Misplaced Pages

Mars Orbiter Laser Altimeter

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Mars Orbiter Laser Altimeter ( MOLA ) was one of five instruments on the Mars Global Surveyor (MGS) spacecraft , which operated in Mars orbit from September 1997 to November 2006. However, the MOLA instrument transmitted altimetry data only until June 2001. The MOLA instrument transmitted infrared laser pulses towards Mars at a rate of 10 times per second and measured the time of flight to determine the range (distance) of the MGS spacecraft to the Martian surface. The range measurements resulted in precise topographic maps of Mars. The precision maps are applicable to studies in geophysics , geology and atmospheric circulation . MOLA also functioned as a passive radiometer and measured the radiance of the surface of Mars at 1064 nanometers.

#664335

112-421: A laser altimeter is an instrument that measures the distance from an orbiting spacecraft to the surface of the planet or asteroid that the spacecraft is orbiting. The distance is determined by measuring the complete round trip time of a laser pulse from the instrument to the body's surface, and back to the instrument. The distance to the object can be determined by multiplying the round-trip pulse time by

224-417: A time-of-flight camera is used to collect information about both the 3-D location and intensity of the light incident on it in every frame. However, in scanning lidar, this camera contains only a point sensor, while in flash lidar, the camera contains either a 1-D or a 2-D sensor array , each pixel of which collects 3-D location and intensity information. In both cases, the depth information is collected using

336-404: A "pulse theory" and compared the spreading of light to that of waves in water in his 1665 work Micrographia ("Observation IX"). In 1672 Hooke suggested that light's vibrations could be perpendicular to the direction of propagation. Christiaan Huygens (1629–1695) worked out a mathematical wave theory of light in 1678 and published it in his Treatise on Light in 1690. He proposed that light

448-609: A better representation of how "bright" a light appears to be than raw intensity. They relate to raw power by a quantity called luminous efficacy and are used for purposes like determining how to best achieve sufficient illumination for various tasks in indoor and outdoor settings. The illumination measured by a photocell sensor does not necessarily correspond to what is perceived by the human eye and without filters which may be costly, photocells and charge-coupled devices (CCD) tend to respond to some infrared , ultraviolet or both. Light exerts physical pressure on objects in its path,

560-556: A body could be so massive that light could not escape from it. In other words, it would become what is now called a black hole . Laplace withdrew his suggestion later, after a wave theory of light became firmly established as the model for light (as has been explained, neither a particle or wave theory is fully correct). A translation of Newton's essay on light appears in The large scale structure of space-time , by Stephen Hawking and George F. R. Ellis . The fact that light could be polarized

672-399: A combination with a polygon mirror, and a dual axis scanner . Optic choices affect the angular resolution and range that can be detected. A hole mirror or a beam splitter are options to collect a return signal. Two main photodetector technologies are used in lidar: solid state photodetectors, such as silicon avalanche photodiodes , or photomultipliers . The sensitivity of the receiver

784-423: A different principle described in a Flash Lidar below. Microelectromechanical mirrors (MEMS) are not entirely solid-state. However, their tiny form factor provides many of the same cost benefits. A single laser is directed to a single mirror that can be reoriented to view any part of the target field. The mirror spins at a rapid rate. However, MEMS systems generally operate in a single plane (left to right). To add

896-738: A distance requires a powerful burst of light. The power is limited to levels that do not damage human retinas. Wavelengths must not affect human eyes. However, low-cost silicon imagers do not read light in the eye-safe spectrum. Instead, gallium-arsenide imagers are required, which can boost costs to $ 200,000. Gallium-arsenide is the same compound used to produce high-cost, high-efficiency solar panels usually used in space applications. Lidar can be oriented to nadir , zenith , or laterally. For example, lidar altimeters look down, an atmospheric lidar looks up, and lidar-based collision avoidance systems are side-looking. Laser projections of lidars can be manipulated using various methods and mechanisms to produce

1008-416: A few peak returns, while more recent systems acquire and digitize the entire reflected signal. Scientists analysed the waveform signal for extracting peak returns using Gaussian decomposition . Zhuang et al, 2017 used this approach for estimating aboveground biomass. Handling the huge amounts of full-waveform data is difficult. Therefore, Gaussian decomposition of the waveforms is effective, since it reduces

1120-467: A force of about 3.3 piconewtons on the object being illuminated; thus, one could lift a U.S. penny with laser pointers, but doing so would require about 30 billion 1-mW laser pointers.   However, in nanometre -scale applications such as nanoelectromechanical systems (NEMS), the effect of light pressure is more significant and exploiting light pressure to drive NEMS mechanisms and to flip nanometre-scale physical switches in integrated circuits

1232-550: A green spectrum (532 nm) laser beam. Two beams are projected onto a fast rotating mirror, which creates an array of points. One of the beams penetrates the water and also detects the bottom surface of the water under favorable conditions. Water depth measurable by lidar depends on the clarity of the water and the absorption of the wavelength used. Water is most transparent to green and blue light, so these will penetrate deepest in clean water. Blue-green light of 532 nm produced by frequency doubled solid-state IR laser output

SECTION 10

#1732787488665

1344-411: A lasting molecular change (a change in conformation) in the visual molecule retinal in the human retina, which change triggers the sensation of vision. There exist animals that are sensitive to various types of infrared, but not by means of quantum-absorption. Infrared sensing in snakes depends on a kind of natural thermal imaging , in which tiny packets of cellular water are raised in temperature by

1456-450: A medium faster than the speed of light in that medium can produce visible Cherenkov radiation . Certain chemicals produce visible radiation by chemoluminescence . In living things, this process is called bioluminescence . For example, fireflies produce light by this means and boats moving through water can disturb plankton which produce a glowing wake. Certain substances produce light when they are illuminated by more energetic radiation,

1568-410: A microscopic array of individual antennas. Controlling the timing (phase) of each antenna steers a cohesive signal in a specific direction. Phased arrays have been used in radar since the 1940s. On the order of a million optical antennas are used to see a radiation pattern of a certain size in a certain direction. To achieve this the phase of each individual antenna (emitter) are precisely controlled. It

1680-413: A moving vehicle to collect data along a path. These scanners are almost always paired with other kinds of equipment, including GNSS receivers and IMUs . One example application is surveying streets, where power lines, exact bridge heights, bordering trees, etc. all need to be taken into account. Instead of collecting each of these measurements individually in the field with a tachymeter , a 3-D model from

1792-513: A new imaging chip with more than 16,384 pixels, each able to image a single photon, enabling them to capture a wide area in a single image. An earlier generation of the technology with one fourth as many pixels was dispatched by the U.S. military after the January 2010 Haiti earthquake. A single pass by a business jet at 3,000 m (10,000 ft) over Port-au-Prince was able to capture instantaneous snapshots of 600 m (2,000 ft) squares of

1904-424: A phenomenon which can be deduced by Maxwell's equations , but can be more easily explained by the particle nature of light: photons strike and transfer their momentum. Light pressure is equal to the power of the light beam divided by c , the speed of light.   Due to the magnitude of c , the effect of light pressure is negligible for everyday objects.   For example, a one-milliwatt laser pointer exerts

2016-431: A point cloud can be created where all of the measurements needed can be made, depending on the quality of the data collected. This eliminates the problem of forgetting to take a measurement, so long as the model is available, reliable and has an appropriate level of accuracy. Terrestrial lidar mapping involves a process of occupancy grid map generation . The process involves an array of cells divided into grids which employ

2128-419: A process known as fluorescence . Some substances emit light slowly after excitation by more energetic radiation. This is known as phosphorescence . Phosphorescent materials can also be excited by bombarding them with subatomic particles. Cathodoluminescence is one example. This mechanism is used in cathode-ray tube television sets and computer monitors . Certain other mechanisms can produce light: When

2240-407: A process to store the height values when lidar data falls into the respective grid cell. A binary map is then created by applying a particular threshold to the cell values for further processing. The next step is to process the radial distance and z-coordinates from each scan to identify which 3-D points correspond to each of the specified grid cell leading to the process of data formation. There are

2352-490: A scanning effect: the standard spindle-type, which spins to give a 360-degree view; solid-state lidar, which has a fixed field of view, but no moving parts, and can use either MEMS or optical phased arrays to steer the beams; and flash lidar, which spreads a flash of light over a large field of view before the signal bounces back to a detector. Lidar applications can be divided into airborne and terrestrial types. The two types require scanners with varying specifications based on

SECTION 20

#1732787488665

2464-400: A second dimension generally requires a second mirror that moves up and down. Alternatively, another laser can hit the same mirror from another angle. MEMS systems can be disrupted by shock/vibration and may require repeated calibration. Image development speed is affected by the speed at which they are scanned. Options to scan the azimuth and elevation include dual oscillating plane mirrors,

2576-410: A source. One of Newton's arguments against the wave nature of light was that waves were known to bend around obstacles, while light travelled only in straight lines. He did, however, explain the phenomenon of the diffraction of light (which had been observed by Francesco Grimaldi ) by allowing that a light particle could create a localised wave in the aether . Newton's theory could be used to predict

2688-504: A stand-alone word in 1963 suggests that it originated as a portmanteau of " light " and "radar": "Eventually the laser may provide an extremely sensitive detector of particular wavelengths from distant objects. Meanwhile, it is being used to study the Moon by 'lidar' (light radar) ..." The name " photonic radar " is sometimes used to mean visible-spectrum range finding like lidar. Lidar's first applications were in meteorology, for which

2800-414: A surface between one transparent material and another. It is described by Snell's Law : where θ 1 is the angle between the ray and the surface normal in the first medium, θ 2 is the angle between the ray and the surface normal in the second medium and n 1 and n 2 are the indices of refraction , n = 1 in a vacuum and n > 1 in a transparent substance . When a beam of light crosses

2912-557: A value of 298 000 000  m/s in 1862. Albert A. Michelson conducted experiments on the speed of light from 1877 until his death in 1931. He refined Foucault's methods in 1926 using improved rotating mirrors to measure the time it took light to make a round trip from Mount Wilson to Mount San Antonio in California. The precise measurements yielded a speed of 299 796 000  m/s . The effective velocity of light in various transparent substances containing ordinary matter ,

3024-440: A wide range of materials, including non-metallic objects, rocks, rain, chemical compounds, aerosols , clouds and even single molecules . A narrow laser beam can map physical features with very high resolutions ; for example, an aircraft can map terrain at 30-centimetre (12 in) resolution or better. The essential concept of lidar was originated by E. H. Synge in 1930, who envisaged the use of powerful searchlights to probe

3136-544: A wide variety of lidar applications, in addition to the applications listed below, as it is often mentioned in National lidar dataset programs. These applications are largely determined by the range of effective object detection; resolution, which is how accurately the lidar identifies and classifies objects; and reflectance confusion, meaning how well the lidar can see something in the presence of bright objects, like reflective signs or bright sun. Companies are working to cut

3248-494: Is electromagnetic radiation that can be perceived by the human eye . Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terahertz . The visible band sits adjacent to the infrared (with longer wavelengths and lower frequencies) and the ultraviolet (with shorter wavelengths and higher frequencies), called collectively optical radiation . In physics ,

3360-636: Is a case study that used the voxelisation approach for detecting dead standing Eucalypt trees in Australia. Terrestrial applications of lidar (also terrestrial laser scanning ) happen on the Earth's surface and can be either stationary or mobile. Stationary terrestrial scanning is most common as a survey method, for example in conventional topography, monitoring, cultural heritage documentation and forensics. The 3-D point clouds acquired from these types of scanners can be matched with digital images taken of

3472-454: Is a method for determining ranges by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. Lidar may operate in a fixed direction (e.g., vertical) or it may scan multiple directions, in which case it is known as lidar scanning or 3D laser scanning , a special combination of 3-D scanning and laser scanning . Lidar has terrestrial, airborne, and mobile applications. Lidar

Mars Orbiter Laser Altimeter - Misplaced Pages Continue

3584-530: Is also affected by the colour spectrum of light, a process known as photomorphogenesis . The speed of light in vacuum is defined to be exactly 299 792 458  m/s (approximately 186,282 miles per second). The fixed value of the speed of light in SI units results from the fact that the metre is now defined in terms of the speed of light. All forms of electromagnetic radiation move at exactly this same speed in vacuum. Different physicists have attempted to measure

3696-459: Is an active area of research. At larger scales, light pressure can cause asteroids to spin faster, acting on their irregular shapes as on the vanes of a windmill .   The possibility of making solar sails that would accelerate spaceships in space is also under investigation. Although the motion of the Crookes radiometer was originally attributed to light pressure, this interpretation

3808-447: Is another parameter that has to be balanced in a lidar design. Lidar sensors mounted on mobile platforms such as airplanes or satellites require instrumentation to determine the absolute position and orientation of the sensor. Such devices generally include a Global Positioning System receiver and an inertial measurement unit (IMU). Lidar uses active sensors that supply their own illumination source. The energy source hits objects and

3920-429: Is caused by the surface roughness of the reflecting surfaces, and internal scatterance is caused by the difference of refractive index between the particles and medium inside the object. Like transparent objects, translucent objects allow light to transmit through, but translucent objects also scatter certain wavelength of light via internal scatterance. Refraction is the bending of light rays when passing through

4032-470: Is classified by wavelength into radio waves , microwaves , infrared , the visible spectrum that we perceive as light, ultraviolet , X-rays and gamma rays . The designation " radiation " excludes static electric , magnetic and near fields . The behavior of EMR depends on its wavelength. Higher frequencies have shorter wavelengths and lower frequencies have longer wavelengths. When EMR interacts with single atoms and molecules, its behavior depends on

4144-438: Is commonly used to make high-resolution maps, with applications in surveying , geodesy , geomatics , archaeology , geography , geology , geomorphology , seismology , forestry , atmospheric physics , laser guidance , airborne laser swathe mapping (ALSM), and laser altimetry . It is used to make digital 3-D representations of areas on the Earth's surface and ocean bottom of the intertidal and near coastal zone by varying

4256-460: Is for the green laser light to penetrate water about one and a half to two times Secchi depth in Indonesian waters. Water temperature and salinity have an effect on the refractive index which has a small effect on the depth calculation. The data obtained shows the full extent of the land surface exposed above the sea floor. This technique is extremely useful as it will play an important role in

4368-462: Is incorrect; the characteristic Crookes rotation is the result of a partial vacuum. This should not be confused with the Nichols radiometer , in which the (slight) motion caused by torque (though not enough for full rotation against friction) is directly caused by light pressure. As a consequence of light pressure, Einstein in 1909 predicted the existence of "radiation friction" which would oppose

4480-654: Is less than in vacuum. For example, the speed of light in water is about 3/4 of that in vacuum. Two independent teams of physicists were said to bring light to a "complete standstill" by passing it through a Bose–Einstein condensate of the element rubidium , one team at Harvard University and the Rowland Institute for Science in Cambridge, Massachusetts and the other at the Harvard–Smithsonian Center for Astrophysics , also in Cambridge. However,

4592-418: Is not visible in night vision goggles , unlike the shorter 1,000 nm infrared laser. Airborne topographic mapping lidars generally use 1,064 nm diode-pumped YAG lasers, while bathymetric (underwater depth research) systems generally use 532 nm frequency-doubled diode pumped YAG lasers because 532 nm penetrates water with much less attenuation than 1,064 nm. Laser settings include

Mars Orbiter Laser Altimeter - Misplaced Pages Continue

4704-448: Is processed using a toolbox called Toolbox for Lidar Data Filtering and Forest Studies (TIFFS) for lidar data filtering and terrain study software. The data is interpolated to digital terrain models using the software. The laser is directed at the region to be mapped and each point's height above the ground is calculated by subtracting the original z-coordinate from the corresponding digital terrain model elevation. Based on this height above

4816-449: Is regarded as the start of modern physical optics. Pierre Gassendi (1592–1655), an atomist, proposed a particle theory of light which was published posthumously in the 1660s. Isaac Newton studied Gassendi's work at an early age and preferred his view to Descartes's theory of the plenum . He stated in his Hypothesis of Light of 1675 that light was composed of corpuscles (particles of matter) which were emitted in all directions from

4928-708: Is the ability to filter out reflections from vegetation from the point cloud model to create a digital terrain model which represents ground surfaces such as rivers, paths, cultural heritage sites, etc., which are concealed by trees. Within the category of airborne lidar, there is sometimes a distinction made between high-altitude and low-altitude applications, but the main difference is a reduction in both accuracy and point density of data acquired at higher altitudes. Airborne lidar can also be used to create bathymetric models in shallow water. The main constituents of airborne lidar include digital elevation models (DEM) and digital surface models (DSM). The points and ground points are

5040-417: Is the standard for airborne bathymetry. This light can penetrate water but pulse strength attenuates exponentially with distance traveled through the water. Lidar can measure depths from about 0.9 to 40 m (3 to 131 ft), with vertical accuracy in the order of 15 cm (6 in). The surface reflection makes water shallower than about 0.9 m (3 ft) difficult to resolve, and absorption limits

5152-476: Is very difficult, if possible at all, to use the same technique in a lidar. The main problems are that all individual emitters must be coherent (technically coming from the same "master" oscillator or laser source), have dimensions about the wavelength of the emitted light (1 micron range) to act as a point source with their phases being controlled with high accuracy. Several companies are working on developing commercial solid-state lidar units but these units utilize

5264-504: The Académie des Sciences in 1817. Siméon Denis Poisson added to Fresnel's mathematical work to produce a convincing argument in favor of the wave theory, helping to overturn Newton's corpuscular theory. By the year 1821, Fresnel was able to show via mathematical methods that polarization could be explained by the wave theory of light if and only if light was entirely transverse, with no longitudinal vibration whatsoever. The weakness of

5376-521: The Hughes Aircraft Company introduced the first lidar-like system in 1961, shortly after the invention of the laser. Intended for satellite tracking, this system combined laser-focused imaging with the ability to calculate distances by measuring the time for a signal to return using appropriate sensors and data acquisition electronics. It was originally called "Colidar" an acronym for "coherent light detecting and ranging", derived from

5488-646: The National Center for Atmospheric Research used it to measure clouds and pollution. The general public became aware of the accuracy and usefulness of lidar systems in 1971 during the Apollo ;15 mission, when astronauts used a laser altimeter to map the surface of the Moon. Although the English language no longer treats "radar" as an acronym, (i.e., uncapitalized), the word "lidar" was capitalized as "LIDAR" or "LiDAR" in some publications beginning in

5600-428: The aurora borealis offer many clues as to the nature of light. A transparent object allows light to transmit or pass through. Conversely, an opaque object does not allow light to transmit through and instead reflecting or absorbing the light it receives. Most objects do not reflect or transmit light specularly and to some degree scatters the incoming light, which is called glossiness . Surface scatterance

5712-577: The quanta of electromagnetic field, and can be analyzed as both waves and particles . The study of light, known as optics , is an important research area in modern physics . The main source of natural light on Earth is the Sun . Historically, another important source of light for humans has been fire , from ancient campfires to modern kerosene lamps . With the development of electric lights and power systems , electric lighting has effectively replaced firelight. Generally, electromagnetic radiation (EMR)

SECTION 50

#1732787488665

5824-431: The reflection of light, but could only explain refraction by incorrectly assuming that light accelerated upon entering a denser medium because the gravitational pull was greater. Newton published the final version of his theory in his Opticks of 1704. His reputation helped the particle theory of light to hold sway during the eighteenth century. The particle theory of light led Pierre-Simon Laplace to argue that

5936-624: The refraction of light in his book Optics . In ancient India , the Hindu schools of Samkhya and Vaisheshika , from around the early centuries AD developed theories on light. According to the Samkhya school, light is one of the five fundamental "subtle" elements ( tanmatra ) out of which emerge the gross elements. The atomicity of these elements is not specifically mentioned and it appears that they were actually taken to be continuous. The Vishnu Purana refers to sunlight as "the seven rays of

6048-463: The speed of light and dividing it by two. With a known attitude and position of the instrument or spacecraft, the location on the surface, which is illuminated by the laser pulse can be determined. The series of the laser spot, or footprint, locations provides a profile of the surface. [REDACTED] Above is a pole-to-pole view of Martian topography from the first MOLA global topographic model [Smith et al., Science, 1999]. The slice runs from

6160-416: The time of flight of the laser pulse (i.e., the time it takes each laser pulse to hit the target and return to the sensor), which requires the pulsing of the laser and acquisition by the camera to be synchronized. The result is a camera that takes pictures of distance, instead of colors. Flash lidar is especially advantageous, when compared to scanning lidar, when the camera, scene, or both are moving, since

6272-506: The 1980s. No consensus exists on capitalization. Various publications refer to lidar as "LIDAR", "LiDAR", "LIDaR", or "Lidar". The USGS uses both "LIDAR" and "lidar", sometimes in the same document; the New York Times predominantly uses "lidar" for staff-written articles, although contributing news feeds such as Reuters may use Lidar. Lidar uses ultraviolet , visible , or near infrared light to image objects. It can target

6384-456: The amount of energy per quantum it carries. EMR in the visible light region consists of quanta (called photons ) that are at the lower end of the energies that are capable of causing electronic excitation within molecules, which leads to changes in the bonding or chemistry of the molecule. At the lower end of the visible light spectrum, EMR becomes invisible to humans (infrared) because its photons no longer have enough individual energy to cause

6496-470: The apparent size of images. Magnifying glasses , spectacles , contact lenses , microscopes and refracting telescopes are all examples of this manipulation. There are many sources of light. A body at a given temperature emits a characteristic spectrum of black-body radiation . A simple thermal source is sunlight , the radiation emitted by the chromosphere of the Sun at around 6,000  K (5,730  °C ; 10,340  °F ). Solar radiation peaks in

6608-489: The atmosphere. Indeed, lidar has since been used extensively for atmospheric research and meteorology . Lidar instruments fitted to aircraft and satellites carry out surveying and mapping – a recent example being the U.S. Geological Survey Experimental Advanced Airborne Research Lidar. NASA has identified lidar as a key technology for enabling autonomous precision safe landing of future robotic and crewed lunar-landing vehicles. Wavelengths vary to suit

6720-605: The beam from the eye travels infinitely fast this is not a problem. In 55 BC, Lucretius , a Roman who carried on the ideas of earlier Greek atomists , wrote that "The light & heat of the sun; these are composed of minute atoms which, when they are shoved off, lose no time in shooting right across the interspace of air in the direction imparted by the shove." (from On the nature of the Universe ). Despite being similar to later particle theories, Lucretius's views were not generally accepted. Ptolemy (c. second century) wrote about

6832-452: The boundary between a vacuum and another medium, or between two different media, the wavelength of the light changes, but the frequency remains constant. If the beam of light is not orthogonal (or rather normal) to the boundary, the change in wavelength results in a change in the direction of the beam. This change of direction is known as refraction . The refractive quality of lenses is frequently used to manipulate light in order to change

SECTION 60

#1732787488665

6944-831: The captured frames do not need to be stitched together, and the system is not sensitive to platform motion. This results in less distortion. 3-D imaging can be achieved using both scanning and non-scanning systems. "3-D gated viewing laser radar" is a non-scanning laser ranging system that applies a pulsed laser and a fast gated camera. Research has begun for virtual beam steering using Digital Light Processing (DLP) technology. Imaging lidar can also be performed using arrays of high speed detectors and modulation sensitive detector arrays typically built on single chips using complementary metal–oxide–semiconductor (CMOS) and hybrid CMOS/ Charge-coupled device (CCD) fabrication techniques. In these devices each pixel performs some local processing such as demodulation or gating at high speed, downconverting

7056-420: The city at a resolution of 30 cm (1 ft), displaying the precise height of rubble strewn in city streets. The new system is ten times better, and could produce much larger maps more quickly. The chip uses indium gallium arsenide (InGaAs), which operates in the infrared spectrum at a relatively long wavelength that allows for higher power and longer ranges. In many applications, such as self-driving cars,

7168-592: The concept of light is intended to include very-high-energy photons (gamma rays), additional generation mechanisms include: Light is measured with two main alternative sets of units: radiometry consists of measurements of light power at all wavelengths, while photometry measures light with wavelength weighted with respect to a standardized model of human brightness perception. Photometry is useful, for example, to quantify Illumination (lighting) intended for human use. The photometry units are different from most systems of physical units in that they take into account how

7280-405: The cost of lidar sensors, currently anywhere from about US$ 1,200 to more than $ 12,000. Lower prices will make lidar more attractive for new markets. Agricultural robots have been used for a variety of purposes ranging from seed and fertilizer dispersions, sensing techniques as well as crop scouting for the task of weed control . Light Light , visible light , or visible radiation

7392-461: The data and is supported by existing workflows that support interpretation of 3-D point clouds . Recent studies investigated voxelisation . The intensities of the waveform samples are inserted into a voxelised space (3-D grayscale image) building up a 3-D representation of the scanned area. Related metrics and information can then be extracted from that voxelised space. Structural information can be extracted using 3-D metrics from local areas and there

7504-546: The data's purpose, the size of the area to be captured, the range of measurement desired, the cost of equipment, and more. Spaceborne platforms are also possible, see satellite laser altimetry . Airborne lidar (also airborne laser scanning ) is when a laser scanner, while attached to an aircraft during flight, creates a 3-D point cloud model of the landscape. This is currently the most detailed and accurate method of creating digital elevation models , replacing photogrammetry . One major advantage in comparison with photogrammetry

7616-451: The diameter of Earth's orbit. However, its size was not known at that time. If Rømer had known the diameter of the Earth's orbit, he would have calculated a speed of 227 000 000  m/s . Another more accurate measurement of the speed of light was performed in Europe by Hippolyte Fizeau in 1849. Fizeau directed a beam of light at a mirror several kilometers away. A rotating cog wheel

7728-412: The entire field of view is illuminated with a wide diverging laser beam in a single pulse. This is in contrast to conventional scanning lidar, which uses a collimated laser beam that illuminates a single point at a time, and the beam is raster scanned to illuminate the field of view point-by-point. This illumination method requires a different detection scheme as well. In both scanning and flash lidar,

7840-408: The entire scene is illuminated at the same time. With scanning lidar, motion can cause "jitter" from the lapse in time as the laser rasters over the scene. As with all forms of lidar, the onboard source of illumination makes flash lidar an active sensor. The signal that is returned is processed by embedded algorithms to produce a nearly instantaneous 3-D rendering of objects and terrain features within

7952-497: The eye. Another supporter of the wave theory was Leonhard Euler . He argued in Nova theoria lucis et colorum (1746) that diffraction could more easily be explained by a wave theory. In 1816 André-Marie Ampère gave Augustin-Jean Fresnel an idea that the polarization of light can be explained by the wave theory if light were a transverse wave . Later, Fresnel independently worked out his own wave theory of light and presented it to

8064-434: The eyes and rays from a source such as the sun. In about 300 BC, Euclid wrote Optica , in which he studied the properties of light. Euclid postulated that light travelled in straight lines and he described the laws of reflection and studied them mathematically. He questioned that sight is the result of a beam from the eye, for he asks how one sees the stars immediately, if one closes one's eyes, then opens them at night. If

8176-514: The field of view of the sensor. The laser pulse repetition frequency is sufficient for generating 3-D videos with high resolution and accuracy. The high frame rate of the sensor makes it a useful tool for a variety of applications that benefit from real-time visualization, such as highly precise remote landing operations. By immediately returning a 3-D elevation mesh of target landscapes, a flash sensor can be used to identify optimal landing zones in autonomous spacecraft landing scenarios. Seeing at

8288-437: The fifth century BC, Empedocles postulated that everything was composed of four elements ; fire, air, earth and water. He believed that goddess Aphrodite made the human eye out of the four elements and that she lit the fire in the eye which shone out from the eye making sight possible. If this were true, then one could see during the night just as well as during the day, so Empedocles postulated an interaction between rays from

8400-425: The force of pressure acting on the back. Hence, as the resultant of the two forces, there remains a force that counteracts the motion of the plate and that increases with the velocity of the plate. We will call this resultant 'radiation friction' in brief." Usually light momentum is aligned with its direction of motion. However, for example in evanescent waves momentum is transverse to direction of propagation. In

8512-471: The ground the non-vegetation data is obtained which may include objects such as buildings, electric power lines, flying birds, insects, etc. The rest of the points are treated as vegetation and used for modeling and mapping. Within each of these plots, lidar metrics are calculated by calculating statistics such as mean, standard deviation, skewness, percentiles, quadratic mean, etc. Multiple commercial lidar systems for unmanned aerial vehicles are currently on

8624-421: The human eye responds to light. The cone cells in the human eye are of three types which respond differently across the visible spectrum and the cumulative response peaks at a wavelength of around 555 nm. Therefore, two sources of light which produce the same intensity (W/m ) of visible light do not necessarily appear equally bright. The photometry units are designed to take this into account and therefore are

8736-418: The infrared and only a fraction in the visible spectrum. The peak of the black-body spectrum is in the deep infrared, at about 10 micrometre wavelength, for relatively cool objects like human beings. As the temperature increases, the peak shifts to shorter wavelengths, producing first a red glow, then a white one and finally a blue-white colour as the peak moves out of the visible part of the spectrum and into

8848-401: The infrared radiation. EMR in this range causes molecular vibration and heating effects, which is how these animals detect it. Above the range of visible light, ultraviolet light becomes invisible to humans, mostly because it is absorbed by the cornea below 360 nm and the internal lens below 400 nm. Furthermore, the rods and cones located in the retina of the human eye cannot detect

8960-408: The intensity of the returned signal. The name "photonic radar" is sometimes used to mean visible-spectrum range finding like lidar, although photonic radar more strictly refers to radio-frequency range finding using photonics components. A lidar determines the distance of an object or a surface with the formula : where c is the speed of light , d is the distance between the detector and

9072-540: The laser is limited, or an automatic shut-off system which turns the laser off at specific altitudes is used in order to make it eye-safe for the people on the ground. One common alternative, 1,550 nm lasers, are eye-safe at relatively high power levels since this wavelength is not strongly absorbed by the eye. A trade-off though is that current detector technology is less advanced, so these wavelengths are generally used at longer ranges with lower accuracies. They are also used for military applications because 1,550 nm

9184-441: The laser repetition rate (which controls the data collection speed). Pulse length is generally an attribute of the laser cavity length, the number of passes required through the gain material (YAG, YLF , etc.), and Q-switch (pulsing) speed. Better target resolution is achieved with shorter pulses, provided the lidar receiver detectors and electronics have sufficient bandwidth. A phased array can illuminate any direction by using

9296-659: The laser, typically on the order of one microjoule , and are often "eye-safe", meaning they can be used without safety precautions. High-power systems are common in atmospheric research, where they are widely used for measuring atmospheric parameters: the height, layering and densities of clouds, cloud particle properties ( extinction coefficient , backscatter coefficient, depolarization ), temperature, pressure, wind, humidity, and trace gas concentration (ozone, methane, nitrous oxide , etc.). Lidar systems consist of several major components. 600–1,000  nm lasers are most common for non-scientific applications. The maximum power of

9408-426: The luminous body, rejecting the "forms" of Ibn al-Haytham and Witelo as well as the "species" of Roger Bacon , Robert Grosseteste and Johannes Kepler . In 1637 he published a theory of the refraction of light that assumed, incorrectly, that light travelled faster in a denser medium than in a less dense medium. Descartes arrived at this conclusion by analogy with the behaviour of sound waves. Although Descartes

9520-415: The major sea floor mapping program. The mapping yields onshore topography as well as underwater elevations. Sea floor reflectance imaging is another solution product from this system which can benefit mapping of underwater habitats. This technique has been used for three-dimensional image mapping of California's waters using a hydrographic lidar. Airborne lidar systems were traditionally able to acquire only

9632-464: The market. These platforms can systematically scan large areas, or provide a cheaper alternative to manned aircraft for smaller scanning operations. The airborne lidar bathymetric technological system involves the measurement of time of flight of a signal from a source to its return to the sensor. The data acquisition technique involves a sea floor mapping component and a ground truth component that includes video transects and sampling. It works using

9744-620: The maximum depth. Turbidity causes scattering and has a significant role in determining the maximum depth that can be resolved in most situations, and dissolved pigments can increase absorption depending on wavelength. Other reports indicate that water penetration tends to be between two and three times Secchi depth. Bathymetric lidar is most useful in the 0–10 m (0–33 ft) depth range in coastal mapping. On average in fairly clear coastal seawater lidar can penetrate to about 7 m (23 ft), and in turbid water up to about 3 m (10 ft). An average value found by Saputra et al, 2021,

9856-413: The movement of matter. He wrote, "radiation will exert pressure on both sides of the plate. The forces of pressure exerted on the two sides are equal if the plate is at rest. However, if it is in motion, more radiation will be reflected on the surface that is ahead during the motion (front surface) than on the back surface. The backwardacting force of pressure exerted on the front surface is thus larger than

9968-400: The new system will lower costs by not requiring a mechanical component to aim the chip. InGaAs uses less hazardous wavelengths than conventional silicon detectors, which operate at visual wavelengths. New technologies for infrared single-photon counting LIDAR are advancing rapidly, including arrays and cameras in a variety of semiconductor and superconducting platforms. In flash lidar,

10080-431: The north pole (left) to the south pole (right) along the 0° longitude line. The figure highlights the pole-to-pole slope of 0.036°, such that the south pole has a higher elevation than the north pole from NASA Goddard Flight Center web site. Laser altimeter Lidar ( / ˈ l aɪ d ɑːr / , also LIDAR , LiDAR or LADAR , an acronym of "light detection and ranging" or "laser imaging, detection, and ranging" )

10192-402: The object or surface being detected, and t is the time spent for the laser light to travel to the object or surface being detected, then travel back to the detector. The two kinds of lidar detection schemes are "incoherent" or direct energy detection (which principally measures amplitude changes of the reflected light) and coherent detection (best for measuring Doppler shifts, or changes in

10304-504: The phase of the reflected light). Coherent systems generally use optical heterodyne detection . This is more sensitive than direct detection and allows them to operate at much lower power, but requires more complex transceivers. Both types employ pulse models: either micropulse or high energy . Micropulse systems utilize intermittent bursts of energy. They developed as a result of ever-increasing computer power, combined with advances in laser technology. They use considerably less energy in

10416-436: The popular description of light being "stopped" in these experiments refers only to light being stored in the excited states of atoms, then re-emitted at an arbitrary later time, as stimulated by a second laser pulse. During the time it had "stopped", it had ceased to be light. The study of light and the interaction of light and matter is termed optics . The observation and study of optical phenomena such as rainbows and

10528-463: The reflected energy is detected and measured by sensors. Distance to the object is determined by recording the time between transmitted and backscattered pulses and by using the speed of light to calculate the distance traveled. Flash lidar allows for 3-D imaging because of the camera's ability to emit a larger flash and sense the spatial relationships and dimensions of area of interest with the returned energy. This allows for more accurate imaging because

10640-401: The scanned area from the scanner's location to create realistic looking 3-D models in a relatively short time when compared to other technologies. Each point in the point cloud is given the colour of the pixel from the image taken at the same location and direction as the laser beam that created the point. Mobile lidar (also mobile laser scanning ) is when two or more scanners are attached to

10752-463: The signals to video rate so that the array can be read like a camera. Using this technique many thousands of pixels / channels may be acquired simultaneously. High resolution 3-D lidar cameras use homodyne detection with an electronic CCD or CMOS shutter . A coherent imaging lidar uses synthetic array heterodyne detection to enable a staring single element receiver to act as though it were an imaging array. In 2014, Lincoln Laboratory announced

10864-601: The spectrum of each atom. Emission can be spontaneous , as in light-emitting diodes , gas discharge lamps (such as neon lamps and neon signs , mercury-vapor lamps , etc.) and flames (light from the hot gas itself—so, for example, sodium in a gas flame emits characteristic yellow light). Emission can also be stimulated , as in a laser or a microwave maser . Deceleration of a free charged particle, such as an electron , can produce visible radiation: cyclotron radiation , synchrotron radiation and bremsstrahlung radiation are all examples of this. Particles moving through

10976-435: The speed of light throughout history. Galileo attempted to measure the speed of light in the seventeenth century. An early experiment to measure the speed of light was conducted by Ole Rømer , a Danish physicist, in 1676. Using a telescope , Rømer observed the motions of Jupiter and one of its moons , Io . Noting discrepancies in the apparent period of Io's orbit, he calculated that light takes about 22 minutes to traverse

11088-406: The sun". The Indian Buddhists , such as Dignāga in the fifth century and Dharmakirti in the seventh century, developed a type of atomism that is a philosophy about reality being composed of atomic entities that are momentary flashes of light or energy. They viewed light as being an atomic entity equivalent to energy. René Descartes (1596–1650) held that light was a mechanical property of

11200-527: The target: from about 10  micrometers ( infrared ) to approximately 250  nanometers ( ultraviolet ). Typically, light is reflected via backscattering , as opposed to pure reflection one might find with a mirror. Different types of scattering are used for different lidar applications: most commonly Rayleigh scattering , Mie scattering , Raman scattering , and fluorescence . Suitable combinations of wavelengths can allow remote mapping of atmospheric contents by identifying wavelength-dependent changes in

11312-449: The term " radar ", itself an acronym for "radio detection and ranging". All laser rangefinders , laser altimeters and lidar units are derived from the early colidar systems. The first practical terrestrial application of a colidar system was the "Colidar Mark II", a large rifle-like laser rangefinder produced in 1963, which had a range of 11 km and an accuracy of 4.5 m, to be used for military targeting. The first mention of lidar as

11424-562: The term "light" may refer more broadly to electromagnetic radiation of any wavelength, whether visible or not. In this sense, gamma rays , X-rays , microwaves and radio waves are also light. The primary properties of light are intensity , propagation direction, frequency or wavelength spectrum , and polarization . Its speed in vacuum , 299 792 458  m/s , is one of the fundamental constants of nature. Like all types of electromagnetic radiation, visible light propagates by massless elementary particles called photons that represents

11536-486: The ultraviolet. These colours can be seen when metal is heated to "red hot" or "white hot". Blue-white thermal emission is not often seen, except in stars (the commonly seen pure-blue colour in a gas flame or a welder 's torch is in fact due to molecular emission, notably by CH radicals emitting a wavelength band around 425 nm and is not seen in stars or pure thermal radiation). Atoms emit and absorb light at characteristic energies. This produces " emission lines " in

11648-495: The vectors of discrete points while DEM and DSM are interpolated raster grids of discrete points. The process also involves capturing of digital aerial photographs. To interpret deep-seated landslides for example, under the cover of vegetation, scarps, tension cracks or tipped trees airborne lidar is used. Airborne lidar digital elevation models can see through the canopy of forest cover, perform detailed measurements of scarps, erosion and tilting of electric poles. Airborne lidar data

11760-624: The very short (below 360 nm) ultraviolet wavelengths and are in fact damaged by ultraviolet. Many animals with eyes that do not require lenses (such as insects and shrimp) are able to detect ultraviolet, by quantum photon-absorption mechanisms, in much the same chemical way that humans detect visible light. Various sources define visible light as narrowly as 420–680 nm to as broadly as 380–800 nm. Under ideal laboratory conditions, people can see infrared up to at least 1,050 nm; children and young adults may perceive ultraviolet wavelengths down to about 310–313 nm. Plant growth

11872-427: The visible region of the electromagnetic spectrum when plotted in wavelength units, and roughly 44% of the radiation that reaches the ground is visible. Another example is incandescent light bulbs , which emit only around 10% of their energy as visible light and the remainder as infrared. A common thermal light source in history is the glowing solid particles in flames , but these also emit most of their radiation in

11984-480: The wave theory was that light waves, like sound waves, would need a medium for transmission. The existence of the hypothetical substance luminiferous aether proposed by Huygens in 1678 was cast into strong doubt in the late nineteenth century by the Michelson–Morley experiment . Newton's corpuscular theory implied that light would travel faster in a denser medium, while the wave theory of Huygens and others implied

12096-429: The wavelength of light. It has also been increasingly used in control and navigation for autonomous cars and for the helicopter Ingenuity on its record-setting flights over the terrain of Mars . The evolution of quantum technology has given rise to the emergence of Quantum Lidar, demonstrating higher efficiency and sensitivity when compared to conventional lidar systems. Under the direction of Malcolm Stitch,

12208-576: Was emitted in all directions as a series of waves in a medium called the luminiferous aether . As waves are not affected by gravity, it was assumed that they slowed down upon entering a denser medium. The wave theory predicted that light waves could interfere with each other like sound waves (as noted around 1800 by Thomas Young ). Young showed by means of a diffraction experiment that light behaved as waves. He also proposed that different colours were caused by different wavelengths of light and explained colour vision in terms of three-coloured receptors in

12320-432: Was for the first time qualitatively explained by Newton using the particle theory. Étienne-Louis Malus in 1810 created a mathematical particle theory of polarization. Jean-Baptiste Biot in 1812 showed that this theory explained all known phenomena of light polarization. At that time the polarization was considered as the proof of the particle theory. To explain the origin of colours , Robert Hooke (1635–1703) developed

12432-404: Was incorrect about the relative speeds, he was correct in assuming that light behaved like a wave and in concluding that refraction could be explained by the speed of light in different media. Descartes is not the first to use the mechanical analogies but because he clearly asserts that light is only a mechanical property of the luminous body and the transmitting medium, Descartes's theory of light

12544-521: Was placed in the path of the light beam as it traveled from the source, to the mirror and then returned to its origin. Fizeau found that at a certain rate of rotation, the beam would pass through one gap in the wheel on the way out and the next gap on the way back. Knowing the distance to the mirror, the number of teeth on the wheel and the rate of rotation, Fizeau was able to calculate the speed of light as 313 000 000  m/s . Léon Foucault carried out an experiment which used rotating mirrors to obtain

#664335