth of synthetic diamond by high-pressure high-temperature techniques, have been detected in diamond as individual atoms; the maximum concentration

2940-578: Is extremely useful in the process of atomic layer deposition at depositing extremely thin layers of material. A variety of applications for such films exist. Gallium arsenide is used in some integrated circuits (ICs) and photovoltaic devices. Amorphous polysilicon is used in photovoltaic devices. Certain carbides and nitrides confer wear-resistance. Polymerization by CVD, perhaps the most versatile of all applications, allows for super-thin coatings which possess some very desirable qualities, such as lubricity, hydrophobicity and weather-resistance to name

3038-419: Is formed of layers stacked in a repeating ABCABC ... pattern. Diamonds can also form an ABAB ... structure, which is known as hexagonal diamond or lonsdaleite , but this is far less common and is formed under different conditions from cubic carbon. Diamonds occur most often as euhedral or rounded octahedra and twinned octahedra known as macles . As diamond's crystal structure has a cubic arrangement of

List of The Inheritance Cycle characters - Misplaced Pages Continue

3136-412: Is higher for flawless, pure crystals oriented to the <111> direction (along the longest diagonal of the cubic diamond lattice). Therefore, whereas it might be possible to scratch some diamonds with other materials, such as boron nitride , the hardest diamonds can only be scratched by other diamonds and nanocrystalline diamond aggregates . The hardness of diamond contributes to its suitability as

3234-404: Is hybrid rock with a chaotic mixture of small minerals and rock fragments ( clasts ) up to the size of watermelons. They are a mixture of xenocrysts and xenoliths (minerals and rocks carried up from the lower crust and mantle), pieces of surface rock, altered minerals such as serpentine , and new minerals that crystallized during the eruption. The texture varies with depth. The composition forms

3332-647: Is in the form of micro/nanoscale wires or needles (~100–300   nanometers in diameter, micrometers long), they can be elastically stretched by as much as 9–10 percent tensile strain without failure, with a maximum local tensile stress of about 89–98 GPa , very close to the theoretical limit for this material. Other specialized applications also exist or are being developed, including use as semiconductors : some blue diamonds are natural semiconductors, in contrast to most diamonds, which are excellent electrical insulators . The conductivity and blue color originate from boron impurity. Boron substitutes for carbon atoms in

3430-477: Is one of the 4C's (color, clarity, cut and carat weight) that helps in identifying the quality of diamonds. The Gemological Institute of America (GIA) developed 11 clarity scales to decide the quality of a diamond for its sale value. The GIA clarity scale spans from Flawless (FL) to included (I) having internally flawless (IF), very, very slightly included (VVS), very slightly included (VS) and slightly included (SI) in between. Impurities in natural diamonds are due to

3528-797: Is partially oxidized. The oxidized surface can be reduced by heat treatment under hydrogen flow. That is to say, this heat treatment partially removes oxygen-containing functional groups. But diamonds (sp C) are unstable against high temperature (above about 400 °C (752 °F)) under atmospheric pressure. The structure gradually changes into sp C above this temperature. Thus, diamonds should be reduced below this temperature. At room temperature, diamonds do not react with any chemical reagents including strong acids and bases. In an atmosphere of pure oxygen, diamond has an ignition point that ranges from 690 °C (1,274 °F) to 840 °C (1,540 °F); smaller crystals tend to burn more easily. It increases in temperature from red to white heat and burns with

3626-769: Is possible to treat regular diamonds under a combination of high pressure and high temperature to produce diamonds that are harder than the diamonds used in hardness gauges. Diamonds cut glass, but this does not positively identify a diamond because other materials, such as quartz, also lie above glass on the Mohs scale and can also cut it. Diamonds can scratch other diamonds, but this can result in damage to one or both stones. Hardness tests are infrequently used in practical gemology because of their potentially destructive nature. The extreme hardness and high value of diamond means that gems are typically polished slowly, using painstaking traditional techniques and greater attention to detail than

3724-452: Is the chemically stable form of carbon at room temperature and pressure , but diamond is metastable and converts to it at a negligible rate under those conditions. Diamond has the highest hardness and thermal conductivity of any natural material, properties that are used in major industrial applications such as cutting and polishing tools. They are also the reason that diamond anvil cells can subject materials to pressures found deep in

3822-454: Is the case with most other gemstones; these tend to result in extremely flat, highly polished facets with exceptionally sharp facet edges. Diamonds also possess an extremely high refractive index and fairly high dispersion. Taken together, these factors affect the overall appearance of a polished diamond and most diamantaires still rely upon skilled use of a loupe (magnifying glass) to identify diamonds "by eye". Somewhat related to hardness

3920-463: Is widely used. These metals can form useful silicides when deposited onto silicon. Mo, Ta and Ti are deposited by LPCVD, from their pentachlorides. Nickel, molybdenum, and tungsten can be deposited at low temperatures from their carbonyl precursors. In general, for an arbitrary metal M , the chloride deposition reaction is as follows: whereas the carbonyl decomposition reaction can happen spontaneously under thermal treatment or acoustic cavitation and

4018-739: The Earth's mantle , and most of this section discusses those diamonds. However, there are other sources. Some blocks of the crust, or terranes , have been buried deep enough as the crust thickened so they experienced ultra-high-pressure metamorphism . These have evenly distributed microdiamonds that show no sign of transport by magma. In addition, when meteorites strike the ground, the shock wave can produce high enough temperatures and pressures for microdiamonds and nanodiamonds to form. Impact-type microdiamonds can be used as an indicator of ancient impact craters. Popigai impact structure in Russia may have

List of The Inheritance Cycle characters - Misplaced Pages Continue

4116-566: The New England area in New South Wales , Australia. These diamonds are generally small, perfect to semiperfect octahedra, and are used to polish other diamonds. Their hardness is associated with the crystal growth form, which is single-stage crystal growth. Most other diamonds show more evidence of multiple growth stages, which produce inclusions, flaws, and defect planes in the crystal lattice, all of which affect their hardness. It

4214-559: The Wawa belt of the Superior province in Canada and microdiamonds in the island arc of Japan are found in a type of rock called lamprophyre . Kimberlites can be found in narrow (1 to 4 meters) dikes and sills, and in pipes with diameters that range from about 75 m to 1.5 km. Fresh rock is dark bluish green to greenish gray, but after exposure rapidly turns brown and crumbles. It

4312-436: The lithosphere . Such depths occur below cratons in mantle keels , the thickest part of the lithosphere. These regions have high enough pressure and temperature to allow diamonds to form and they are not convecting, so diamonds can be stored for billions of years until a kimberlite eruption samples them. Host rocks in a mantle keel include harzburgite and lherzolite , two type of peridotite . The most dominant rock type in

4410-536: The normal color range , and applies a grading scale from "D" (colorless) to "Z" (light yellow). Yellow diamonds of high color saturation or a different color, such as pink or blue, are called fancy colored diamonds and fall under a different grading scale. In 2008, the Wittelsbach Diamond , a 35.56-carat (7.112 g) blue diamond once belonging to the King of Spain, fetched over US$ 24 million at

4508-402: The upper mantle , peridotite is an igneous rock consisting mostly of the minerals olivine and pyroxene ; it is low in silica and high in magnesium . However, diamonds in peridotite rarely survive the trip to the surface. Another common source that does keep diamonds intact is eclogite , a metamorphic rock that typically forms from basalt as an oceanic plate plunges into the mantle at

4606-424: The Earth. Because the arrangement of atoms in diamond is extremely rigid, few types of impurity can contaminate it (two exceptions are boron and nitrogen ). Small numbers of defects or impurities (about one per million of lattice atoms) can color a diamond blue (boron), yellow (nitrogen), brown (defects), green (radiation exposure), purple, pink, orange, or red. Diamond also has a very high refractive index and

4704-443: The addition of many of diamond's important qualities to other materials. Since diamond has the highest thermal conductivity of any bulk material, layering diamond onto high heat-producing electronics (such as optics and transistors) allows the diamond to be used as a heat sink. Diamond films are being grown on valve rings, cutting tools, and other objects that benefit from diamond's hardness and exceedingly low wear rate. In each case

4802-966: The air due to the incorporation of silanol (Si-OH) in the glass. Infrared spectroscopy and mechanical strain as a function of temperature are valuable diagnostic tools for diagnosing such problems. Silicon nitride is often used as an insulator and chemical barrier in manufacturing ICs. The following two reactions deposit silicon nitride from the gas phase: Silicon nitride deposited by LPCVD contains up to 8% hydrogen. It also experiences strong tensile stress , which may crack films thicker than 200 nm. However, it has higher resistivity and dielectric strength than most insulators commonly available in microfabrication (10 Ω ·cm and 10 M V /cm, respectively). Another two reactions may be used in plasma to deposit SiNH: These films have much less tensile stress, but worse electrical properties (resistivity 10 to 10 Ω·cm, and dielectric strength 1 to 5 MV/cm). Tungsten CVD, used for forming conductive contacts, vias, and plugs on

4900-462: The atoms form tetrahedra, with each bound to four nearest neighbors. Tetrahedra are rigid, the bonds are strong, and, of all known substances, diamond has the greatest number of atoms per unit volume, which is why it is both the hardest and the least compressible . It also has a high density, ranging from 3150 to 3530 kilograms per cubic metre (over three times the density of water) in natural diamonds and 3520 kg/m in pure diamond. In graphite,

4998-420: The atoms, they have many facets that belong to a cube , octahedron, rhombicosidodecahedron , tetrakis hexahedron , or disdyakis dodecahedron . The crystals can have rounded-off and unexpressive edges and can be elongated. Diamonds (especially those with rounded crystal faces) are commonly found coated in nyf , an opaque gum-like skin. Some diamonds contain opaque fibers. They are referred to as opaque if

SECTION 50

#1732787704255

5096-456: The bonded dragons are more intellectual. All dragons hatch from eggs, in which they can remain for a very long time; once hatched they have a nearly infinite lifespan and continue growing their whole lives. They can breathe fire and reproduce at about six months old. When a dragon dies, it has the option to transfer its consciousness into a diamond -like organ inside its body called an Eldunarí. If it disgorges its "heart of hearts" before its death,

5194-410: The bonds between nearest neighbors are even stronger, but the bonds between parallel adjacent planes are weak, so the planes easily slip past each other. Thus, graphite is much softer than diamond. However, the stronger bonds make graphite less flammable. Diamonds have been adopted for many uses because of the material's exceptional physical characteristics. It has the highest thermal conductivity and

5292-512: The carbon source is more likely carbonate rocks and organic carbon in sediments, rather than coal. Diamonds are far from evenly distributed over the Earth. A rule of thumb known as Clifford's rule states that they are almost always found in kimberlites on the oldest part of cratons , the stable cores of continents with typical ages of 2.5   billion years or more. However, there are exceptions. The Argyle diamond mine in Australia ,

5390-436: The coloration, while pure or nearly pure diamonds are transparent and colorless. Most diamond impurities replace a carbon atom in the crystal lattice , known as a carbon flaw . The most common impurity, nitrogen, causes a slight to intense yellow coloration depending upon the type and concentration of nitrogen present. The Gemological Institute of America (GIA) classifies low saturation yellow and brown diamonds as diamonds in

5488-501: The compositions of minerals are analyzed as if they were in equilibrium with mantle minerals. Finding kimberlites requires persistence, and only a small fraction contain diamonds that are commercially viable. The only major discoveries since about 1980 have been in Canada. Since existing mines have lifetimes of as little as 25 years, there could be a shortage of new diamonds in the future. Diamonds are dated by analyzing inclusions using

5586-598: The decay of radioactive isotopes. Depending on the elemental abundances, one can look at the decay of rubidium to strontium , samarium to neodymium , uranium to lead , argon-40 to argon-39 , or rhenium to osmium . Those found in kimberlites have ages ranging from 1 to 3.5 billion years , and there can be multiple ages in the same kimberlite, indicating multiple episodes of diamond formation. The kimberlites themselves are much younger. Most of them have ages between tens of millions and 300 million years old, although there are some older exceptions (Argyle, Premier and Wawa). Thus,

5684-408: The deposition area. Some catalysts require another step to remove them from the sample material. The direct growth of high-quality, large single-crystalline domains of graphene on a dielectric substrate is of vital importance for applications in electronics and optoelectronics. Combining the advantages of both catalytic CVD and the ultra-flat dielectric substrate, gaseous catalyst-assisted CVD paves

5782-470: The diamond crystal lattice. Plastic deformation is the cause of color in some brown and perhaps pink and red diamonds. In order of increasing rarity, yellow diamond is followed by brown, colorless, then by blue, green, black, pink, orange, purple, and red. "Black", or carbonado , diamonds are not truly black, but rather contain numerous dark inclusions that give the gems their dark appearance. Colored diamonds contain impurities or structural defects that cause

5880-495: The diamond growth must be carefully done to achieve the necessary adhesion onto the substrate. Diamond's very high scratch resistance and thermal conductivity, combined with a lower coefficient of thermal expansion than Pyrex glass, a coefficient of friction close to that of Teflon ( polytetrafluoroethylene ) and strong lipophilicity would make it a nearly ideal non-stick coating for cookware if large substrate areas could be coated economically. CVD growth allows one to control

5978-506: The diamond lattice is 1.732 a /4 where a is the lattice constant, usually given in Angstrøms as a = 3.567 Å, which is 0.3567 nm. A diamond cubic lattice can be thought of as two interpenetrating face-centered cubic lattices with one displaced by 1 ⁄ 4 of the diagonal along a cubic cell, or as one lattice with two atoms associated with each lattice point. Viewed from a <1 1 1> crystallographic direction , it

SECTION 60

#1732787704255

6076-415: The diamond lattice, donating a hole into the valence band . Substantial conductivity is commonly observed in nominally undoped diamond grown by chemical vapor deposition . This conductivity is associated with hydrogen -related species adsorbed at the surface, and it can be removed by annealing or other surface treatments. Thin needles of diamond can be made to vary their electronic band gap from

6174-407: The diamonds' surface cannot be wet by water, but can be easily wet and stuck by oil. This property can be utilized to extract diamonds using oil when making synthetic diamonds. However, when diamond surfaces are chemically modified with certain ions, they are expected to become so hydrophilic that they can stabilize multiple layers of water ice at human body temperature . The surface of diamonds

6272-428: The dragon has no choice but to retreat into it when it dies. Such Eldunarí will live on until another creature destroys them. Dragons are a variety of colors, which do not appear to be related to their parents' colors. The elves are one of the oldest races, but not native to Alagaësia. They came from a land called Alalea. They are very gifted in magic and live in the forest called Du Weldenvarden. The dwarves are one of

6370-449: The fibers grow from a clear substrate or fibrous if they occupy the entire crystal. Their colors range from yellow to green or gray, sometimes with cloud-like white to gray impurities. Their most common shape is cuboidal, but they can also form octahedra, dodecahedra, macles, or combined shapes. The structure is the result of numerous impurities with sizes between 1 and 5 microns. These diamonds probably formed in kimberlite magma and sampled

6468-399: The flow ratio of methane and hydrogen are not appropriate, it will cause undesirable results. During the growth of graphene, the role of methane is to provide a carbon source, the role of hydrogen is to provide H atoms to corrode amorphous C, and improve the quality of graphene. But excessive H atoms can also corrode graphene. As a result, the integrity of the crystal lattice is destroyed, and

6566-673: The flowing glass on cooling; these crystals are not readily etched in the standard reactive plasmas used to pattern oxides, and will result in circuit defects in integrated circuit manufacturing. Besides these intentional impurities, CVD oxide may contain byproducts of the deposition. TEOS produces a relatively pure oxide, whereas silane introduces hydrogen impurities, and dichlorosilane introduces chlorine . Lower temperature deposition of silicon dioxide and doped glasses from TEOS using ozone rather than oxygen has also been explored (350 to 500 °C). Ozone glasses have excellent conformality but tend to be hygroscopic – that is, they absorb water from

6664-426: The gases are broken down and more complex chemistries occur. The actual chemical process for diamond growth is still under study and is complicated by the very wide variety of diamond growth processes used. Using CVD, films of diamond can be grown over large areas of substrate with control over the properties of the diamond produced. In the past, when high pressure high temperature (HPHT) techniques were used to produce

6762-460: The graphene samples. Raman spectroscopy is used to characterize and identify the graphene particles; X-ray spectroscopy is used to characterize chemical states; TEM is used to provide fine details regarding the internal composition of graphene; SEM is used to examine the surface and topography. Sometimes, atomic force microscopy (AFM) is used to measure local properties such as friction and magnetism. Cold wall CVD technique can be used to study

6860-408: The hardness and transparency of diamond, are the reasons that diamond anvil cells are the main tool for high pressure experiments. These anvils have reached pressures of 600 GPa . Much higher pressures may be possible with nanocrystalline diamonds. Usually, attempting to deform bulk diamond crystal by tension or bending results in brittle fracture. However, when single crystalline diamond

6958-455: The highest sound velocity. It has low adhesion and friction, and its coefficient of thermal expansion is extremely low. Its optical transparency extends from the far infrared to the deep ultraviolet and it has high optical dispersion . It also has high electrical resistance. It is chemically inert, not reacting with most corrosive substances, and has excellent biological compatibility. The equilibrium pressure and temperature conditions for

7056-483: The humans and elves who bonded with dragon hatchlings, as well as a kind of police force existing in the time before Galbatorix's rise to power. They began with the first Eragon, an elf who adopted a newly hatched dragon during a massive war between their two species. Their rule ended 100 years before the events of Eragon with the death of Vrael . In the books, the dragons are grouped into those bonded to Riders and wild dragons. The wild dragons are far more fierce, while

7154-423: The kimberlites formed independently of the diamonds and served only to transport them to the surface. Kimberlites are also much younger than the cratons they have erupted through. The reason for the lack of older kimberlites is unknown, but it suggests there was some change in mantle chemistry or tectonics. No kimberlite has erupted in human history. Most gem-quality diamonds come from depths of 150–250 km in

7252-474: The largest producer of diamonds by weight in the world, is located in a mobile belt , also known as an orogenic belt , a weaker zone surrounding the central craton that has undergone compressional tectonics. Instead of kimberlite , the host rock is lamproite . Lamproites with diamonds that are not economically viable are also found in the United States, India, and Australia. In addition, diamonds in

7350-467: The macroscopic geometry of a diamond contributes to its resistance to breakage. Diamond has a cleavage plane and is therefore more fragile in some orientations than others. Diamond cutters use this attribute to cleave some stones before faceting them. "Impact toughness" is one of the main indexes to measure the quality of synthetic industrial diamonds. Diamond has compressive yield strength of 130–140   GPa. This exceptionally high value, along with

7448-591: The melting point of diamond increases slowly with increasing pressure; but at pressures of hundreds of GPa, it decreases. At high pressures, silicon and germanium have a BC8 body-centered cubic crystal structure, and a similar structure is predicted for carbon at high pressures. At 0 K , the transition is predicted to occur at 1100 GPa . Results published in an article in the scientific journal Nature Physics in 2010 suggest that, at ultra-high pressures and temperatures (about 10 million atmospheres or 1 TPa and 50,000 °C), diamond melts into

7546-579: The melts to carry diamonds to the surface before they dissolve. Kimberlite pipes can be difficult to find. They weather quickly (within a few years after exposure) and tend to have lower topographic relief than surrounding rock. If they are visible in outcrops, the diamonds are never visible because they are so rare. In any case, kimberlites are often covered with vegetation, sediments, soils, or lakes. In modern searches, geophysical methods such as aeromagnetic surveys , electrical resistivity , and gravimetry , help identify promising regions to explore. This

7644-418: The method of generating plasma—many different materials that can be considered diamond can be made. Single-crystal diamond can be made containing various dopants . Polycrystalline diamond consisting of grain sizes from several nanometers to several micrometers can be grown. Some polycrystalline diamond grains are surrounded by thin, non-diamond carbon, while others are not. These different factors affect

7742-469: The normal 5.6 eV to near zero by selective mechanical deformation. High-purity diamond wafers 5 cm in diameter exhibit perfect resistance in one direction and perfect conductance in the other, creating the possibility of using them for quantum data storage. The material contains only 3 parts per million of nitrogen. The diamond was grown on a stepped substrate, which eliminated cracking. Diamonds are naturally lipophilic and hydrophobic , which means

7840-473: The only humanoids native to Alagaësia. Their mythology holds that they were born from the rock of the mountains there. Diamond Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic . Diamond as a form of carbon is a tasteless, odourless, strong, brittle solid, colourless in pure form, a poor conductor of electricity, and insoluble in water. Another solid form of carbon known as graphite

7938-620: The presence of natural minerals and oxides. The clarity scale grades the diamond based on the color, size, location of impurity and quantity of clarity visible under 10x magnification. Inclusions in diamond can be extracted by optical methods. The process is to take pre-enhancement images, identifying the inclusion removal part and finally removing the diamond facets and noises. Between 25% and 35% of natural diamonds exhibit some degree of fluorescence when examined under invisible long-wave ultraviolet light or higher energy radiation sources such as X-rays and lasers. Incandescent lighting will not cause

8036-415: The processes listed below are not commercially viable yet. The most popular carbon source that is used to produce graphene is methane gas. One of the less popular choices is petroleum asphalt, notable for being inexpensive but more difficult to work with. Although methane is the most popular carbon source, hydrogen is required during the preparation process to promote carbon deposition on the substrate. If

8134-407: The properties of the diamond produced. In the area of diamond growth, the word "diamond" is used as a description of any material primarily made up of sp3-bonded carbon, and there are many different types of diamond included in this. By regulating the processing parameters—especially the gases introduced, but also including the pressure the system is operated under, the temperature of the diamond, and

8232-447: The quality of graphene is deteriorated. Therefore, by optimizing the flow rate of methane and hydrogen gases in the growth process, the quality of graphene can be improved. The use of catalyst is viable in changing the physical process of graphene production. Notable examples include iron nanoparticles, nickel foam, and gallium vapor. These catalysts can either be used in situ during graphene buildup, or situated at some distance away at

8330-583: The semiconductor industry. In spite of graphene's exciting electronic and thermal properties, it is unsuitable as a transistor for future digital devices, due to the absence of a bandgap between the conduction and valence bands. This makes it impossible to switch between on and off states with respect to electron flow. Scaling things down, graphene nanoribbons of less than 10 nm in width do exhibit electronic bandgaps and are therefore potential candidates for digital devices. Precise control over their dimensions, and hence electronic properties, however, represents

8428-782: The silane reaction is also done in APCVD. CVD oxide invariably has lower quality than thermal oxide , but thermal oxidation can only be used in the earliest stages of IC manufacturing. Oxide may also be grown with impurities ( alloying or " doping "). This may have two purposes. During further process steps that occur at high temperature, the impurities may diffuse from the oxide into adjacent layers (most notably silicon) and dope them. Oxides containing 5–15% impurities by mass are often used for this purpose. In addition, silicon dioxide alloyed with phosphorus pentoxide ("P-glass") can be used to smooth out uneven surfaces. P-glass softens and reflows at temperatures above 1000 °C. This process requires

8526-529: The size of the resulting indentation, a Vickers hardness value for the material can be determined. Diamond's great hardness relative to other materials has been known since antiquity, and is the source of its name. This does not mean that it is infinitely hard, indestructible, or unscratchable. Indeed, diamonds can be scratched by other diamonds and worn down over time even by softer materials, such as vinyl phonograph records . Diamond hardness depends on its purity, crystalline perfection, and orientation: hardness

8624-419: The stable phase of carbon is graphite, but diamond is metastable and its rate of conversion to graphite is negligible. However, at temperatures above about 4500 K , diamond rapidly converts to graphite. Rapid conversion of graphite to diamond requires pressures well above the equilibrium line: at 2000 K , a pressure of 35 GPa is needed. Above the graphite–diamond–liquid carbon triple point,

8722-620: The substrate surface to produce the desired deposit. Frequently, volatile by-products are also produced, which are removed by gas flow through the reaction chamber. Microfabrication processes widely use CVD to deposit materials in various forms, including: monocrystalline , polycrystalline , amorphous , and epitaxial . These materials include: silicon ( dioxide , carbide , nitride , oxynitride ), carbon ( fiber , nanofibers , nanotubes , diamond and graphene ), fluorocarbons , filaments , tungsten , titanium nitride and various high-κ dielectrics . The term chemical vapour deposition

8820-478: The substrate. On the other hand, temperatures used range from 800 to 1050 °C. High temperatures translate to an increase of the rate of reaction. Caution has to be exercised as high temperatures do pose higher danger levels in addition to greater energy costs. Hydrogen gas and inert gases such as argon are flowed into the system. These gases act as a carrier, enhancing surface reaction and improving reaction rate, thereby increasing deposition of graphene onto

8918-436: The substrate. Standard quartz tubing and chambers are used in CVD of graphene. Quartz is chosen because it has a very high melting point and is chemically inert. In other words, quartz does not interfere with any physical or chemical reactions regardless of the conditions. Raman spectroscopy, X-ray spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) are used to examine and characterize

9016-524: The surface in volcanic eruptions and deposited in igneous rocks known as kimberlites and lamproites . Synthetic diamonds can be grown from high-purity carbon under high pressures and temperatures or from hydrocarbon gases by chemical vapor deposition (CVD). Imitation diamonds can also be made out of materials such as cubic zirconia and silicon carbide . Natural, synthetic, and imitation diamonds are most commonly distinguished using optical techniques or thermal conductivity measurements. Diamond

9114-474: The thermal stability of the substrate; for instance, aluminium is sensitive to high temperature. Silane deposits between 300 and 500 °C, dichlorosilane at around 900 °C, and TEOS between 650 and 750 °C, resulting in a layer of low- temperature oxide (LTO). However, silane produces a lower-quality oxide than the other methods (lower dielectric strength , for instance), and it deposits non conformally . Any of these reactions may be used in LPCVD, but

9212-546: The underlying surface science involved in graphene nucleation and growth as it allows unprecedented control of process parameters like gas flow rates, temperature and pressure as demonstrated in a recent study. The study was carried out in a home-built vertical cold wall system utilizing resistive heating by passing direct current through the substrate. It provided conclusive insight into a typical surface-mediated nucleation and growth mechanism involved in two-dimensional materials grown using catalytic CVD under conditions sought out in

9310-454: The volatiles. Diamonds can also form polycrystalline aggregates. There have been attempts to classify them into groups with names such as boart , ballas , stewartite, and framesite, but there is no widely accepted set of criteria. Carbonado, a type in which the diamond grains were sintered (fused without melting by the application of heat and pressure), is black in color and tougher than single crystal diamond. It has never been observed in

9408-479: The way for synthesizing high-quality graphene for device applications while avoiding the transfer process. Physical conditions such as surrounding pressure, temperature, carrier gas, and chamber material play a big role in production of graphene. Most systems use LPCVD with pressures ranging from 1 to 1500 Pa. However, some still use APCVD. Low pressures are used more commonly as they help prevent unwanted reactions and produce more uniform thickness of deposition on

9506-430: The world's largest diamond deposit, estimated at trillions of carats, and formed by an asteroid impact. A common misconception is that diamonds form from highly compressed coal . Coal is formed from buried prehistoric plants, and most diamonds that have been dated are far older than the first land plants . It is possible that diamonds can form from coal in subduction zones , but diamonds formed in this way are rare, and

9604-474: Was coined in 1960 by John M. Blocher, Jr. who intended to differentiate chemical from physical vapour deposition (PVD). CVD is practiced in a variety of formats. These processes generally differ in the means by which chemical reactions are initiated. Most modern CVD is either LPCVD or UHVCVD. CVD is commonly used to deposit conformal films and augment substrate surfaces in ways that more traditional surface modification techniques are not capable of. CVD

#254745