Misplaced Pages

National Runaway Safeline

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In radio engineering , an antenna ( American English ) or aerial ( British English ) is an electronic device that converts an alternating electric current into radio waves (transmitting), or radio waves into an electric current (receiving). It is the interface between radio waves propagating through space and electric currents moving in metal conductors, used with a transmitter or receiver . In transmission , a radio transmitter supplies an electric current to the antenna's terminals, and the antenna radiates the energy from the current as electromagnetic waves (radio waves). In reception , an antenna intercepts some of the power of a radio wave in order to produce an electric current at its terminals, that is applied to a receiver to be amplified . Antennas are essential components of all radio equipment.

#743256

95-575: The National Runaway Safeline (also known as NRS or 1-800-RUNAWAY; formerly known as the National Runaway Switchboard) is the national communications system designated by the United States federal government for runaway and homeless youth , their parents and families, teens in crisis, and others who might benefit from its services. It is confidential, anonymous, non-judgmental, non-directive, and free. The hotline number

190-452: A ground plane to approximate the effect of being mounted on the Earth's surface. More complex antennas increase the directivity of the antenna. Additional elements in the antenna structure, which need not be directly connected to the receiver or transmitter, increase its directionality. Antenna "gain" describes the concentration of radiated power into a particular solid angle of space. "Gain"

285-426: A "broadside array" (directional normal to a line connecting the elements) or as an "end-fire array" (directional along the line connecting the elements). Antenna arrays may employ any basic (omnidirectional or weakly directional) antenna type, such as dipole, loop or slot antennas. These elements are often identical. Log-periodic and frequency-independent antennas employ self-similarity in order to be operational over

380-405: A boom; the boom is only for support and not involved electrically. Only one of the elements is electrically connected to the transmitter or receiver, while the remaining elements are passive. The Yagi produces a fairly large gain (depending on the number of passive elements) and is widely used as a directional antenna with an antenna rotor to control the direction of its beam. It suffers from having

475-403: A communication "two-way street" between two connected parties or to provide a "reverse path" for the monitoring and remote adjustment of equipment in the field. An antenna is basically a small length of a qwert conductor that is used to radiate or receive electromagnetic waves. It acts as a conversion device. At the transmitting end it converts high frequency current into electromagnetic waves. At

570-405: A current of 1 Ampere will require 63 Volts, and the antenna will radiate 63 Watts (ignoring losses) of radio frequency power. Now consider the case when the antenna is fed a signal with a wavelength of 1.25 m; in this case the current induced by the signal would arrive at the antenna's feedpoint out-of-phase with the signal, causing the net current to drop while the voltage remains

665-463: A current will reflect when there are changes in the electrical properties of the material. In order to efficiently transfer the received signal into the transmission line, it is important that the transmission line has the same impedance as its connection point on the antenna, otherwise some of the signal will be reflected backwards into the body of the antenna; likewise part of the transmitter's signal power will be reflected back to transmitter, if there

760-495: A fashion are known to be harmonically operated . Resonant antennas usually use a linear conductor (or element ), or pair of such elements, each of which is about a quarter of the wavelength in length (an odd multiple of quarter wavelengths will also be resonant). Antennas that are required to be small compared to the wavelength sacrifice efficiency and cannot be very directional. Since wavelengths are so small at higher frequencies ( UHF , microwaves ) trading off performance to obtain

855-400: A feed-point impedance that matches that of a transmission line; a matching network between antenna terminals and the transmission line will improve power transfer to the antenna. A non-adjustable matching network will most likely place further limits the usable bandwidth of the antenna system. It may be desirable to use tubular elements, instead of thin wires, to make an antenna; these will allow

950-436: A flux of 1 pW / m (10  Watts per square meter) and an antenna has an effective area of 12 m , then the antenna would deliver 12 pW of RF power to the receiver (30 microvolts RMS at 75 ohms). Since the receiving antenna is not equally sensitive to signals received from all directions, the effective area is a function of the direction to the source. Due to reciprocity (discussed above)

1045-403: A greater bandwidth. Or, several thin wires can be grouped in a cage to simulate a thicker element. This widens the bandwidth of the resonance. Amateur radio antennas that operate at several frequency bands which are widely separated from each other may connect elements resonant at those different frequencies in parallel. Most of the transmitter's power will flow into the resonant element while

SECTION 10

#1732791669744

1140-500: A half wavelength . The first antennas were built in 1888 by German physicist Heinrich Hertz in his pioneering experiments to prove the existence of electromagnetic waves predicted by the 1867 electromagnetic theory of James Clerk Maxwell . Hertz placed dipole antennas at the focal point of parabolic reflectors for both transmitting and receiving. Starting in 1895, Guglielmo Marconi began development of antennas practical for long-distance, wireless telegraphy, for which he received

1235-450: A long Beverage antenna can have significant directivity. For non directional portable use, a short vertical antenna or small loop antenna works well, with the main design challenge being that of impedance matching . With a vertical antenna a loading coil at the base of the antenna may be employed to cancel the reactive component of impedance ; small loop antennas are tuned with parallel capacitors for this purpose. An antenna lead-in

1330-421: A particular direction ( directional , or high-gain, or "beam" antennas). An antenna may include components not connected to the transmitter, parabolic reflectors , horns , or parasitic elements , which serve to direct the radio waves into a beam or other desired radiation pattern . Strong directivity and good efficiency when transmitting are hard to achieve with antennas with dimensions that are much smaller than

1425-497: A pole. In Italian a tent pole is known as l'antenna centrale , and the pole with the wire was simply called l'antenna . Until then wireless radiating transmitting and receiving elements were known simply as "terminals". Because of his prominence, Marconi's use of the word antenna spread among wireless researchers and enthusiasts, and later to the general public. Antenna may refer broadly to an entire assembly including support structure, enclosure (if any), etc., in addition to

1520-427: A proper resonant antenna at the trap frequency. At substantially higher or lower frequencies the trap allows the full length of the broken element to be employed, but with a resonant frequency shifted by the net reactance added by the trap. The bandwidth characteristics of a resonant antenna element can be characterized according to its Q where the resistance involved is the radiation resistance , which represents

1615-516: A pure resistance. Sometimes the resulting (lower) electrical resonant frequency of such a system (antenna plus matching network) is described using the concept of electrical length , so an antenna used at a lower frequency than its resonant frequency is called an electrically short antenna For example, at 30 MHz (10 m wavelength) a true resonant ⁠ 1  / 4 ⁠  wave monopole would be almost 2.5 meters long, and using an antenna only 1.5 meters tall would require

1710-504: A rather limited bandwidth, restricting its use to certain applications. Rather than using one driven antenna element along with passive radiators, one can build an array antenna in which multiple elements are all driven by the transmitter through a system of power splitters and transmission lines in relative phases so as to concentrate the RF power in a single direction. What's more, a phased array can be made "steerable", that is, by changing

1805-443: A signal into the transmission line only when the source signal's frequency is close to that of the design frequency of the antenna, or one of the resonant multiples. This makes resonant antenna designs inherently narrow-band: Only useful for a small range of frequencies centered around the resonance(s). It is possible to use simple impedance matching techniques to allow the use of monopole or dipole antennas substantially shorter than

1900-440: A smaller physical size is usually not required. The quarter-wave elements imitate a series-resonant electrical element due to the standing wave present along the conductor. At the resonant frequency, the standing wave has a current peak and voltage node (minimum) at the feed. In electrical terms, this means that at that position, the element has minimum impedance magnitude , generating the maximum current for minimum voltage. This

1995-498: A standard resistive impedance needed for its optimum operation. The feed point location(s) is selected, and antenna elements electrically similar to tuner components may be incorporated in the antenna structure itself, to improve the match . It is a fundamental property of antennas that most of the electrical characteristics of an antenna, such as those described in the next section (e.g. gain , radiation pattern , impedance , bandwidth , resonant frequency and polarization ), are

SECTION 20

#1732791669744

2090-477: A total 360 degree phase change, returning it to the original signal. The current in the element thus adds to the current being created from the source at that instant. This process creates a standing wave in the conductor, with the maximum current at the feed. The ordinary half-wave dipole is probably the most widely used antenna design. This consists of two ⁠ 1  / 4 ⁠  wavelength elements arranged end-to-end, and lying along essentially

2185-460: A transmitter, which encodes a message into an optical signal , a communication channel , which carries the signal to its destination, and a receiver, which reproduces the message from the received optical signal. Fiber-optic communication systems transmit information from one place to another by sending light through an optical fiber . The light forms a carrier signal that is modulated to carry information. A radio communication system

2280-473: A wide range of bandwidths . The most familiar example is the log-periodic dipole array which can be seen as a number (typically 10 to 20) of connected dipole elements with progressive lengths in an endfire array making it rather directional; it finds use especially as a rooftop antenna for television reception. On the other hand, a Yagi–Uda antenna (or simply "Yagi"), with a somewhat similar appearance, has only one dipole element with an electrical connection;

2375-725: Is 1-800-RUNAWAY. Calls are answered every day of the year, 24 hours a day. The National Runaway Switchboard was started in 1974, in Chicago, IL., by the staff of Metro-Help, a 24 hour crisis phone line. Grants from the Playboy Foundation and the Federal Government, H.E.W., provide the funding. This article about a philanthropic or charitable organization in the United States is a stub . You can help Misplaced Pages by expanding it . Communications system A communications system or communication system

2470-434: Is a change in electrical impedance where the feedline joins the antenna. This leads to the concept of impedance matching , the design of the overall system of antenna and transmission line so the impedance is as close as possible, thereby reducing these losses. Impedance matching is accomplished by a circuit called an antenna tuner or impedance matching network between the transmitter and antenna. The impedance match between

2565-398: Is a collection of individual telecommunications networks systems, relay stations, tributary stations, and terminal equipment usually capable of interconnection and interoperation to form an integrated whole. The components of a communications system serve a common purpose, are technically compatible, use common procedures, respond to controls, and operate in union. Telecommunications

2660-417: Is a component which due to its shape and position functions to selectively delay or advance portions of the electromagnetic wavefront passing through it. The refractor alters the spatial characteristics of the wave on one side relative to the other side. It can, for instance, bring the wave to a focus or alter the wave front in other ways, generally in order to maximize the directivity of the antenna system. This

2755-490: Is a consequence of the reciprocity theorem of electromagnetics. Therefore, in discussions of antenna properties no distinction is usually made between receiving and transmitting terminology, and the antenna can be viewed as either transmitting or receiving, whichever is more convenient. A necessary condition for the aforementioned reciprocity property is that the materials in the antenna and transmission medium are linear and reciprocal. Reciprocal (or bilateral ) means that

2850-403: Is a method of communication (e.g., for sports broadcasting , mass media , journalism , etc.). Communication is the act of conveying intended meanings from one entity or group to another through the use of mutually understood signs and semiotic rules. An optical communication system is any form of communications system that uses light as the transmission medium. Equipment consists of

2945-410: Is adjusted according to the receiver tuning. On the other hand, log-periodic antennas are not resonant at any single frequency but can (in principle) be built to attain similar characteristics (including feedpoint impedance) over any frequency range. These are therefore commonly used (in the form of directional log-periodic dipole arrays ) as television antennas. Gain is a parameter which measures

National Runaway Safeline - Misplaced Pages Continue

3040-444: Is an antenna, the point at which the signal is released as electromagnetic waves (or electromagnetic radiation). A communication channel is simply referring to the medium by which a signal travels. There are two types of media by which electrical signals travel, i.e. guided and unguided . Guided media refers to any medium that can be directed from transmitter to receiver by means of connecting cables. In optical fiber communication,

3135-472: Is any system (typically computer based) that is organized for the primary purpose of supporting the two way communication of emergency messages between both individuals and groups of individuals. These systems are commonly designed to integrate the cross-communication of messages between are variety of communication technologies. An Automatic call distributor (ACD) is a communication system that automatically queues, assigns and connects callers to handlers. This

3230-457: Is composed of several communications subsystems that give exterior communications capabilities. A radio communication system comprises a transmitting conductor in which electrical oscillations or currents are produced and which is arranged to cause such currents or oscillations to be propagated through the free space medium from one point to another remote therefrom and a receiving conductor at such distant point adapted to be excited by

3325-407: Is connected to a transmission line . The conductor, or element , is aligned with the electrical field of the desired signal, normally meaning it is perpendicular to the line from the antenna to the source (or receiver in the case of a broadcast antenna). The radio signal's electrical component induces a voltage in the conductor. This causes an electrical current to begin flowing in the direction of

3420-469: Is designed to meet the requirements of changing tactical situations and varying environmental conditions, (c) provides securable communications, such as voice, data , and video , among mobile users to facilitate command and control within, and in support of, tactical forces, and (d) usually requires extremely short installation times, usually on the order of hours, in order to meet the requirements of frequent relocation. An Emergency communication system

3515-438: Is equal to 1. Therefore, the effective area A eff in terms of the gain G in a given direction is given by: For an antenna with an efficiency of less than 100%, both the effective area and gain are reduced by that same amount. Therefore, the above relationship between gain and effective area still holds. These are thus two different ways of expressing the same quantity. A eff is especially convenient when computing

3610-465: Is its radiation pattern . The frequency range or bandwidth over which an antenna functions well can be very wide (as in a log-periodic antenna) or narrow (as in a small loop antenna); outside this range the antenna impedance becomes a poor match to the transmission line and transmitter (or receiver). Use of the antenna well away from its design frequency affects its radiation pattern , reducing its directive gain. Generally an antenna will not have

3705-412: Is perhaps an unfortunately chosen term, by comparison with amplifier "gain" which implies a net increase in power. In contrast, for antenna "gain", the power increased in the desired direction is at the expense of power reduced in undesired directions. Unlike amplifiers, antennas are electrically " passive " devices which conserve total power, and there is no increase in total power above that delivered from

3800-434: Is redirected toward the desired direction, increasing the antenna's gain by a factor of at least 2. Likewise, a corner reflector can insure that all of the antenna's power is concentrated in only one quadrant of space (or less) with a consequent increase in gain. Practically speaking, the reflector need not be a solid metal sheet, but can consist of a curtain of rods aligned with the antenna's polarization; this greatly reduces

3895-418: Is the transmission line , or feed line , which connects the antenna to a transmitter or receiver. The " antenna feed " may refer to all components connecting the antenna to the transmitter or receiver, such as an impedance matching network in addition to the transmission line. In a so-called "aperture antenna", such as a horn or parabolic dish, the "feed" may also refer to a basic radiating antenna embedded in

National Runaway Safeline - Misplaced Pages Continue

3990-404: Is the basis for most antenna designs, is a balanced component, with equal but opposite voltages and currents applied at its two terminals. The vertical antenna is a monopole antenna, not balanced with respect to ground. The ground (or any large conductive surface) plays the role of the second conductor of a monopole. Since monopole antennas rely on a conductive surface, they may be mounted with

4085-410: Is the ideal situation, because it produces the maximum output for the minimum input, producing the highest possible efficiency. Contrary to an ideal (lossless) series-resonant circuit, a finite resistance remains (corresponding to the relatively small voltage at the feed-point) due to the antenna's resistance to radiating , as well as any conventional electrical losses from producing heat. Recall that

4180-416: Is the radio equivalent of an optical lens . An antenna coupling network is a passive network (generally a combination of inductive and capacitive circuit elements) used for impedance matching in between the antenna and the transmitter or receiver. This may be used to minimize losses on the feed line, by reducing transmission line's standing wave ratio , and to present the transmitter or receiver with

4275-574: Is used often in customer service (such as for product or service complaints), ordering by telephone (such as in a ticket office), or coordination services (such as in air traffic control ). A Voice Communication Control System (VCCS) is essentially an ACD with characteristics that make it more adapted to use in critical situations (no waiting for dial tone , or lengthy recorded announcements, radio and telephone lines equally easily connected to, individual lines immediately accessible etc..) Sources can be classified as electric or non-electric ; they are

4370-448: The ⁠ 1  / 4 ⁠ or ⁠ 1  / 2 ⁠   wave , respectively, at which they are resonant. As these antennas are made shorter (for a given frequency) their impedance becomes dominated by a series capacitive (negative) reactance; by adding an appropriate size " loading coil " – a series inductance with equal and opposite (positive) reactance – the antenna's capacitive reactance may be cancelled leaving only

4465-405: The lens antenna . The antenna's power gain (or simply "gain") also takes into account the antenna's efficiency, and is often the primary figure of merit. Antennas are characterized by a number of performance measures which a user would be concerned with in selecting or designing an antenna for a particular application. A plot of the directional characteristics in the space surrounding the antenna

4560-403: The resonance principle. This relies on the behaviour of moving electrons, which reflect off surfaces where the dielectric constant changes, in a fashion similar to the way light reflects when optical properties change. In these designs, the reflective surface is created by the end of a conductor, normally a thin metal wire or rod, which in the simplest case has a feed point at one end where it

4655-509: The 1909 Nobel Prize in physics . The words antenna and aerial are used interchangeably. Occasionally the equivalent term "aerial" is used to specifically mean an elevated horizontal wire antenna. The origin of the word antenna relative to wireless apparatus is attributed to Italian radio pioneer Guglielmo Marconi . In the summer of 1895, Marconi began testing his wireless system outdoors on his father's estate near Bologna and soon began to experiment with long wire "aerials" suspended from

4750-418: The actual RF current-carrying components. A receiving antenna may include not only the passive metal receiving elements, but also an integrated preamplifier or mixer , especially at and above microwave frequencies. Antennas are required by any radio receiver or transmitter to couple its electrical connection to the electromagnetic field. Radio waves are electromagnetic waves which carry signals through

4845-467: The addition of a loading coil. Then it may be said that the coil has lengthened the antenna to achieve an electrical length of 2.5 meters. However, the resulting resistive impedance achieved will be quite a bit lower than that of a true ⁠ 1  / 4 ⁠  wave (resonant) monopole, often requiring further impedance matching (a transformer) to the desired transmission line. For ever shorter antennas (requiring greater "electrical lengthening")

SECTION 50

#1732791669744

4940-551: The air (or through space) at the speed of light with almost no transmission loss . Antennas can be classified as omnidirectional , radiating energy approximately equally in all horizontal directions, or directional , where radio waves are concentrated in some direction(s). A so-called beam antenna is unidirectional, designed for maximum response in the direction of the other station, whereas many other antennas are intended to accommodate stations in various directions but are not truly omnidirectional. Since antennas obey reciprocity

5035-402: The antenna consisting of a thin conductor. Antennas for use over much broader frequency ranges are achieved using further techniques. Adjustment of a matching network can, in principle, allow for any antenna to be matched at any frequency. Thus the small loop antenna built into most AM broadcast (medium wave) receivers has a very narrow bandwidth, but is tuned using a parallel capacitance which

5130-474: The antenna to the power radiated by a half-wave dipole antenna I dipole {\displaystyle I_{\text{dipole}}} ; these units are called decibels-dipole (dBd) Since the gain of a half-wave dipole is 2.15 dBi and the logarithm of a product is additive, the gain in dBi is just 2.15 decibels greater than the gain in dBd High-gain antennas have the advantage of longer range and better signal quality, but must be aimed carefully at

5225-427: The broadside direction. If higher gain is needed one cannot simply make the antenna larger. Due to the constraint on the effective area of a receiving antenna detailed below , one sees that for an already-efficient antenna design, the only way to increase gain (effective area) is by reducing the antenna's gain in another direction. If a half-wave dipole is not connected to an external circuit but rather shorted out at

5320-595: The communication channel or medium. The signal can be boosted by passing it through a signal amplifier. When the analog signal converted into digital signal. The output transducer simply converts the electric signal (created by the input transducer) back into its original form. Examples of output transducers include but are not limited to the following: Some common pairs of input and output transducers include: Again, input transducers convert non-electric signals like voice into electric signals that can be transmitted over great distances very quickly. Output transducers convert

5415-470: The degree of directivity of the antenna's radiation pattern . A high-gain antenna will radiate most of its power in a particular direction, while a low-gain antenna will radiate over a wide angle. The antenna gain , or power gain of an antenna is defined as the ratio of the intensity (power per unit surface area) I {\displaystyle I} radiated by the antenna in the direction of its maximum output, at an arbitrary distance, divided by

5510-557: The design operating frequency, f o , and antennas are normally designed to be this size. However, feeding that element with 3  f o (whose wavelength is ⁠ 1  / 3 ⁠ that of f o ) will also lead to a standing wave pattern. Thus, an antenna element is also resonant when its length is ⁠ 3  / 4 ⁠ of a wavelength. This is true for all odd multiples of ⁠ 1  / 4 ⁠  wavelength. This allows some flexibility of design in terms of antenna lengths and feed points. Antennas used in such

5605-403: The distances. Other examples of input transducers include: Once the source signal has been converted into an electric signal, the transmitter will modify this signal for efficient transmission. In order to do this, the signal must pass through an electronic circuit containing the following components: After the signal has been amplified, it is ready for transmission. At the end of the circuit

5700-421: The electric signal back into sound or picture, etc... There are many different types of transducers and the combinations are limitless. Antenna (radio) An antenna is an array of conductors ( elements ), electrically connected to the receiver or transmitter. Antennas can be designed to transmit and receive radio waves in all horizontal directions equally ( omnidirectional antennas ), or preferentially in

5795-427: The emission of energy from the resonant antenna to free space. The Q of a narrow band antenna can be as high as 15. On the other hand, the reactance at the same off-resonant frequency of one using thick elements is much less, consequently resulting in a Q as low as 5. These two antennas may perform equivalently at the resonant frequency, but the second antenna will perform over a bandwidth 3 times as wide as

SECTION 60

#1732791669744

5890-418: The entire system of reflecting elements (normally at the focus of the parabolic dish or at the throat of a horn) which could be considered the one active element in that antenna system. A microwave antenna may also be fed directly from a waveguide in place of a (conductive) transmission line . An antenna counterpoise , or ground plane , is a structure of conductive material which improves or substitutes for

5985-526: The feedline and antenna is measured by a parameter called the standing wave ratio (SWR) on the feedline. Consider a half-wave dipole designed to work with signals with wavelength 1 m, meaning the antenna would be approximately 50 cm from tip to tip. If the element has a length-to-diameter ratio of 1000, it will have an inherent impedance of about 63 ohms resistive. Using the appropriate transmission wire or balun, we match that resistance to ensure minimum signal reflection. Feeding that antenna with

6080-430: The feedpoint, then it becomes a resonant half-wave element which efficiently produces a standing wave in response to an impinging radio wave. Because there is no load to absorb that power, it retransmits all of that power, possibly with a phase shift which is critically dependent on the element's exact length. Thus such a conductor can be arranged in order to transmit a second copy of a transmitter's signal in order to affect

6175-446: The gain of an antenna used for transmitting must be proportional to its effective area when used for receiving. Consider an antenna with no loss , that is, one whose electrical efficiency is 100%. It can be shown that its effective area averaged over all directions must be equal to λ /4π , the wavelength squared divided by 4π . Gain is defined such that the average gain over all directions for an antenna with 100% electrical efficiency

6270-439: The geometrical divergence of the transmitted wave. For a given incoming flux, the power acquired by a receiving antenna is proportional to its effective area . This parameter compares the amount of power captured by a receiving antenna in comparison to the flux of an incoming wave (measured in terms of the signal's power density in watts per square metre). A half-wave dipole has an effective area of about 0.13  λ seen from

6365-474: The ground. It may be connected to or insulated from the natural ground. In a monopole antenna, this aids in the function of the natural ground, particularly where variations (or limitations) of the characteristics of the natural ground interfere with its proper function. Such a structure is normally connected to the return connection of an unbalanced transmission line such as the shield of a coaxial cable . An electromagnetic wave refractor in some aperture antennas

6460-413: The increase in signal power due to an amplifying device placed at the front-end of the system, such as a low-noise amplifier . The effective area or effective aperture of a receiving antenna expresses the portion of the power of a passing electromagnetic wave which the antenna delivers to its terminals, expressed in terms of an equivalent area. For instance, if a radio wave passing a given location has

6555-405: The intensity I iso {\displaystyle I_{\text{iso}}} radiated at the same distance by a hypothetical isotropic antenna which radiates equal power in all directions. This dimensionless ratio is usually expressed logarithmically in decibels , these units are called decibels-isotropic (dBi) A second unit used to measure gain is the ratio of the power radiated by

6650-417: The loading coil, relative to the decreased radiation resistance, entail a reduced electrical efficiency , which can be of great concern for a transmitting antenna, but bandwidth is the major factor that sets the size of antennas at 1 MHz and lower frequencies. The radiant flux as a function of the distance from the transmitting antenna varies according to the inverse-square law , since that describes

6745-435: The log-periodic principle it obtains the unique property of maintaining its performance characteristics (gain and impedance) over a very large bandwidth. When a radio wave hits a large conducting sheet it is reflected (with the phase of the electric field reversed) just as a mirror reflects light. Placing such a reflector behind an otherwise non-directional antenna will insure that the power that would have gone in its direction

6840-553: The material has the same response to an electric current or magnetic field in one direction, as it has to the field or current in the opposite direction. Most materials used in antennas meet these conditions, but some microwave antennas use high-tech components such as isolators and circulators , made of nonreciprocal materials such as ferrite . These can be used to give the antenna a different behavior on receiving than it has on transmitting, which can be useful in applications like radar . The majority of antenna designs are based on

6935-432: The medium is an optical (glass-like) fiber. Other guided media might include coaxial cables, telephone wire, twisted-pairs, etc... The other type of media, unguided media, refers to any communication channel that creates space between the transmitter and receiver. For radio or RF communication, the medium is air. Air is the only thing between the transmitter and receiver for RF communication while in other cases, like sonar,

7030-479: The medium is usually water because sound waves travel efficiently through certain liquid media. Both types of media are considered unguided because there are no connecting cables between the transmitter and receiver. Communication channels include almost everything from the vacuum of space to solid pieces of metal; however, some mediums are preferred more than others. That is because differing sources travel through subjective mediums with fluctuating efficiencies. Once

7125-583: The origins of a message or input signal. Examples of sources include but are not limited to the following: Sensors, like microphones and cameras, capture non-electric sources, like sound and light (respectively), and convert them into electrical signals. These types of sensors are called input transducers in modern analog and digital communication systems. Without input transducers there would not be an effective way to transport non-electric sources or signals over great distances, i.e. humans would have to rely solely on our eyes and ears to see and hear things despite

7220-407: The oscillations or currents propagated from the transmitter. Power line communication systems operate by impressing a modulated carrier signal on power wires. Different types of powerline communications use different frequency bands, depending on the signal transmission characteristics of the power wiring used. Since the power wiring system was originally intended for transmission of AC power ,

7315-653: The other parasitic elements interact with the electromagnetic field in order to realize a highly directional antenna but with a narrow bandwidth. Even greater directionality can be obtained using aperture antennas such as the parabolic reflector or horn antenna . Since high directivity in an antenna depends on it being large compared to the wavelength, highly directional antennas (thus with high antenna gain ) become more practical at higher frequencies ( UHF and above). At low frequencies (such as AM broadcast ), arrays of vertical towers are used to achieve directionality and they will occupy large areas of land. For reception,

7410-409: The other antenna. An example of a high-gain antenna is a parabolic dish such as a satellite television antenna. Low-gain antennas have shorter range, but the orientation of the antenna is relatively unimportant. An example of a low-gain antenna is the whip antenna found on portable radios and cordless phones . Antenna gain should not be confused with amplifier gain , a separate parameter measuring

7505-464: The other side connected to ground or an equivalent ground plane (or counterpoise ). Monopoles, which are one-half the size of a dipole, are common for long-wavelength radio signals where a dipole would be impractically large. Another common design is the folded dipole which consists of two (or more) half-wave dipoles placed side by side and connected at their ends but only one of which is driven. The standing wave forms with this desired pattern at

7600-401: The others present a high impedance. Another solution uses traps , parallel resonant circuits which are strategically placed in breaks created in long antenna elements. When used at the trap's particular resonant frequency the trap presents a very high impedance (parallel resonance) effectively truncating the element at the location of the trap; if positioned correctly, the truncated element makes

7695-465: The phases applied to each element the radiation pattern can be shifted without physically moving the antenna elements. Another common array antenna is the log-periodic dipole array which has an appearance similar to the Yagi (with a number of parallel elements along a boom) but is totally dissimilar in operation as all elements are connected electrically to the adjacent element with a phase reversal; using

7790-399: The power source (the transmitter), only improved distribution of that fixed total. A phased array consists of two or more simple antennas which are connected together through an electrical network. This often involves a number of parallel dipole antennas with a certain spacing. Depending on the relative phase introduced by the network, the same combination of dipole antennas can operate as

7885-488: The power that would be received by an antenna of a specified gain, as illustrated by the above example. The radiation pattern of an antenna is a plot of the relative field strength of the radio waves emitted by the antenna at different angles in the far field. It is typically represented by a three-dimensional graph, or polar plots of the horizontal and vertical cross sections. The pattern of an ideal isotropic antenna , which radiates equally in all directions, would look like

7980-494: The power wire circuits have only a limited ability to carry higher frequencies. The propagation problem is a limiting factor for each type of power line communications. A duplex communication system is a system composed of two connected parties or devices which can communicate with one another in both directions. The term duplex is used when describing communication between two parties or devices. Duplex systems are employed in nearly all communications networks, either to allow for

8075-444: The radiation pattern (and feedpoint impedance) of the element electrically connected to the transmitter. Antenna elements used in this way are known as passive radiators . A Yagi–Uda array uses passive elements to greatly increase gain in one direction (at the expense of other directions). A number of parallel approximately half-wave elements (of very specific lengths) are situated parallel to each other, at specific positions, along

8170-421: The radiation resistance plummets (approximately according to the square of the antenna length), so that the mismatch due to a net reactance away from the electrical resonance worsens. Or one could as well say that the equivalent resonant circuit of the antenna system has a higher Q factor and thus a reduced bandwidth, which can even become inadequate for the transmitted signal's spectrum. Resistive losses due to

8265-485: The receiving end it transforms electromagnetic waves into electrical signals that is fed into the input of the receiver. several types of antenna are used in communication. Examples of communications subsystems include the Defense Communications System (DCS). A tactical communications system is a communications system that (a) is used within, or in direct support of tactical forces (b)

8360-441: The reflector's weight and wind load . Specular reflection of radio waves is also employed in a parabolic reflector antenna, in which a curved reflecting surface effects focussing of an incoming wave toward a so-called feed antenna ; this results in an antenna system with an effective area comparable to the size of the reflector itself. Other concepts from geometrical optics are also employed in antenna technology, such as with

8455-411: The same radiation pattern applies to transmission as well as reception of radio waves. A hypothetical antenna that radiates equally in all directions (vertical as well as all horizontal angles) is called an isotropic radiator ; however, these cannot exist in practice nor would they be particularly desired. For most terrestrial communications, rather, there is an advantage in reducing radiation toward

8550-458: The same axis (or collinear ), each feeding one side of a two-conductor transmission wire. The physical arrangement of the two elements places them 180 degrees out of phase, which means that at any given instant one of the elements is driving current into the transmission line while the other is pulling it out. The monopole antenna is essentially one half of the half-wave dipole, a single ⁠ 1  / 4 ⁠  wavelength element with

8645-425: The same whether the antenna is transmitting or receiving . For example, the "receiving pattern" (sensitivity to incoming signals as a function of direction) of an antenna when used for reception is identical to the radiation pattern of the antenna when it is driven and functions as a radiator, even though the current and voltage distributions on the antenna itself are different for receiving and sending. This

8740-432: The same. Electrically this appears to be a very high impedance. The antenna and transmission line no longer have the same impedance, and the signal will be reflected back into the antenna, reducing output. This could be addressed by changing the matching system between the antenna and transmission line, but that solution only works well at the new design frequency. The result is that the resonant antenna will efficiently feed

8835-504: The signal has passed through the communication channel, it must be effectively captured by a receiver. The goal of the receiver is to capture and reconstruct the signal before it passed through the transmitter (i.e. the A/D converter, modulator and encoder). This is done by passing the "received" signal through another circuit containing the following components: Most likely the signal will have lost some of its energy after having passed through

8930-469: The signal's instantaneous field. When the resulting current reaches the end of the conductor, it reflects, which is equivalent to a 180 degree change in phase. If the conductor is ⁠ 1  / 4 ⁠ of a wavelength long, current from the feed point will undergo 90 degree phase change by the time it reaches the end of the conductor, reflect through 180 degrees, and then another 90 degrees as it travels back. That means it has undergone

9025-472: The sky or ground in favor of horizontal direction(s). A dipole antenna oriented horizontally sends no energy in the direction of the conductor – this is called the antenna null – but is usable in most other directions. A number of such dipole elements can be combined into an antenna array such as the Yagi–Uda in order to favor a single horizontal direction, thus termed a beam antenna. The dipole antenna, which

#743256