A valley is an elongated low area often running between hills or mountains and typically containing a river or stream running from one end to the other. Most valleys are formed by erosion of the land surface by rivers or streams over a very long period. Some valleys are formed through erosion by glacial ice . These glaciers may remain present in valleys in high mountains or polar areas.
84-467: Mesquite Valley is a valley in Clark County, Nevada and Inyo County and San Bernardino County, California . Mesquite is an endorheic basin with Mesquite Lake at is lowest point at an elevation of 2,536 feet/773 meters. This valley trends northwest and southeast with a head at 35°40′07″N 115°29′09″W / 35.66861°N 115.48583°W / 35.66861; -115.48583 to
168-414: A broader floodplain may result. Deposition dominates over erosion. A typical river basin or drainage basin will incorporate each of these different types of valleys. Some sections of a stream or river valleys may have vertically incised their course to such an extent that the valley they occupy is best described as a gorge , ravine , or canyon . Rapid down-cutting may result from localized uplift of
252-533: A cirque glacier. During glacial periods, for example, the Pleistocene ice ages, it is in these locations that glaciers initially form and then, as the ice age proceeds, extend downhill through valleys that have previously been shaped by water rather than ice. Abrasion by rock material embedded within the moving glacial ice causes the widening and deepening of the valley to produce the characteristic U or trough shape with relatively steep, even vertical sides and
336-452: A maximum at the apex to zero at a crossing point (straight line), also called an inflection, because the curvature changes direction in that vicinity. The radius of the loop is the straight line perpendicular to the down-valley axis intersecting the sinuous axis at the apex. As the loop is not ideal, additional information is needed to characterize it. The orientation angle is the angle between sinuous axis and down-valley axis at any point on
420-405: A meander because helicoidal flow of water keeps the bank washed clean of loose sand, silt, and sediment and subjects it to constant erosion. As a result, the meander erodes and migrates in the direction of the outside bend, forming the cut bank. As the cut bank is undermined by erosion, it commonly collapses as slumps into the river channel. The slumped sediment, having been broken up by slumping,
504-411: A meander is part of an entrenched river or part of a freely meandering river within a floodplain, the term slip-off slope can refer to two different fluvial landforms that comprise the inner, convex, bank of a meander loop. In case of a freely meandering river on a floodplain, a slip-off slope is the inside, gently sloping bank of a meander on which sediments episodically accumulate to form a point bar as
588-431: A meandering watercourse is termed meander geometry or meander planform geometry. It is characterized as an irregular waveform . Ideal waveforms, such as a sine wave , are one line thick, but in the case of a stream the width must be taken into consideration. The bankfull width is the distance across the bed at an average cross-section at the full-stream level, typically estimated by the line of lowest vegetation. As
672-594: A narrow valley with steep sides. Gill is used to describe a ravine containing a mountain stream in Cumbria and the Pennines . The term combe (also encountered as coombe ) is widespread in southern England and describes a short valley set into a hillside. Other terms for small valleys such as hope, dean, slade, slack and bottom are commonly encountered in place-names in various parts of England but are no longer in general use as synonyms for valley . The term vale
756-432: A relatively flat bottom. Interlocking spurs associated with the development of river valleys are preferentially eroded to produce truncated spurs , typical of glaciated mountain landscapes. The upper end of the trough below the ice-contributing cirques may be a trough-end . Valley steps (or 'rock steps') can result from differing erosion rates due to both the nature of the bedrock (hardness and jointing for example) and
840-428: A river meanders. This type of slip-off slope is located opposite the cutbank. This term can also be applied to the inside, sloping bank of a meandering tidal channel. In case of an entrenched river, a slip-off slope is a gently sloping bedrock surface that rises from the inside, concave bank of an asymmetrically entrenched river. This type of slip-off slope is often covered by a thin, discontinuous layer of alluvium. It
924-528: A river to meander, secondary flow must dominate. Irrotational flow : From Bernoulli's equations, high pressure results in low velocity. Therefore, in the absence of secondary flow we would expect low fluid velocity at the outside bend and high fluid velocity at the inside bend. This classic fluid mechanics result is irrotational vortex flow. In the context of meandering rivers, its effects are dominated by those of secondary flow. Secondary flow : A force balance exists between pressure forces pointing to
SECTION 10
#17327753965901008-413: A self-intensifying process...in which greater curvature results in more erosion of the bank, which results in greater curvature..." The cross-current along the floor of the channel is part of the secondary flow and sweeps dense eroded material towards the inside of the bend. The cross-current then rises to the surface near the inside and flows towards the outside, forming the helical flow . The greater
1092-509: A short time as to create civil engineering challenges for local municipalities attempting to maintain stable roads and bridges. The degree of meandering of the channel of a river, stream, or other watercourse is measured by its sinuosity . The sinuosity of a watercourse is the ratio of the length of the channel to the straight line down-valley distance. Streams or rivers with a single channel and sinuosities of 1.5 or more are defined as meandering streams or rivers. The term derives from
1176-465: A slower rate than that of the main valley floor; thus the difference in the two valleys' depth increases over time. The tributary valley, composed of more resistant rock, then hangs over the main valley. Trough-shaped valleys also form in regions of heavy topographic denudation . By contrast with glacial U-shaped valleys, there is less downward and sideways erosion. The severe downslope denudation results in gently sloping valley sides; their transition to
1260-434: A symmetrical valley sides. He argues that the symmetrical valley sides are the direct result of rapid down-cutting of a watercourse into bedrock. In addition, as proposed by Rich, Thornbury argues that incised valleys with a pronounced asymmetry of cross section, which he called ingrown meanders , are the result of the lateral migration and incision of a meander during a period of slower channel downcutting . Regardless,
1344-427: A valley between its sides is referred to as the valley floor. The valley floor is typically formed by river sediments and may have fluvial terraces . The development of a river valley is affected by the character of the bedrock over which the river or stream flows, the elevational difference between its top and bottom, and indeed the climate. Typically the flow will increase downstream and the gradient will decrease. In
1428-510: A variety of transitional forms between V-, U- and plain valleys can form. The floor or bottom of these valleys can be broad or narrow, but all valleys have a shoulder. The broader a mountain valley, the lower its shoulders are located in most cases. An important exception is canyons where the shoulder almost is near the top of the valley's slope. In the Alps – e.g. the Tyrolean Inn valley –
1512-670: A watercourse only rarely. In areas of limestone bedrock , dry valleys may also result from drainage now taking place underground rather than at the surface. Rift valleys arise principally from earth movements , rather than erosion. Many different types of valleys are described by geographers, using terms that may be global in use or else applied only locally. Valleys may arise through several different processes. Most commonly, they arise from erosion over long periods by moving water and are known as river valleys. Typically small valleys containing streams feed into larger valleys which in turn feed into larger valleys again, eventually reaching
1596-413: A waveform the meandering stream follows the down-valley axis, a straight line fitted to the curve such that the sum of all the amplitudes measured from it is zero. This axis represents the overall direction of the stream. At any cross-section the flow is following the sinuous axis, the centerline of the bed. Two consecutive crossing points of sinuous and down-valley axes define a meander loop. The meander
1680-405: Is a tributary valley that is higher than the main valley. They are most commonly associated with U-shaped valleys, where a tributary glacier flows into a glacier of larger volume. The main glacier erodes a deep U-shaped valley with nearly vertical sides, while the tributary glacier, with a smaller volume of ice, makes a shallower U-shaped valley. Since the surfaces of the glaciers were originally at
1764-419: Is called lateral accretion. Lateral accretion occurs mostly during high water or floods when the point bar is submerged. Typically, the sediment consists of either sand, gravel, or a combination of both. The sediment comprising some point bars might grade downstream into silty sediments. Because of the decreasing velocity and strength of current from the thalweg of the channel to the upper surface of point bar when
SECTION 20
#17327753965901848-501: Is only 50 meters (160 ft) deep while the main fjord is around 1,300 meters (4,300 ft) at the same point. Glaciated terrain is not the only site of hanging streams and valleys. Hanging valleys are also simply the product of varying rates of erosion of the main valley and the tributary valleys. The varying rates of erosion are associated with the composition of the adjacent rocks in the different valley locations. The tributary valleys are eroded and deepened by glaciers or erosion at
1932-424: Is produced by the gradual outward migration of the meander as a river cuts downward into bedrock. A terrace on the slip-off slope of a meander spur, known as slip-off slope terrace , can be formed by a brief halt during the irregular incision by an actively meandering river. The meander ratio or sinuosity index is a means of quantifying how much a river or stream meanders (how much its course deviates from
2016-458: Is readily eroded and carried toward the middle of the channel. The sediment eroded from a cut bank tends to be deposited on the point bar of the next downstream meander, and not on the point bar opposite it. This can be seen in areas where trees grow on the banks of rivers; on the inside of meanders, trees, such as willows, are often far from the bank, whilst on the outside of the bend, the tree roots are often exposed and undercut, eventually leading
2100-484: Is the Büyük Menderes River . Meanders are a result of the interaction of water flowing through a curved channel with the underlying river bed. This produces helicoidal flow , in which water moves from the outer to the inner bank along the river bed, then flows back to the outer bank near the surface of the river. This in turn increases carrying capacity for sediments on the outer bank and reduces it on
2184-478: Is the length along the centerline. Once a channel begins to follow a sinusoidal path, the amplitude and concavity of the loops increase dramatically. This is due to the effect of helical flow which sweeps dense eroded material towards the inside of the bend, and leaves the outside of the bend unprotected and vulnerable to accelerated erosion. This establishes a positive feedback loop . In the words of Elizabeth A. Wood: "...this process of making meanders seems to be
2268-405: Is the most common type of fluvial lake, is a crescent-shaped lake that derives its name from its distinctive curved shape. Oxbow lakes are also known as cutoff lakes . Such lakes form regularly in undisturbed floodplains as a result of the normal process of fluvial meandering. Either a river or stream forms a sinuous channel as the outer side of its bends are eroded away and sediments accumulate on
2352-488: Is the word cwm borrowed from Welsh . The word dale occurs widely in place names in the north of England and, to a lesser extent, in southern Scotland. As a generic name for a type of valley, the term typically refers to a wide valley, though there are many much smaller stream valleys within the Yorkshire Dales which are named "(specific name) Dale". Clough is a word in common use in northern England for
2436-430: Is two consecutive loops pointing in opposite transverse directions. The distance of one meander along the down-valley axis is the meander length or wavelength . The maximum distance from the down-valley axis to the sinuous axis of a loop is the meander width or amplitude . The course at that point is the apex. In contrast to sine waves, the loops of a meandering stream are more nearly circular. The curvature varies from
2520-425: Is typically a point bar . The result of this coupled erosion and sedimentation is the formation of a sinuous course as the channel migrates back and forth across the axis of a floodplain . The zone within which a meandering stream periodically shifts its channel is known as a meander belt . It typically ranges from 15 to 18 times the width of the channel. Over time, meanders migrate downstream, sometimes in such
2604-629: Is used in England and Wales to describe a wide river valley, usually with a particularly wide flood plain or flat valley bottom. In Southern England, vales commonly occur between the outcrops of different relatively erosion-resistant rock formations, where less resistant rock, often claystone has been eroded. An example is the Vale of White Horse in Oxfordshire. Some of the first human complex societies originated in river valleys, such as that of
Mesquite Valley - Misplaced Pages Continue
2688-602: The Latin terms for 'valley, 'gorge' and 'ditch' respectively. The German term ' rille ' or Latin term 'rima' (signifying 'cleft') is used for certain other elongate depressions on the Moon. See also: Meander A meander is one of a series of regular sinuous curves in the channel of a river or other watercourse . It is produced as a watercourse erodes the sediments of an outer, concave bank ( cut bank or river cliff ) and deposits sediments on an inner, convex bank which
2772-504: The Nile , Tigris-Euphrates , Indus , Ganges , Yangtze , Yellow River , Mississippi , and arguably the Amazon . In prehistory , the rivers were used as a source of fresh water and food (fish and game), as well as a place to wash and a sewer. The proximity of water moderated temperature extremes and provided a source for irrigation , stimulating the development of agriculture . Most of
2856-483: The Ozark Plateau . As noted above, it was initially either argued or presumed that an incised meander is characteristic of an antecedent stream or river that had incised its channel into underlying strata . An antecedent stream or river is one that maintains its original course and pattern during incision despite the changes in underlying rock topography and rock types. However, later geologists argue that
2940-449: The bedrock are known as either incised , intrenched , entrenched , inclosed or ingrown meanders . Some Earth scientists recognize and use a finer subdivision of incised meanders. Thornbury argues that incised or inclosed meanders are synonyms that are appropriate to describe any meander incised downward into bedrock and defines enclosed or entrenched meanders as a subtype of incised meanders (inclosed meanders) characterized by
3024-668: The first civilizations developed from these river valley communities. Siting of settlements within valleys is influenced by many factors, including the need to avoid flooding and the location of river crossing points. Numerous elongate depressions have been identified on the surface of Mars , Venus , the Moon , and other planets and their satellites and are known as valles (singular: 'vallis'). Deeper valleys with steeper sides (akin to canyons) on certain of these bodies are known as chasmata (singular: 'chasma'). Long narrow depressions are referred to as fossae (singular: 'fossa'). These are
3108-469: The geomorphological feature. Strabo said: ‘...its course is so exceedingly winding that everything winding is called meandering.’ The Meander River is south of Izmir, east of the ancient Greek town of Miletus , now Milet, Turkey. It flows through series of three graben in the Menderes Massif, but has a flood plain much wider than the meander zone in its lower reach. Its modern Turkish name
3192-524: The Scandinavian ice sheet during the various ice ages advanced slightly uphill against the lie of the land. As a result, its meltwaters flowed parallel to the ice margin to reach the North Sea basin, forming huge, flat valleys known as Urstromtäler . Unlike the other forms of glacial valleys, these were formed by glacial meltwaters. Depending on the topography , the rock types , and the climate ,
3276-511: The actual valley bottom is unclear. Trough-shaped valleys occur mainly in periglacial regions and in tropical regions of variable wetness. Both climates are dominated by heavy denudation. Box valleys have wide, relatively level floors and steep sides. They are common in periglacial areas and occur in mid-latitudes, but also occur in tropical and arid regions. Rift valleys, such as the Albertine Rift and Gregory Rift are formed by
3360-411: The average fullbank channel width. The length of the stream is measured by channel, or thalweg, length over the reach, while the bottom value of the ratio is the downvalley length or air distance of the stream between two points on it defining the reach. The sinuosity index plays a part in mathematical descriptions of streams. The index may require elaboration, because the valley may meander as well—i.e.,
3444-554: The bottom from the outside to the inside. The flow is supplied by a counter-flow across the surface from the inside to the outside. This entire situation is very similar to the Tea leaf paradox . This secondary flow carries sediment from the outside of the bend to the inside making the river more meandering. As to why streams of any size become sinuous in the first place, there are a number of theories, not necessarily mutually exclusive. The stochastic theory can take many forms but one of
Mesquite Valley - Misplaced Pages Continue
3528-429: The boundary layer. Therefore, within the boundary layer, pressure force dominates and fluid moves along the bottom of the river from the outside bend to the inside bend. This initiates helicoidal flow: Along the river bed, fluid roughly follows the curve of the channel but is also forced toward the inside bend; away from the river bed, fluid also roughly follows the curve of the channel but is forced, to some extent, from
3612-559: The case of the Anderson Bottom Rincon, incised meanders that have either steep-sided, often vertical walls, are often, but not always, known as rincons in the southwest United States . Rincon in English is a nontechnical word in the southwest United States for either a small secluded valley, an alcove or angular recess in a cliff, or a bend in a river. The meanders of a stream or river that has cut its bed down into
3696-408: The curvature of the bend, and the faster the flow, the stronger is the cross-current and the sweeping. Due to the conservation of angular momentum the speed on the inside of the bend is faster than on the outside. Since the flow velocity is diminished, so is the centrifugal pressure. The pressure of the super-elevated column prevails, developing an unbalanced gradient that moves water back across
3780-405: The downvalley length is not identical to the reach. In that case the valley index is the meander ratio of the valley while the channel index is the meander ratio of the channel. The channel sinuosity index is the channel length divided by the valley length and the standard sinuosity index is the channel index divided by the valley index. Distinctions may become even more subtle. Sinuosity Index has
3864-612: The expansion of the Earth 's crust due to tectonic activity beneath the Earth's surface. There are many terms used for different sorts of valleys. They include: Similar geographical features such as gullies , chines , and kloofs , are not usually referred to as valleys. The terms corrie , glen , and strath are all Anglicisations of Gaelic terms and are commonly encountered in place-names in Scotland and other areas where Gaelic
3948-443: The flow slower and both erosion and deposition may take place. More lateral erosion takes place in the middle section of a river's course, as strong currents on the outside of its curve erode the bank. Conversely, deposition may take place on the inside of curves where the current is much slacker, the process leading to the river assuming a meandering character. In the lower valley, gradients are lowest, meanders may be much broader and
4032-565: The formation of both entrenched meanders and ingrown meanders is thought to require that base level falls as a result of either relative change in mean sea level , isostatic or tectonic uplift, the breach of an ice or landslide dam, or regional tilting. Classic examples of incised meanders are associated with rivers in the Colorado Plateau , the Kentucky River Palisades in central Kentucky , and streams in
4116-428: The full force of the flood. After a cutoff meander is formed, river water flows into its end from the river builds small delta-like feature into either end of it during floods. These delta-like features block either end of the cutoff meander to form a stagnant oxbow lake that is separated from the flow of the fluvial channel and independent of the river. During floods, the flood waters deposit fine-grained sediment into
4200-404: The fullbank channel width and 3 to 5 times, with an average of 4.7 times, the radius of curvature at the apex. This radius is 2–3 times the channel width. A meander has a depth pattern as well. The cross-overs are marked by riffles , or shallow beds, while at the apices are pools. In a pool direction of flow is downward, scouring the bed material. The major volume, however, flows more slowly on
4284-407: The inner bank, so that sediments are eroded from the outer bank and redeposited on the inner bank of the next downstream meander. When a fluid is introduced to an initially straight channel which then bends, the sidewalls induce a pressure gradient that causes the fluid to alter course and follow the bend. From here, two opposing processes occur: (1) irrotational flow and (2) secondary flow . For
SECTION 50
#17327753965904368-416: The inner side, which forms a meandering horseshoe-shaped bend. Eventually as the result of its meandering, the fluvial channel cuts through the narrow neck of the meander and forms a cutoff meander. The final break-through of the neck, which is called a neck cutoff , often occurs during a major flood because that is when the watercourse is out of its banks and can flow directly across the neck and erode it with
4452-443: The inside bank of a river bend. On the inside bend, this sediment and debris is eventually deposited on the slip-off slope of a point bar. Scroll-bars are a result of continuous lateral migration of a meander loop that creates an asymmetrical ridge and swale topography on the inside of the bends. The topography is generally parallel to the meander, and is related to migrating bar forms and back bar chutes, which carve sediment from
4536-467: The inside bend of the river and centrifugal forces pointing to the outside bend of the river. In the context of meandering rivers, a boundary layer exists within the thin layer of fluid that interacts with the river bed. Inside that layer and following standard boundary-layer theory, the velocity of the fluid is effectively zero. Centrifugal force, which depends on velocity, is also therefore effectively zero. Pressure force, however, remains unaffected by
4620-406: The inside of the bend where, due to decreased velocity, it deposits sediment. The line of maximum depth, or channel, is the thalweg or thalweg line. It is typically designated the borderline when rivers are used as political borders. The thalweg hugs the outer banks and returns to center over the riffles. The meander arc length is the distance along the thalweg over one meander. The river length
4704-450: The inside to the outside bend. The higher velocities at the outside bend lead to higher shear stresses and therefore result in erosion. Similarly, lower velocities at the inside bend cause lower shear stresses and deposition occurs. Thus meander bends erode at the outside bend, causing the river to becoming increasingly sinuous (until cutoff events occur). Deposition at the inside bend occurs such that for most natural meandering rivers,
4788-427: The land surface or rejuvenation of the watercourse as a result for example of a reduction in the base level to which the river is eroded, e.g. lowered global sea level during an ice age . Such rejuvenation may also result in the production of river terraces . There are various forms of valleys associated with glaciation. True glacial valleys are those that have been cut by a glacier which may or may not still occupy
4872-420: The meanders are fixed. Various mathematical formulae relate the variables of the meander geometry. As it turns out some numerical parameters can be established, which appear in the formulae. The waveform depends ultimately on the characteristics of the flow but the parameters are independent of it and apparently are caused by geologic factors. In general the meander length is 10–14 times, with an average 11 times,
4956-418: The more heterogeneous braided river deposits. There are two distinct patterns of scroll-bar depositions; the eddy accretion scroll bar pattern and the point-bar scroll pattern. When looking down the river valley they can be distinguished because the point-bar scroll patterns are convex and the eddy accretion scroll bar patterns are concave. Scroll bars often look lighter at the tops of the ridges and darker in
5040-504: The most general statements is that of Scheidegger: "The meander train is assumed to be the result of the stochastic fluctuations of the direction of flow due to the random presence of direction-changing obstacles in the river path." Given a flat, smooth, tilted artificial surface, rainfall runs off it in sheets, but even in that case adhesion of water to the surface and cohesion of drops produce rivulets at random. Natural surfaces are rough and erodible to different degrees. The result of all
5124-463: The ocean or perhaps an internal drainage basin . In polar areas and at high altitudes, valleys may be eroded by glaciers ; these typically have a U-shaped profile in cross-section, in contrast to river valleys, which tend to have a V-shaped profile. Other valleys may arise principally through tectonic processes such as rifting . All three processes can contribute to the development of a valley over geological time. The flat (or relatively flat) portion of
SECTION 60
#17327753965905208-529: The outside of the curve and deposit sediment in the slower flowing water on the inside of the loop, in a process called lateral accretion. Scroll-bar sediments are characterized by cross-bedding and a pattern of fining upward. These characteristics are a result of the dynamic river system, where larger grains are transported during high energy flood events and then gradually die down, depositing smaller material with time (Batty 2006). Deposits for meandering rivers are generally homogeneous and laterally extensive unlike
5292-415: The oxbow lake. As a result, oxbow lakes tend to become filled in with fine-grained, organic-rich sediments over time. A point bar , which is also known as a meander bar , is a fluvial bar that is formed by the slow, often episodic, addition of individual accretions of noncohesive sediment on the inside bank of a meander by the accompanying migration of the channel toward its outer bank. This process
5376-475: The physical factors acting at random is channels that are not straight, which then progressively become sinuous. Even channels that appear straight have a sinuous thalweg that leads eventually to a sinuous channel. In the equilibrium theory, meanders decrease the stream gradient until an equilibrium between the erodibility of the terrain and the transport capacity of the stream is reached. A mass of water descending must give up potential energy , which, given
5460-436: The power of the moving ice. In places, a rock basin may be excavated which may later be filled with water to form a ribbon lake or else by sediments. Such features are found in coastal areas as fjords . The shape of the valley which results from all of these influences may only become visible upon the recession of the glacier that forms it. A river or stream may remain in the valley; if it is smaller than one would expect given
5544-691: The river width remains nearly constant, even as the river evolves. In a speech before the Prussian Academy of Sciences in 1926, Albert Einstein suggested that because the Coriolis force of the earth can cause a small imbalance in velocity distribution, such that velocity on one bank is higher than on the other, it could trigger the erosion on one bank and deposition of sediment on the other that produces meanders However, Coriolis forces are likely insignificant compared with other forces acting to produce river meanders. The technical description of
5628-446: The same elevation , the shallower valley appears to be 'hanging' above the main valley. Often, waterfalls form at or near the outlet of the upper valley. Hanging valleys also occur in fjord systems underwater. The branches of Sognefjord are much shallower than the main fjord. The mouth of Fjærlandsfjord is about 400 meters (1,300 ft) deep while the main fjord nearby is 1,200 meters (3,900 ft) deep. The mouth of Ikjefjord
5712-416: The same velocity at the end of the drop as at the beginning, is removed by interaction with the material of the stream bed. The shortest distance; that is, a straight channel, results in the highest energy per unit of length, disrupting the banks more, creating more sediment and aggrading the stream. The presence of meanders allows the stream to adjust the length to an equilibrium energy per unit length in which
5796-417: The sediment is deposited the vertical sequence of sediments comprising a point bar becomes finer upward within an individual point bar. For example, it is typical for point bars to fine upward from gravel at the base to fine sands at the top. The source of the sediment is typically upstream cut banks from which sand, rocks and debris has been eroded, swept, and rolled across the bed of the river and downstream to
5880-505: The shape of an incised meander is not always, if ever, "inherited", e.g., strictly from an antecedent meandering stream where its meander pattern could freely develop on a level floodplain. Instead, they argue that as fluvial incision of bedrock proceeds, the stream course is significantly modified by variations in rock type and fractures , faults , and other geological structures into either lithologically conditioned meanders or structurally controlled meanders . The oxbow lake , which
5964-445: The shortest possible path). It is calculated as the length of the stream divided by the length of the valley . A perfectly straight river would have a meander ratio of 1 (it would be the same length as its valley), while the higher this ratio is above 1, the more the river meanders. Sinuosity indices are calculated from the map or from an aerial photograph measured over a distance called the reach , which should be at least 20 times
6048-550: The shoulders are quite low (100–200 meters above the bottom). Many villages are located here (esp. on the sunny side) because the climate is very mild: even in winter when the valley's floor is filled with fog, these villages are in sunshine . In some stress-tectonic regions of the Rocky Mountains or the Alps (e.g. Salzburg ), the side valleys are parallel to each other, and are hanging . Smaller streams flow into rivers as deep canyons or waterfalls . A hanging valley
6132-411: The sinuous axis. A loop at the apex has an outer or concave bank and an inner or convex bank. The meander belt is defined by an average meander width measured from outer bank to outer bank instead of from centerline to centerline. If there is a flood plain , it extends beyond the meander belt. The meander is then said to be free—it can be found anywhere in the flood plain. If there is no flood plain,
6216-849: The size of its valley, it can be considered an example of a misfit stream . Other interesting glacially carved valleys include: A tunnel valley is a large, long, U-shaped valley originally cut under the glacial ice near the margin of continental ice sheets such as that now covering Antarctica and formerly covering portions of all continents during past glacial ages. Such valleys can be up to 100 km (62 mi) long, 4 km (2.5 mi) wide, and 400 m (1,300 ft) deep (its depth may vary along its length). Tunnel valleys were formed by subglacial water erosion . They once served as subglacial drainage pathways carrying large volumes of meltwater. Their cross-sections exhibit steep-sided flanks similar to fjord walls, and their flat bottoms are typical of subglacial glacial erosion. In northern Central Europe,
6300-611: The southeast near State Line Pass and another head at 35°53′50″N 115°46′55″W / 35.89722°N 115.78194°W / 35.89722; -115.78194 at the southwestern end of Pahrump Valley , at an elevation of 2,808 feet/856 meters, between the Kingston Range and Black Butte to the northwest. It is bounded on the northeast by the Spring Mountains , by the Mesquite Mountains to
6384-490: The southwest and the Clark Mountains to the southeast. 35°46′06″N 115°36′14″W / 35.76833°N 115.60389°W / 35.76833; -115.60389 Valley At lower latitudes and altitudes, these glacially formed valleys may have been created or enlarged during ice ages but now are ice-free and occupied by streams or rivers. In desert areas, valleys may be entirely dry or carry
6468-419: The stream carries away all the sediment that it produces. Geomorphic refers to the surface structure of the terrain. Morphotectonic means having to do with the deeper, or tectonic (plate) structure of the rock. The features included under these categories are not random and guide streams into non-random paths. They are predictable obstacles that instigate meander formation by deflecting the stream. For example,
6552-403: The stream might be guided into a fault line (morphotectonic). A cut bank is an often vertical bank or cliff that forms where the outside, concave bank of a meander cuts into the floodplain or valley wall of a river or stream. A cutbank is also known either as a river-cut cliff , river cliff , or a bluff and spelled as cutbank . Erosion that forms a cut bank occurs at the outside bank of
6636-416: The swales. This is because the tops can be shaped by wind, either adding fine grains or by keeping the area unvegetated, while the darkness in the swales can be attributed to silts and clays washing in during high water periods. This added sediment in addition to water that catches in the swales is in turn is a favorable environment for vegetation that will also accumulate in the swales. Depending upon whether
6720-406: The trees to fall into the river. A meander cutoff , also known as either a cutoff meander or abandoned meander , is a meander that has been abandoned by its stream after the formation of a neck cutoff. A lake that occupies a cutoff meander is known as an oxbow lake . Cutoff meanders that have cut downward into the underlying bedrock are known in general as incised cutoff meanders . As in
6804-407: The upper valley, the stream will most effectively erode its bed through corrasion to produce a steep-sided V-shaped valley. The presence of more resistant rock bands, of geological faults , fractures , and folds may determine the course of the stream and result in a twisting course with interlocking spurs . In the middle valley, as numerous streams have coalesced, the valley is typically wider,
6888-407: The valley at the present day. Such valleys may also be known as glacial troughs. They typically have a U-shaped cross-section and are characteristic landforms of mountain areas where glaciation has occurred or continues to take place. The uppermost part of a glacial valley frequently consists of one or more 'armchair-shaped' hollows, or ' cirques ', excavated by the rotational movement downslope of
6972-603: The winding river Menderes located in Asia-Minor and known to the Ancient Greeks as Μαίανδρος Maiandros ( Latin : Maeander ), characterised by a very convoluted path along the lower reach. As a result, even in Classical Greece (and in later Greek thought) the name of the river had become a common noun meaning anything convoluted and winding, such as decorative patterns or speech and ideas, as well as
7056-414: Was once widespread. Strath signifies a wide valley between hills, the floor of which is either level or slopes gently. A glen is a river valley which is steeper and narrower than a strath. A corrie is a basin-shaped hollow in a mountain. Each of these terms also occurs in parts of the world formerly colonized by Britain . Corrie is used more widely by geographers as a synonym for (glacial) cirque , as
#589410