The North Brazil Current (NBC) is a warm water ocean current that is part of the southwestern North Atlantic Gyre . It begins when the westward moving Atlantic South Equatorial Current splits in half and flows northwestward, following the coastline of north Brazil. It ends at the border of Brazil and Guiana , where it is renamed the Guiana Current. It is predominantly a salt water current, but it does help transport fresh water from the Amazon River northward.
51-494: The current begins around 10°S and 31°W, where the split of the South Equatorial Current becomes apparent. The split is forced once the continental shelf begins, and happens quite abruptly. At this point, the current moves quite quickly at 21-23 Sv . Around 5°S, it merges with a northern branch of the South Equatorial Current (SEC) and increases its volume to 37 Sv, with its peak between 100m and 200m deep. Here,
102-496: A ⋅ x ) {\displaystyle \therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})} where v = | v | etc. The above equations are valid for both Newtonian mechanics and special relativity . Where Newtonian mechanics and special relativity differ is in how different observers would describe the same situation. In particular, in Newtonian mechanics, all observers agree on
153-605: A ) ⋅ x = ( 2 a ) ⋅ ( u t + 1 2 a t 2 ) = 2 t ( a ⋅ u ) + a 2 t 2 = v 2 − u 2 {\displaystyle (2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\tfrac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}} ∴ v 2 = u 2 + 2 (
204-447: A = d v d t . {\displaystyle {\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{dt}}.} From there, velocity is expressed as the area under an a ( t ) acceleration vs. time graph. As above, this is done using the concept of the integral: v = ∫ a d t . {\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ dt.} In
255-417: A constant 20 kilometres per hour in a circular path has a constant speed, but does not have a constant velocity because its direction changes. Hence, the car is considered to be undergoing an acceleration. Since the derivative of the position with respect to time gives the change in position (in metres ) divided by the change in time (in seconds ), velocity is measured in metres per second (m/s). Velocity
306-588: A two-dimensional system, where there is an x-axis and a y-axis, corresponding velocity components are defined as v x = d x / d t , {\displaystyle v_{x}=dx/dt,} v y = d y / d t . {\displaystyle v_{y}=dy/dt.} The two-dimensional velocity vector is then defined as v =< v x , v y > {\displaystyle {\textbf {v}}=<v_{x},v_{y}>} . The magnitude of this vector represents speed and
357-402: A velocity vector, denotes only how fast an object is moving, while velocity indicates both an object's speed and direction. To have a constant velocity , an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed. For example, a car moving at
408-468: Is a force acting opposite to the relative motion of any object moving with respect to a surrounding fluid. The drag force, F D {\displaystyle F_{D}} , is dependent on the square of velocity and is given as F D = 1 2 ρ v 2 C D A {\displaystyle F_{D}\,=\,{\tfrac {1}{2}}\,\rho \,v^{2}\,C_{D}\,A} where Escape velocity
459-417: Is always less than or equal to the average speed of an object. This can be seen by realizing that while distance is always strictly increasing, displacement can increase or decrease in magnitude as well as change direction. In terms of a displacement-time ( x vs. t ) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point , and
510-720: Is defined as v =< v x , v y , v z > {\displaystyle {\textbf {v}}=<v_{x},v_{y},v_{z}>} with its magnitude also representing speed and being determined by | v | = v x 2 + v y 2 + v z 2 . {\displaystyle |v|={\sqrt {v_{x}^{2}+v_{y}^{2}+v_{z}^{2}}}.} While some textbooks use subscript notation to define Cartesian components of velocity, others use u {\displaystyle u} , v {\displaystyle v} , and w {\displaystyle w} for
561-501: Is defined as the rate of change of position with respect to time, which may also be referred to as the instantaneous velocity to emphasize the distinction from the average velocity. In some applications the average velocity of an object might be needed, that is to say, the constant velocity that would provide the same resultant displacement as a variable velocity in the same time interval, v ( t ) , over some time period Δ t . Average velocity can be calculated as: The average velocity
SECTION 10
#1732775759485612-435: Is defined as the rate of change of position, it is often common to start with an expression for an object's acceleration . As seen by the three green tangent lines in the figure, an object's instantaneous acceleration at a point in time is the slope of the line tangent to the curve of a v ( t ) graph at that point. In other words, instantaneous acceleration is defined as the derivative of velocity with respect to time:
663-592: Is equal to 1 hm /s. It is used almost exclusively in oceanography to measure the volumetric rate of transport of ocean currents . It is named after Harald Sverdrup . One sverdrup is about five times what is carried by the world's largest river, the Amazon. In the context of ocean currents , a volume of one million cubic meters may be imagined as a "slice" of ocean with dimensions 1 km × 1 km × 1 m (width × length × thickness). At this scale, these units can be more easily compared in terms of width of
714-483: Is found by the distance formula as | v | = v x 2 + v y 2 . {\displaystyle |v|={\sqrt {v_{x}^{2}+v_{y}^{2}}}.} In three-dimensional systems where there is an additional z-axis, the corresponding velocity component is defined as v z = d z / d t . {\displaystyle v_{z}=dz/dt.} The three-dimensional velocity vector
765-635: Is given by the harmonic mean of the speeds v ¯ = n ( 1 v 1 + 1 v 2 + 1 v 3 + ⋯ + 1 v n ) − 1 = n ( ∑ i = 1 n 1 v i ) − 1 . {\displaystyle {\bar {v}}=n\left({1 \over v_{1}}+{1 \over v_{2}}+{1 \over v_{3}}+\dots +{1 \over v_{n}}\right)^{-1}=n\left(\sum _{i=1}^{n}{\frac {1}{v_{i}}}\right)^{-1}.} Although velocity
816-501: Is measured in the SI ( metric system ) as metres per second (m/s or m⋅s ). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object is said to be undergoing an acceleration . The average velocity of an object over a period of time is its change in position , Δ s {\displaystyle \Delta s} , divided by
867-553: Is named in honor of the Norwegian oceanographer, meteorologist and polar explorer Harald Ulrik Sverdrup (1888–1957), who wrote the 1942 volume The Oceans, Their Physics, Chemistry, and General Biology together with Martin W. Johnson and Richard H. Fleming. In the 1950s and early 1960s both Soviet and North American scientists contemplated the damming of the Bering Strait , thus enabling temperate Atlantic water to heat up
918-474: Is position and r ^ {\displaystyle {\hat {\boldsymbol {r}}}} is the radial direction. The transverse speed (or magnitude of the transverse velocity) is the magnitude of the cross product of the unit vector in the radial direction and the velocity vector. It is also the dot product of velocity and transverse direction, or the product of the angular speed ω {\displaystyle \omega } and
969-409: Is the gravitational constant and g is the gravitational acceleration . The escape velocity from Earth's surface is about 11 200 m/s, and is irrespective of the direction of the object. This makes "escape velocity" somewhat of a misnomer, as the more correct term would be "escape speed": any object attaining a velocity of that magnitude, irrespective of atmosphere, will leave the vicinity of
1020-422: Is the speed in combination with the direction of motion of an object . Velocity is a fundamental concept in kinematics , the branch of classical mechanics that describes the motion of bodies. Velocity is a physical vector quantity : both magnitude and direction are needed to define it. The scalar absolute value ( magnitude ) of velocity is called speed , being a coherent derived unit whose quantity
1071-769: Is the component of velocity along a circle centered at the origin. v = v T + v R {\displaystyle {\boldsymbol {v}}={\boldsymbol {v}}_{T}+{\boldsymbol {v}}_{R}} where The radial speed (or magnitude of the radial velocity) is the dot product of the velocity vector and the unit vector in the radial direction. v R = v ⋅ r | r | = v ⋅ r ^ {\displaystyle v_{R}={\frac {{\boldsymbol {v}}\cdot {\boldsymbol {r}}}{\left|{\boldsymbol {r}}\right|}}={\boldsymbol {v}}\cdot {\hat {\boldsymbol {r}}}} where r {\displaystyle {\boldsymbol {r}}}
SECTION 20
#17327757594851122-418: Is the mass of the object. The kinetic energy of a moving object is dependent on its velocity and is given by the equation E k = 1 2 m v 2 {\displaystyle E_{\text{k}}={\tfrac {1}{2}}mv^{2}} where E k is the kinetic energy. Kinetic energy is a scalar quantity as it depends on the square of the velocity. In fluid dynamics , drag
1173-461: Is the mass times the distance to the origin times the transverse velocity, or equivalently, the mass times the distance squared times the angular speed. The sign convention for angular momentum is the same as that for angular velocity. L = m r v T = m r 2 ω {\displaystyle L=mrv_{T}=mr^{2}\omega } where The expression m r 2 {\displaystyle mr^{2}}
1224-547: Is the minimum speed a ballistic object needs to escape from a massive body such as Earth. It represents the kinetic energy that, when added to the object's gravitational potential energy (which is always negative), is equal to zero. The general formula for the escape velocity of an object at a distance r from the center of a planet with mass M is v e = 2 G M r = 2 g r , {\displaystyle v_{\text{e}}={\sqrt {\frac {2GM}{r}}}={\sqrt {2gr}},} where G
1275-463: Is the rate of rotation about the origin (with positive quantities representing counter-clockwise rotation and negative quantities representing clockwise rotation, in a right-handed coordinate system). The radial and traverse velocities can be derived from the Cartesian velocity and displacement vectors by decomposing the velocity vector into radial and transverse components. The transverse velocity
1326-453: Is the speed of light. Relative velocity is a measurement of velocity between two objects as determined in a single coordinate system. Relative velocity is fundamental in both classical and modern physics, since many systems in physics deal with the relative motion of two or more particles. Consider an object A moving with velocity vector v and an object B with velocity vector w ; these absolute velocities are typically expressed in
1377-436: The x {\displaystyle x} -, y {\displaystyle y} -, and z {\displaystyle z} -axes respectively. In polar coordinates , a two-dimensional velocity is described by a radial velocity , defined as the component of velocity away from or toward the origin, and a transverse velocity , perpendicular to the radial one. Both arise from angular velocity , which
1428-424: The derivative of the position with respect to time: v = lim Δ t → 0 Δ s Δ t = d s d t . {\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {s}}}{\Delta t}}={\frac {d{\boldsymbol {s}}}{dt}}.} From this derivative equation, in
1479-520: The NEU is colder than the NBC, they will have different densities and not mix, allowing each to flow past each other mostly uninhibited. From July to February, it is quite common for the current to separate from the coast and curve back into itself . Since the current can be quite large, it is easy for large anticyclonic rings to generate, which separate from the main mass of the current and move northwestward with
1530-1574: The average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity. If t 1 = t 2 = t 3 = ... = t , then average speed is given by the arithmetic mean of the speeds v ¯ = v 1 + v 2 + v 3 + ⋯ + v n n = 1 n ∑ i = 1 n v i {\displaystyle {\bar {v}}={v_{1}+v_{2}+v_{3}+\dots +v_{n} \over n}={\frac {1}{n}}\sum _{i=1}^{n}{v_{i}}} v ¯ = s 1 + s 2 + s 3 + ⋯ + s n t 1 + t 2 + t 3 + ⋯ + t n = s 1 + s 2 + s 3 + ⋯ + s n s 1 v 1 + s 2 v 2 + s 3 v 3 + ⋯ + s n v n {\displaystyle {\bar {v}}={s_{1}+s_{2}+s_{3}+\dots +s_{n} \over t_{1}+t_{2}+t_{3}+\dots +t_{n}}={{s_{1}+s_{2}+s_{3}+\dots +s_{n}} \over {{s_{1} \over v_{1}}+{s_{2} \over v_{2}}+{s_{3} \over v_{3}}+\dots +{s_{n} \over v_{n}}}}} If s 1 = s 2 = s 3 = ... = s , then average speed
1581-456: The base body as long as it does not intersect with something in its path. In special relativity , the dimensionless Lorentz factor appears frequently, and is given by γ = 1 1 − v 2 c 2 {\displaystyle \gamma ={\frac {1}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}} where γ is the Lorentz factor and c
North Brazil Current - Misplaced Pages Continue
1632-605: The cold Arctic Sea and, the theory went, making Siberia and northern Canada more habitable. As part of the North American team, Canadian oceanographer Maxwell Dunbar found it "very cumbersome" to repeatedly reference millions of cubic meters per second. He casually suggested that as a new unit of water flow, "the inflow through Bering Strait is one sverdrup". At the Arctic Basin Symposium in October 1962,
1683-402: The concept of an instantaneous velocity might at first seem counter-intuitive, it may be thought of as the velocity that the object would continue to travel at if it stopped accelerating at that moment. While the terms speed and velocity are often colloquially used interchangeably to connote how fast an object is moving, in scientific terms they are different. Speed, the scalar magnitude of
1734-451: The current (several km), depth (hundreds of meters), and current speed (as meters per second ). Thus, a hypothetical current 50 km wide, 500 m (0.5 km) deep, and moving at 2 m/s would be transporting 50 Sv of water. The sverdrup is distinct from the SI sievert unit or the non-SI svedberg unit. All three use the same symbol, but they are not related. The sverdrup
1785-533: The current is at its maximum extent of about 300 kilometers wide. The current continues to about 7°N and 52°W, where it becomes the Guiana Current. The general speed of the current is between 60 and 100 centimeters per second. A peak recorded speed of 110 centimeters per second was recorded about 100 m below the surface of the ocean, in the vicinity of where the NBC merges with the SEC. Average temperatures are in
1836-458: The duration of the period, Δ t {\displaystyle \Delta t} , given mathematically as v ¯ = Δ s Δ t . {\displaystyle {\bar {v}}={\frac {\Delta s}{\Delta t}}.} The instantaneous velocity of an object is the limit average velocity as the time interval approaches zero. At any particular time t , it can be calculated as
1887-540: The inertial frame chosen is that in which the latter of the two mentioned objects is in rest. In Newtonian mechanics, the relative velocity is independent of the chosen inertial reference frame. This is not the case anymore with special relativity in which velocities depend on the choice of reference frame. In the one-dimensional case, the velocities are scalars and the equation is either: v rel = v − ( − w ) , {\displaystyle v_{\text{rel}}=v-(-w),} if
1938-470: The lake, given that they are small enough to fit between the Lesser Antilles . Sverdrup In oceanography , the sverdrup (symbol: Sv ) is a non- SI metric unit of volumetric flow rate , with 1 Sv equal to 1 million cubic metres per second (264,172,052 US gal/s). It is equivalent to the SI derived unit cubic hectometer per second (symbol: hm /s or hm ⋅s ): 1 Sv
1989-536: The more saline SEC merges with the NBC. Both are quite warm, so the densities are similar, and the currents mix and create water with a salinity of 37.1 psu . The salinity will then decrease to around 36.5 psu as the current moves northward toward the equator and into the presence of the Intertropical Convergence Zone (ITCZ). The rainfall produced at the ITCZ works to dilute the salt content of
2040-477: The one-dimensional case it can be seen that the area under a velocity vs. time ( v vs. t graph) is the displacement, s . In calculus terms, the integral of the velocity function v ( t ) is the displacement function s ( t ) . In the figure, this corresponds to the yellow area under the curve. s = ∫ v d t . {\displaystyle {\boldsymbol {s}}=\int {\boldsymbol {v}}\ dt.} Although
2091-486: The prevailing winds. The mean diameter of the rings is about 300 kilometers, and move between 8 and 30 kilometers per day depending on the strength of the flow surrounding the ring. The rings are relatively shallow and move typically less than 1 Sv of water. The rings will eventually spin down after 100 days. Most rings make it to within the vicinity of the Caribbean Sea , and it is even possible for some to move into
North Brazil Current - Misplaced Pages Continue
2142-754: The radius (the magnitude of the position). v T = | r × v | | r | = v ⋅ t ^ = ω | r | {\displaystyle v_{T}={\frac {|{\boldsymbol {r}}\times {\boldsymbol {v}}|}{|{\boldsymbol {r}}|}}={\boldsymbol {v}}\cdot {\hat {\boldsymbol {t}}}=\omega |{\boldsymbol {r}}|} such that ω = | r × v | | r | 2 . {\displaystyle \omega ={\frac {|{\boldsymbol {r}}\times {\boldsymbol {v}}|}{|{\boldsymbol {r}}|^{2}}}.} Angular momentum in scalar form
2193-414: The range of 22 °C to 28.5 °C, and tend to be warmest during the northern hemisphere's summer . The strength of the current is dependent on the season. During the northern hemisphere's spring, there is a minimum of 13 Sv in the current, which jumps to 36 Sv as the easterlies strengthen. The average is about 26 Sv for the whole year. The average salinity of the current occurs at about 5°S, where
2244-710: The same inertial reference frame . Then, the velocity of object A relative to object B is defined as the difference of the two velocity vectors: v A relative to B = v − w {\displaystyle {\boldsymbol {v}}_{A{\text{ relative to }}B}={\boldsymbol {v}}-{\boldsymbol {w}}} Similarly, the relative velocity of object B moving with velocity w , relative to object A moving with velocity v is: v B relative to A = w − v {\displaystyle {\boldsymbol {v}}_{B{\text{ relative to }}A}={\boldsymbol {w}}-{\boldsymbol {v}}} Usually,
2295-432: The special case of constant acceleration, velocity can be studied using the suvat equations . By considering a as being equal to some arbitrary constant vector, this shows v = u + a t {\displaystyle {\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t} with v as the velocity at time t and u as the velocity at time t = 0 . By combining this equation with
2346-415: The suvat equation x = u t + a t /2 , it is possible to relate the displacement and the average velocity by x = ( u + v ) 2 t = v ¯ t . {\displaystyle {\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}t={\boldsymbol {\bar {v}}}t.} It is also possible to derive an expression for
2397-401: The two objects are moving in opposite directions, or: v rel = v − ( + w ) , {\displaystyle v_{\text{rel}}=v-(+w),} if the two objects are moving in the same direction. In multi-dimensional Cartesian coordinate systems , velocity is broken up into components that correspond with each dimensional axis of the coordinate system. In
2448-579: The unit came into general usage. The water transport in the Gulf Stream gradually increases from 30 Sv in the Florida Current to a maximum of 150 Sv south of Newfoundland at 55° W longitude . The Antarctic Circumpolar Current , at approximately 125 Sv , is the largest ocean current. The entire global input of fresh water from rivers to the ocean is approximately 1.2 Sv . Velocity Velocity
2499-555: The value of t and the transformation rules for position create a situation in which all non-accelerating observers would describe the acceleration of an object with the same values. Neither is true for special relativity. In other words, only relative velocity can be calculated. In classical mechanics, Newton's second law defines momentum , p, as a vector that is the product of an object's mass and velocity, given mathematically as p = m v {\displaystyle {\boldsymbol {p}}=m{\boldsymbol {v}}} where m
2550-654: The velocity independent of time, known as the Torricelli equation , as follows: v 2 = v ⋅ v = ( u + a t ) ⋅ ( u + a t ) = u 2 + 2 t ( a ⋅ u ) + a 2 t 2 {\displaystyle v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}} ( 2
2601-478: The water. The depth of the NBC is dependent on the depth of the thermocline , as well as the depth of the continental shelf . Closer to the shore, and especially where the depth of the water is less than 400 m, the sea floor acts as the lower limit to the current. If the depth is greater than 400 meters, the thermocline acts as the lower limit, and represents the boundary of the NBC and the colder, eastward moving Atlantic North Equatorial Undercurrent (NEU). Since
SECTION 50
#1732775759485#484515