The Mitchell Plain is a karst area in Indiana of relatively low relief. The extensive underlying cave system developed in Mississippian age limestone bedrock. Surface drainage is rare due to most streams in the area disappearing into caves or joints within the rock.
29-526: The limestone is a vestige of an early shallow cratonic sea that covered what would become Indiana, while the north–south linearity of the region is left over from the Cincinnati Uplift , sloping the rock layers from a high in the East sloping downward towards Cairo, Illinois . The Mitchell Plain is bound by the older rocks of Norman Upland on the East and the younger rocks of Crawford Upland on
58-400: A rising plume of molten material from the deep mantle. This would have built up a thick layer of depleted mantle underneath the cratons. A third model suggests that successive slabs of subducting oceanic lithosphere became lodged beneath a proto-craton, underplating the craton with chemically depleted rock. A fourth theory presented in a 2015 publication suggests that the origin of
87-621: A cognate inclusion. Xenoliths and xenocrysts provide important information about the composition of the otherwise inaccessible mantle . Basalts , kimberlites , lamproites and lamprophyres , which have their source in the upper mantle , often contain fragments and crystals assumed to be a part of the originating mantle mineralogy. Xenoliths of dunite , peridotite and spinel lherzolite in basaltic lava flows are one example. Kimberlites contain, in addition to diamond xenocrysts, fragments of lherzolites of varying composition. The aluminium -bearing minerals of these fragments provide clues to
116-457: A solid residue very close in composition to Archean lithospheric mantle, but continental shields do not contain enough komatiite to match the expected depletion. Either much of the komatiite never reached the surface, or other processes aided craton root formation. There are many competing hypotheses of how cratons have been formed. Jordan's model suggests that further cratonization was a result of repeated continental collisions. The thickening of
145-413: A thick crust and deep lithospheric roots that extend as much as several hundred kilometres into Earth's mantle. The term craton is used to distinguish the stable portion of the continental crust from regions that are more geologically active and unstable. Cratons are composed of two layers: a continental shield , in which the basement rock crops out at the surface, and a platform which overlays
174-557: Is an old and stable part of the continental lithosphere , which consists of Earth's two topmost layers, the crust and the uppermost mantle . Having often survived cycles of merging and rifting of continents, cratons are generally found in the interiors of tectonic plates ; the exceptions occur where geologically recent rifting events have separated cratons and created passive margins along their edges. Cratons are characteristically composed of ancient crystalline basement rock , which may be covered by younger sedimentary rock . They have
203-435: Is much older than oceanic lithosphere—up to 4 billion years versus 180 million years. Rock fragments ( xenoliths ) carried up from the mantle by magmas containing peridotite have been delivered to the surface as inclusions in subvolcanic pipes called kimberlites . These inclusions have densities consistent with craton composition and are composed of mantle material residual from high degrees of partial melt. Peridotite
232-452: Is strongly influenced by the inclusion of moisture. Craton peridotite moisture content is unusually low, which leads to much greater strength. It also contains high percentages of low-weight magnesium instead of higher-weight calcium and iron. Peridotites are important for understanding the deep composition and origin of cratons because peridotite nodules are pieces of mantle rock modified by partial melting. Harzburgite peridotites represent
261-651: The Baltic Shield had been eroded into a subdued terrain already during the Late Mesoproterozoic when the rapakivi granites intruded. Xenoliths A xenolith ("foreign rock") is a rock fragment ( country rock ) that becomes enveloped in a larger rock during the latter's development and solidification. In geology , the term xenolith is almost exclusively used to describe inclusions in igneous rock entrained during magma ascent, emplacement and eruption. Xenoliths may be engulfed along
290-1126: The East European Craton , the Amazonian Craton in South America, the Kaapvaal Craton in South Africa, the North American Craton (also called the Laurentia Craton), and the Gawler Craton in South Australia. Cratons have thick lithospheric roots. Mantle tomography shows that cratons are underlain by anomalously cold mantle corresponding to lithosphere more than twice the typical 100 km (60 mi) thickness of mature oceanic or non-cratonic, continental lithosphere. At that depth, craton roots extend into
319-423: The asthenosphere , and the low-velocity zone seen elsewhere at these depths is weak or absent beneath stable cratons. Craton lithosphere is distinctly different from oceanic lithosphere because cratons have a neutral or positive buoyancy and a low intrinsic density. This low density offsets density increases from geothermal contraction and prevents the craton from sinking into the deep mantle. Cratonic lithosphere
SECTION 10
#1732779904908348-406: The "cratonic regime". It involves processes of pediplanation and etchplanation that lead to the formation of flattish surfaces known as peneplains . While the process of etchplanation is associated to humid climate and pediplanation with arid and semi-arid climate, shifting climate over geological time leads to the formation of so-called polygenetic peneplains of mixed origin. Another result of
377-525: The West. 38°25′N 86°10′W / 38.417°N 86.167°W / 38.417; -86.167 This article about a specific United States geological feature is a stub . You can help Misplaced Pages by expanding it . Craton A craton ( / ˈ k r eɪ t ɒ n / KRAYT -on , / ˈ k r æ t ɒ n / KRAT -on , or / ˈ k r eɪ t ən / KRAY -tən ; from ‹See Tfd› Greek : κράτος kratos "strength")
406-465: The cratons is similar to crustal plateaus observed on Venus, which may have been created by large asteroid impacts. In this model, large impacts on the Earth's early lithosphere penetrated deep into the mantle and created enormous lava ponds. The paper suggests these lava ponds cooled to form the craton's root. The chemistry of xenoliths and seismic tomography both favor the two accretional models over
435-399: The crust associated with these collisions may have been balanced by craton root thickening according to the principle of isostacy . Jordan likens this model to "kneading" of the cratons, allowing low density material to move up and higher density to move down, creating stable cratonic roots as deep as 400 km (250 mi). A second model suggests that the surface crust was thickened by
464-481: The crystalline residues after extraction of melts of compositions like basalt and komatiite . The process by which cratons were formed is called cratonization . There is much about this process that remains uncertain, with very little consensus in the scientific community. However, the first cratonic landmasses likely formed during the Archean eon. This is indicated by the age of diamonds , which originate in
493-426: The depleted "lid" formed by the first layer. The impact origin model does not require plumes or accretion; this model is, however, not incompatible with either. All these proposed mechanisms rely on buoyant, viscous material separating from a denser residue due to mantle flow, and it is possible that more than one mechanism contributed to craton root formation. The long-term erosion of cratons has been labelled
522-457: The depth of origin. Calcic plagioclase is stable to a depth of 25 km (16 mi). Between 25 km (16 mi) and about 60 km (37 mi), spinel is the stable aluminium phase. At depths greater than about 60 km, dense garnet becomes the aluminium-bearing mineral. Some kimberlites contain xenoliths of eclogite , which is considered to be the high-pressure metamorphic product of basaltic oceanic crust , as it descends into
551-471: The late Archean, accompanied by voluminous mafic magmatism. However, melt extraction alone cannot explain all the properties of craton roots. Jordan notes in his paper that this mechanism could be effective for constructing craton roots only down to a depth of 200 kilometers (120 mi). The great depths of craton roots required further explanation. The 30 to 40 percent partial melting of mantle rock at 4 to 10 GPa pressure produces komatiite magma and
580-468: The longevity of cratons is that they may alternate between periods of high and low relative sea levels . High relative sea level leads to increased oceanicity, while the opposite leads to increased inland conditions . Many cratons have had subdued topographies since Precambrian times. For example, the Yilgarn Craton of Western Australia was flattish already by Middle Proterozoic times and
609-708: The margins of a magma chamber , torn loose from the walls of an erupting lava conduit or explosive diatreme or picked up along the base of a flowing body of lava on the Earth's surface. A xenocryst is an individual foreign crystal included within an igneous body. Examples of xenocrysts are quartz crystals in a silica -deficient lava and diamonds within kimberlite diatremes. Xenoliths can be non-uniform within individual locations, even in areas which are spatially limited, e.g. rhyolite -dominated lava of Niijima volcano ( Japan ) contains two types of gabbroic xenoliths which are of different origin - they were formed in different temperature and pressure conditions. Although
SECTION 20
#1732779904908638-420: The plume model. However, other geochemical evidence favors mantle plumes. Tomography shows two layers in the craton roots beneath North America. One is found at depths shallower than 150 km (93 mi) and may be Archean, while the second is found at depths from 180 to 240 km (110 to 150 mi) and may be younger. The second layer may be a less depleted thermal boundary layer that stagnated against
667-550: The roots of cratons, and which are almost always over 2 billion years and often over 3 billion years in age. Rock of Archean age makes up only 7% of the world's current cratons; even allowing for erosion and destruction of past formations, this suggests that only 5 to 40 percent of the present continental crust formed during the Archean. Cratonization likely was completed during the Proterozoic . Subsequent growth of continents
696-602: The shield in some areas with sedimentary rock . The word craton was first proposed by the Austrian geologist Leopold Kober in 1921 as Kratogen , referring to stable continental platforms, and orogen as a term for mountain or orogenic belts . Later Hans Stille shortened the former term to Kraton , from which craton derives. Examples of cratons are the Dharwar Craton in India, North China Craton ,
725-515: The surrounding hotter, but more chemically dense, mantle. In addition to cooling the craton roots and lowering their chemical density, the extraction of magma also increased the viscosity and melting temperature of the craton roots and prevented mixing with the surrounding undepleted mantle. The resulting mantle roots have remained stable for billions of years. Jordan suggests that depletion occurred primarily in subduction zones and secondarily as flood basalts . This model of melt extraction from
754-419: The term xenolith is most commonly associated with inclusions in igneous rocks, a broad definition could also include rock fragments which have become encased in sedimentary rock . Xenoliths have been found in some meteorites . To be considered a true xenolith, the included rock must be identifiably different from the rock in which it is enveloped; an included rock of similar type is called an autolith or
783-455: The upper mantle has held up well with subsequent observations. The properties of mantle xenoliths confirm that the geothermal gradient is much lower beneath continents than oceans. The olivine of craton root xenoliths is extremely dry, which would give the roots a very high viscosity. Rhenium–osmium dating of xenoliths indicates that the oldest melting events took place in the early to middle Archean. Significant cratonization continued into
812-473: Was by accretion at continental margins. The origin of the roots of cratons is still debated. However, the present understanding of cratonization began with the publication in 1978 of a paper by Thomas H. Jordan in Nature . Jordan proposes that cratons formed from a high degree of partial melting of the upper mantle, with 30 to 40 percent of the source rock entering the melt. Such a high degree of melting
841-423: Was possible because of the high mantle temperatures of the Archean. The extraction of so much magma left behind a solid peridotite residue that was enriched in lightweight magnesium and thus lower in chemical density than undepleted mantle. This lower chemical density compensated for the effects of thermal contraction as the craton and its roots cooled, so that the physical density of the cratonic roots matched that of
#907092