A proposition is a central concept in the philosophy of language , semantics , logic , and related fields, often characterized as the primary bearer of truth or falsity . Propositions are also often characterized as the type of object that declarative sentences denote . For instance the sentence "The sky is blue" denotes the proposition that the sky is blue. However, crucially, propositions are not themselves linguistic expressions . For instance, the English sentence "Snow is white" denotes the same proposition as the German sentence "Schnee ist weiß" even though the two sentences are not the same. Similarly, propositions can also be characterized as the objects of belief and other propositional attitudes . For instance if someone believes that the sky is blue, the object of their belief is the proposition that the sky is blue.
141-491: In logic , negation , also called the logical not or logical complement , is an operation that takes a proposition P {\displaystyle P} to another proposition "not P {\displaystyle P} ", written ¬ P {\displaystyle \neg P} , ∼ P {\displaystyle {\mathord {\sim }}P} or P ¯ {\displaystyle {\overline {P}}} . It
282-411: A n ∧ b n ) {\displaystyle f(b_{1},b_{2},\dots ,b_{n})=a_{0}\oplus (a_{1}\land b_{1})\oplus \dots \oplus (a_{n}\land b_{n})} , for all b 1 , b 2 , … , b n ∈ { 0 , 1 } {\displaystyle b_{1},b_{2},\dots ,b_{n}\in \{0,1\}} . Another way to express this
423-491: A n ) {\displaystyle f(a_{1},\dots ,a_{n})=\neg f(\neg a_{1},\dots ,\neg a_{n})} for all a 1 , … , a n ∈ { 0 , 1 } {\displaystyle a_{1},\dots ,a_{n}\in \{0,1\}} . Negation is a self dual logical operator. In first-order logic , there are two quantifiers, one is the universal quantifier ∀ {\displaystyle \forall } (means "for all") and
564-501: A r y ) ∧ Q ( J o h n ) ) {\displaystyle \exists Q(Q(Mary)\land Q(John))} " . In this case, the existential quantifier is applied to the predicate variable " Q {\displaystyle Q} " . The added expressive power is especially useful for mathematics since it allows for more succinct formulations of mathematical theories. But it has drawbacks in regard to its meta-logical properties and ontological implications, which
705-441: A Heyting algebra . These algebras provide a semantics for classical and intuitionistic logic. The negation of a proposition p is notated in different ways, in various contexts of discussion and fields of application. The following table documents some of these variants: The notation N p {\displaystyle Np} is Polish notation . In set theory , ∖ {\displaystyle \setminus }
846-444: A countable noun , the term "a logic" refers to a specific logical formal system that articulates a proof system . Logic plays a central role in many fields, such as philosophy , mathematics , computer science , and linguistics . Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to
987-525: A possible world and return a truth value. For example, the proposition that the sky is blue could be represented as a function f {\displaystyle f} such that f ( w ) = T {\displaystyle f(w)=T} for every world w , {\displaystyle w,} if any, where the sky is blue, and f ( v ) = F {\displaystyle f(v)=F} for every world v , {\displaystyle v,} if any, where it
1128-461: A predicate of a subject , optionally with the help of a copula . An Aristotelian proposition may take the form of "All men are mortal" or "Socrates is a man." In the first example, the subject is "men", predicate is "mortal" and copula is "are", while in the second example, the subject is "Socrates", the predicate is "a man" and copula is "is". Often, propositions are related to closed formulae (or logical sentence) to distinguish them from what
1269-445: A central role in many arguments found in everyday discourse and the sciences. Ampliative arguments are not automatically incorrect. Instead, they just follow different standards of correctness. The support they provide for their conclusion usually comes in degrees. This means that strong ampliative arguments make their conclusion very likely while weak ones are less certain. As a consequence, the line between correct and incorrect arguments
1410-480: A certain cost: the premises support the conclusion in the sense that they make its truth more likely but they do not ensure its truth. This means that the conclusion of an ampliative argument may be false even though all its premises are true. This characteristic is closely related to non-monotonicity and defeasibility : it may be necessary to retract an earlier conclusion upon receiving new information or in light of new inferences drawn. Ampliative reasoning plays
1551-573: A complex argument to be successful, each link of the chain has to be successful. Arguments and inferences are either correct or incorrect. If they are correct then their premises support their conclusion. In the incorrect case, this support is missing. It can take different forms corresponding to the different types of reasoning . The strongest form of support corresponds to deductive reasoning . But even arguments that are not deductively valid may still be good arguments because their premises offer non-deductive support to their conclusions. For such cases,
SECTION 10
#17327726979971692-425: A conclusion. Logic is interested in whether arguments are correct, i.e. whether their premises support the conclusion. These general characterizations apply to logic in the widest sense, i.e., to both formal and informal logic since they are both concerned with assessing the correctness of arguments. Formal logic is the traditionally dominant field, and some logicians restrict logic to formal logic. Formal logic
1833-510: A formal language together with a set of axioms and a proof system used to draw inferences from these axioms. In logic, axioms are statements that are accepted without proof. They are used to justify other statements. Some theorists also include a semantics that specifies how the expressions of the formal language relate to real objects. Starting in the late 19th century, many new formal systems have been proposed. A formal language consists of an alphabet and syntactic rules. The alphabet
1974-686: A formal language while informal logic investigates them in their original form. On this view, the argument "Birds fly. Tweety is a bird. Therefore, Tweety flies." belongs to natural language and is examined by informal logic. But the formal translation "(1) ∀ x ( B i r d ( x ) → F l i e s ( x ) ) {\displaystyle \forall x(Bird(x)\to Flies(x))} ; (2) B i r d ( T w e e t y ) {\displaystyle Bird(Tweety)} ; (3) F l i e s ( T w e e t y ) {\displaystyle Flies(Tweety)} "
2115-407: A function which would return the truth value T {\displaystyle T} if given the actual world as input, but would return F {\displaystyle F} if given some alternate world where the sky is green. However, a number of alternative formalizations have been proposed, notably the structured propositions view. Propositions have played a large role throughout
2256-415: A given argument is valid. Because of the reliance on formal language, natural language arguments cannot be studied directly. Instead, they need to be translated into formal language before their validity can be assessed. The term "logic" can also be used in a slightly different sense as a countable noun. In this sense, a logic is a logical formal system. Distinct logics differ from each other concerning
2397-551: A given conclusion based on a set of premises. This distinction does not just apply to logic but also to games. In chess , for example, the definitory rules dictate that bishops may only move diagonally. The strategic rules, on the other hand, describe how the allowed moves may be used to win a game, for instance, by controlling the center and by defending one's king . It has been argued that logicians should give more emphasis to strategic rules since they are highly relevant for effective reasoning. A formal system of logic consists of
2538-402: A great variety of topics. They include metaphysical theses about ontological categories and problems of scientific explanation. But in a more narrow sense, it is identical to term logic or syllogistics. A syllogism is a form of argument involving three propositions: two premises and a conclusion. Each proposition has three essential parts: a subject , a predicate, and a copula connecting
2679-614: A logical connective like "and" to form a new complex proposition. In Aristotelian logic, the subject can be universal , particular , indefinite , or singular . For example, the term "all humans" is a universal subject in the proposition "all humans are mortal". A similar proposition could be formed by replacing it with the particular term "some humans", the indefinite term "a human", or the singular term "Socrates". Aristotelian logic only includes predicates for simple properties of entities. But it lacks predicates corresponding to relations between entities. The predicate can be linked to
2820-407: A new car ", or "I wonder whether it will snow " (or, whether it is the case that "it will snow"). Desire, belief, doubt, and so on, are thus called propositional attitudes when they take this sort of content. Bertrand Russell held that propositions were structured entities with objects and properties as constituents. One important difference between Ludwig Wittgenstein 's view (according to which
2961-1062: A person x in all humans who is not mortal", or "there exists someone who lives forever". There are a number of equivalent ways to formulate rules for negation. One usual way to formulate classical negation in a natural deduction setting is to take as primitive rules of inference negation introduction (from a derivation of P {\displaystyle P} to both Q {\displaystyle Q} and ¬ Q {\displaystyle \neg Q} , infer ¬ P {\displaystyle \neg P} ; this rule also being called reductio ad absurdum ), negation elimination (from P {\displaystyle P} and ¬ P {\displaystyle \neg P} infer Q {\displaystyle Q} ; this rule also being called ex falso quodlibet ), and double negation elimination (from ¬ ¬ P {\displaystyle \neg \neg P} infer P {\displaystyle P} ). One obtains
SECTION 20
#17327726979973102-672: A primitive rule ex falso quodlibet . As in mathematics, negation is used in computer science to construct logical statements. The exclamation mark " ! " signifies logical NOT in B , C , and languages with a C-inspired syntax such as C++ , Java , JavaScript , Perl , and PHP . " NOT " is the operator used in ALGOL 60 , BASIC , and languages with an ALGOL- or BASIC-inspired syntax such as Pascal , Ada , Eiffel and Seed7 . Some languages (C++, Perl, etc.) provide more than one operator for negation. A few languages like PL/I and Ratfor use ¬ for negation. Most modern languages allow
3243-418: A proposition are too vague to be useful. For them, it is just a misleading concept that should be removed from philosophy and semantics . W. V. Quine , who granted the existence of sets in mathematics, maintained that the indeterminacy of translation prevented any meaningful discussion of propositions, and that they should be discarded in favor of sentences. P. F. Strawson , on the other hand, advocated for
3384-441: A proposition implies its double negation, but not conversely. This marks one important difference between classical and intuitionistic negation. Algebraically, classical negation is called an involution of period two. However, in intuitionistic logic , the weaker equivalence ¬ ¬ ¬ P ≡ ¬ P {\displaystyle \neg \neg \neg P\equiv \neg P} does hold. This
3525-537: A proposition is the set of possible worlds /states of affairs in which it is true) is that on the Russellian account, two propositions that are true in all the same states of affairs can still be differentiated. For instance, the proposition "two plus two equals four" is distinct on a Russellian account from the proposition "three plus three equals six". If propositions are sets of possible worlds, however, then all mathematical truths (and all other necessary truths) are
3666-414: A result, in the propositional case, a sentence is classically provable if its double negation is intuitionistically provable. This result is known as Glivenko's theorem . De Morgan's laws provide a way of distributing negation over disjunction and conjunction : Let ⊕ {\displaystyle \oplus } denote the logical xor operation. In Boolean algebra , a linear function
3807-664: A sentence like "yesterday was Sunday and the weather was good". It is only true if both of its input variables, p {\displaystyle p} ("yesterday was Sunday") and q {\displaystyle q} ("the weather was good"), are true. In all other cases, the expression as a whole is false. Other important logical connectives are ¬ {\displaystyle \lnot } ( not ), ∨ {\displaystyle \lor } ( or ), → {\displaystyle \to } ( if...then ), and ↑ {\displaystyle \uparrow } ( Sheffer stroke ). Given
3948-414: A structured view of propositions, one can distinguish between singular propositions (also Russellian propositions , named after Bertrand Russell ) which are about a particular individual, general propositions , which are not about any particular individual, and particularized propositions , which are about a particular individual but do not contain that individual as a constituent. Attempts to provide
4089-565: A way of reducing the number of necessary parentheses, one may introduce precedence rules : ¬ has higher precedence than ∧, ∧ higher than ∨, and ∨ higher than →. So for example, P ∨ Q ∧ ¬ R → S {\displaystyle P\vee Q\wedge {\neg R}\rightarrow S} is short for ( P ∨ ( Q ∧ ( ¬ R ) ) ) → S . {\displaystyle (P\vee (Q\wedge (\neg R)))\rightarrow S.} Here
4230-591: A workable definition of proposition include the following: Two meaningful declarative sentences express the same proposition, if and only if they mean the same thing. which defines proposition in terms of synonymity. For example, "Snow is white" (in English) and "Schnee ist weiß" (in German) are different sentences, but they say the same thing, so they express the same proposition. Another definition of proposition is: Two meaningful declarative sentence-tokens express
4371-420: Is logical consequence and ⊥ {\displaystyle \bot } is absolute falsehood ). Conversely, one can define ⊥ {\displaystyle \bot } as Q ∧ ¬ Q {\displaystyle Q\land \neg Q} for any proposition Q (where ∧ {\displaystyle \land } is logical conjunction ). The idea here
Negation - Misplaced Pages Continue
4512-420: Is sound when its proof system cannot derive a conclusion from a set of premises unless it is semantically entailed by them. In other words, its proof system cannot lead to false conclusions, as defined by the semantics. A system is complete when its proof system can derive every conclusion that is semantically entailed by its premises. In other words, its proof system can lead to any true conclusion, as defined by
4653-431: Is a philosopher” and “Plato is a philosopher” are different propositions. Similarly, “I am Spartacus” becomes “X is Spartacus”, where X is replaced with terms representing the individuals Spartacus and John Smith. In other words, the example problems can be averted if sentences are formulated with precision such that their terms have unambiguous meanings. A number of philosophers and linguists claim that all definitions of
4794-476: Is a red planet". For most types of logic, it is accepted that premises and conclusions have to be truth-bearers . This means that they have a truth value : they are either true or false. Contemporary philosophy generally sees them either as propositions or as sentences . Propositions are the denotations of sentences and are usually seen as abstract objects . For example, the English sentence "the tree
4935-441: Is a restricted version of classical logic. It uses the same symbols but excludes some rules of inference. For example, according to the law of double negation elimination, if a sentence is not not true, then it is true. This means that A {\displaystyle A} follows from ¬ ¬ A {\displaystyle \lnot \lnot A} . This is a valid rule of inference in classical logic but it
5076-471: Is a table that shows a commonly used precedence of logical operators. Within a system of classical logic , double negation, that is, the negation of the negation of a proposition P {\displaystyle P} , is logically equivalent to P {\displaystyle P} . Expressed in symbolic terms, ¬ ¬ P ≡ P {\displaystyle \neg \neg P\equiv P} . In intuitionistic logic ,
5217-416: Is also known as symbolic logic and is widely used in mathematical logic . It uses a formal approach to study reasoning: it replaces concrete expressions with abstract symbols to examine the logical form of arguments independent of their concrete content. In this sense, it is topic-neutral since it is only concerned with the abstract structure of arguments and not with their concrete content. Formal logic
5358-411: Is also used to indicate 'not in the set of': U ∖ A {\displaystyle U\setminus A} is the set of all members of U that are not members of A . Regardless how it is notated or symbolized , the negation ¬ P {\displaystyle \neg P} can be read as "it is not the case that P ", "not that P ", or usually more simply as "not P ". As
5499-449: Is an operation on one logical value , typically the value of a proposition , that produces a value of true when its operand is false, and a value of false when its operand is true. Thus if statement P {\displaystyle P} is true, then ¬ P {\displaystyle \neg P} (pronounced "not P") would then be false; and conversely, if ¬ P {\displaystyle \neg P}
5640-453: Is an example of the existential quantifier " ∃ {\displaystyle \exists } " applied to the individual variable " x {\displaystyle x} " . In higher-order logics, quantification is also allowed over predicates. This increases its expressive power. For example, to express the idea that Mary and John share some qualities, one could use the formula " ∃ Q ( Q ( M
5781-632: Is because in intuitionistic logic, ¬ P {\displaystyle \neg P} is just a shorthand for P → ⊥ {\displaystyle P\rightarrow \bot } , and we also have P → ¬ ¬ P {\displaystyle P\rightarrow \neg \neg P} . Composing that last implication with triple negation ¬ ¬ P → ⊥ {\displaystyle \neg \neg P\rightarrow \bot } implies that P → ⊥ {\displaystyle P\rightarrow \bot } . As
Negation - Misplaced Pages Continue
5922-415: Is blurry in some cases, such as when the premises offer weak but non-negligible support. This contrasts with deductive arguments, which are either valid or invalid with nothing in-between. The terminology used to categorize ampliative arguments is inconsistent. Some authors, like James Hawthorne, use the term " induction " to cover all forms of non-deductive arguments. But in a more narrow sense, induction
6063-421: Is commonly defined in terms of arguments or inferences as the study of their correctness. An argument is a set of premises together with a conclusion. An inference is the process of reasoning from these premises to the conclusion. But these terms are often used interchangeably in logic. Arguments are correct or incorrect depending on whether their premises support their conclusion. Premises and conclusions, on
6204-407: Is controversial because it belongs to the field of psychology , not logic, and because appearances may be different for different people. Fallacies are usually divided into formal and informal fallacies. For formal fallacies, the source of the error is found in the form of the argument. For example, denying the antecedent is one type of formal fallacy, as in "if Othello is a bachelor, then he
6345-453: Is deductively valid. For deductive validity, it does not matter whether the premises or the conclusion are actually true. So the argument "(1) all frogs are mammals; (2) no cats are mammals; (3) therefore no cats are frogs" is also valid because the conclusion follows necessarily from the premises. According to an influential view by Alfred Tarski , deductive arguments have three essential features: (1) they are formal, i.e. they depend only on
6486-422: Is established by verification using a proof. Intuitionistic logic is especially prominent in the field of constructive mathematics , which emphasizes the need to find or construct a specific example to prove its existence. Proposition Formally, propositions are often modeled as functions which map a possible world to a truth value . For instance, the proposition that the sky is blue can be modeled as
6627-414: Is expressed by an open formula . In this sense, propositions are "statements" that are truth-bearers . This conception of a proposition was supported by the philosophical school of logical positivism . Some philosophers argue that some (or all) kinds of speech or actions besides the declarative ones also have propositional content. For example, yes–no questions present propositions, being inquiries into
6768-426: Is formulated using a primitive absurdity sign ⊥ {\displaystyle \bot } . In this case the rule says that from P {\displaystyle P} and ¬ P {\displaystyle \neg P} follows an absurdity. Together with double negation elimination one may infer our originally formulated rule, namely that anything follows from an absurdity. Typically
6909-610: Is green" is different from the German sentence "der Baum ist grün" but both express the same proposition. Propositional theories of premises and conclusions are often criticized because they rely on abstract objects. For instance, philosophical naturalists usually reject the existence of abstract objects. Other arguments concern the challenges involved in specifying the identity criteria of propositions. These objections are avoided by seeing premises and conclusions not as propositions but as sentences, i.e. as concrete linguistic objects like
7050-432: Is interested in deductively valid arguments, for which the truth of their premises ensures the truth of their conclusion. This means that it is impossible for the premises to be true and the conclusion to be false. For valid arguments, the logical structure of the premises and the conclusion follows a pattern called a rule of inference . For example, modus ponens is a rule of inference according to which all arguments of
7191-539: Is interpreted intuitively as being true when P {\displaystyle P} is false, and false when P {\displaystyle P} is true. For example, if P {\displaystyle P} is "Spot runs", then "not P {\displaystyle P} " is "Spot does not run". Negation is a unary logical connective . It may furthermore be applied not only to propositions, but also to notions , truth values , or semantic values more generally. In classical logic , negation
SECTION 50
#17327726979977332-415: Is invalid in intuitionistic logic. Another classical principle not part of intuitionistic logic is the law of excluded middle . It states that for every sentence, either it or its negation is true. This means that every proposition of the form A ∨ ¬ A {\displaystyle A\lor \lnot A} is true. These deviations from classical logic are based on the idea that truth
7473-447: Is male; Othello is not a bachelor; therefore Othello is not male". But most fallacies fall into the category of informal fallacies, of which a great variety is discussed in the academic literature. The source of their error is usually found in the content or the context of the argument. Informal fallacies are sometimes categorized as fallacies of ambiguity, fallacies of presumption, or fallacies of relevance. For fallacies of ambiguity,
7614-688: Is necessary, then it is also possible. This means that ◊ A {\displaystyle \Diamond A} follows from ◻ A {\displaystyle \Box A} . Another principle states that if a proposition is necessary then its negation is impossible and vice versa. This means that ◻ A {\displaystyle \Box A} is equivalent to ¬ ◊ ¬ A {\displaystyle \lnot \Diamond \lnot A} . Other forms of modal logic introduce similar symbols but associate different meanings with them to apply modal logic to other fields. For example, deontic logic concerns
7755-518: Is necessary. For example, if the formula B ( s ) {\displaystyle B(s)} stands for the sentence "Socrates is a banker" then the formula ◊ B ( s ) {\displaystyle \Diamond B(s)} articulates the sentence "It is possible that Socrates is a banker". To include these symbols in the logical formalism, modal logic introduces new rules of inference that govern what role they play in inferences. One rule of inference states that, if something
7896-421: Is negative because " x < 0 " yields true) To demonstrate logical negation: Inverting the condition and reversing the outcomes produces code that is logically equivalent to the original code, i.e. will have identical results for any input (depending on the compiler used, the actual instructions performed by the computer may differ). In C (and some other languages descended from C), double negation ( !!x )
8037-511: Is normally identified with the truth function that takes truth to falsity (and vice versa). In intuitionistic logic , according to the Brouwer–Heyting–Kolmogorov interpretation , the negation of a proposition P {\displaystyle P} is the proposition whose proofs are the refutations of P {\displaystyle P} . An operand of a negation is a negand , or negatum . Classical negation
8178-407: Is not the best or most likely explanation. Not all arguments live up to the standards of correct reasoning. When they do not, they are usually referred to as fallacies . Their central aspect is not that their conclusion is false but that there is some flaw with the reasoning leading to this conclusion. So the argument "it is sunny today; therefore spiders have eight legs" is fallacious even though
8319-400: Is not. A proposition can be modeled equivalently with the inverse image of T {\displaystyle T} under the indicator function, which is sometimes called the characteristic set of the proposition. For instance, if w {\displaystyle w} and w ′ {\displaystyle w'} are the only worlds in which the sky is blue,
8460-474: Is one such that: If there exists a 0 , a 1 , … , a n ∈ { 0 , 1 } {\displaystyle a_{0},a_{1},\dots ,a_{n}\in \{0,1\}} , f ( b 1 , b 2 , … , b n ) = a 0 ⊕ ( a 1 ∧ b 1 ) ⊕ ⋯ ⊕ (
8601-541: Is only one type of ampliative argument alongside abductive arguments . Some philosophers, like Leo Groarke, also allow conductive arguments as another type. In this narrow sense, induction is often defined as a form of statistical generalization. In this case, the premises of an inductive argument are many individual observations that all show a certain pattern. The conclusion then is a general law that this pattern always obtains. In this sense, one may infer that "all elephants are gray" based on one's past observations of
SECTION 60
#17327726979978742-486: Is raining"). In philosophy of mind and psychology , mental states are often taken to primarily consist in propositional attitudes. The propositions are usually said to be the "mental content" of the attitude. For example, if Jane has a mental state of believing that it is raining, her mental content is the proposition 'it is raining.' Furthermore, since such mental states are about something (namely, propositions), they are said to be intentional mental states. Explaining
8883-430: Is studied by formal logic. The study of natural language arguments comes with various difficulties. For example, natural language expressions are often ambiguous, vague, and context-dependent. Another approach defines informal logic in a wide sense as the normative study of the standards, criteria, and procedures of argumentation. In this sense, it includes questions about the role of rationality , critical thinking , and
9024-454: Is that any contradiction is false, and while these ideas work in both classical and intuitionistic logic, they do not work in paraconsistent logic , where contradictions are not necessarily false. As a further example, negation can be defined in terms of NAND and can also be defined in terms of NOR. Algebraically, classical negation corresponds to complementation in a Boolean algebra , and intuitionistic negation to pseudocomplementation in
9165-405: Is that each variable always makes a difference in the truth-value of the operation, or it never makes a difference. Negation is a linear logical operator. In Boolean algebra , a self dual function is a function such that: f ( a 1 , … , a n ) = ¬ f ( ¬ a 1 , … , ¬
9306-410: Is the set of basic symbols used in expressions . The syntactic rules determine how these symbols may be arranged to result in well-formed formulas. For instance, the syntactic rules of propositional logic determine that " P ∧ Q {\displaystyle P\land Q} " is a well-formed formula but " ∧ Q {\displaystyle \land Q} " is not since
9447-430: Is the study of deductively valid inferences or logical truths . It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies , critical thinking , and argumentation theory . Informal logic examines arguments expressed in natural language whereas formal logic uses formal language . When used as
9588-432: Is to study the criteria according to which an argument is correct or incorrect. A fallacy is committed if these criteria are violated. In the case of formal logic, they are known as rules of inference . They are definitory rules, which determine whether an inference is correct or which inferences are allowed. Definitory rules contrast with strategic rules. Strategic rules specify which inferential moves are necessary to reach
9729-489: Is true, then P {\displaystyle P} would be false. The truth table of ¬ P {\displaystyle \neg P} is as follows: Negation can be defined in terms of other logical operations. For example, ¬ P {\displaystyle \neg P} can be defined as P → ⊥ {\displaystyle P\rightarrow \bot } (where → {\displaystyle \rightarrow }
9870-540: Is unable to address. Both provide criteria for assessing the correctness of arguments and distinguishing them from fallacies. Many characterizations of informal logic have been suggested but there is no general agreement on its precise definition. The most literal approach sees the terms "formal" and "informal" as applying to the language used to express arguments. On this view, informal logic studies arguments that are in informal or natural language. Formal logic can only examine them indirectly by translating them first into
10011-526: Is used as an idiom to convert x to a canonical Boolean, ie. an integer with a value of either 0 or 1 and no other. Although any integer other than 0 is logically true in C and 1 is not special in this regard, it is sometimes important to ensure that a canonical value is used, for example for printing or if the number is subsequently used for arithmetic operations. The convention of using ! to signify negation occasionally surfaces in ordinary written speech, as computer-related slang for not . For example,
10152-599: Is used to represent the ideas of knowing something in contrast to merely believing it to be the case. Higher-order logics extend classical logic not by using modal operators but by introducing new forms of quantification. Quantifiers correspond to terms like "all" or "some". In classical first-order logic, quantifiers are only applied to individuals. The formula " ∃ x ( A p p l e ( x ) ∧ S w e e t ( x ) ) {\displaystyle \exists x(Apple(x)\land Sweet(x))} " ( some apples are sweet)
10293-449: Is when identical sentences have the same truth-value, yet express different propositions. The sentence “I am a philosopher” could have been spoken by both Socrates and Plato. In both instances, the statement is true, but means something different. These problems are addressed in predicate logic by using a variable for the problematic term, so that “X is a philosopher” can have Socrates or Plato substituted for X, illustrating that “Socrates
10434-431: Is why first-order logic is still more commonly used. Deviant logics are logical systems that reject some of the basic intuitions of classical logic. Because of this, they are usually seen not as its supplements but as its rivals. Deviant logical systems differ from each other either because they reject different classical intuitions or because they propose different alternatives to the same issue. Intuitionistic logic
10575-411: The truth value of them. On the other hand, some signs can be declarative assertions of propositions, without forming a sentence nor even being linguistic (e.g. traffic signs convey definite meaning which is either true or false). Propositions are also spoken of as the content of beliefs and similar intentional attitudes , such as desires, preferences, and hopes. For example, "I desire that I have
10716-469: The Greek word "logos", which has a variety of translations, such as reason , discourse , or language . Logic is traditionally defined as the study of the laws of thought or correct reasoning , and is usually understood in terms of inferences or arguments . Reasoning is the activity of drawing inferences. Arguments are the outward expression of inferences. An argument is a set of premises together with
10857-471: The above statement to be shortened from if (!(r == t)) to if (r != t) , which allows sometimes, when the compiler/interpreter is not able to optimize it, faster programs. In computer science there is also bitwise negation . This takes the value given and switches all the binary 1s to 0s and 0s to 1s. See bitwise operation . This is often used to create ones' complement or " ~ " in C or C++ and two's complement (just simplified to " - " or
10998-418: The ambiguity and vagueness of natural language are responsible for their flaw, as in "feathers are light; what is light cannot be dark; therefore feathers cannot be dark". Fallacies of presumption have a wrong or unjustified premise but may be valid otherwise. In the case of fallacies of relevance, the premises do not support the conclusion because they are not relevant to it. The main focus of most logicians
11139-399: The assessment of arguments. Premises and conclusions are the basic parts of inferences or arguments and therefore play a central role in logic. In the case of a valid inference or a correct argument, the conclusion follows from the premises, or in other words, the premises support the conclusion. For instance, the premises "Mars is red" and "Mars is a planet" support the conclusion "Mars
11280-495: The basic principles of classical logic. They introduce additional symbols and principles to apply it to fields like metaphysics , ethics , and epistemology . Modal logic is an extension of classical logic. In its original form, sometimes called "alethic modal logic", it introduces two new symbols: ◊ {\displaystyle \Diamond } expresses that something is possible while ◻ {\displaystyle \Box } expresses that something
11421-487: The best explanation, for example, when a doctor concludes that a patient has a certain disease which explains the symptoms they suffer. Arguments that fall short of the standards of correct reasoning often embody fallacies . Systems of logic are theoretical frameworks for assessing the correctness of arguments. Logic has been studied since antiquity . Early approaches include Aristotelian logic , Stoic logic , Nyaya , and Mohism . Aristotelian logic focuses on reasoning in
11562-645: The claim "either it is raining, or it is not". These two definitions of formal logic are not identical, but they are closely related. For example, if the inference from p to q is deductively valid then the claim "if p then q " is a logical truth. Formal logic uses formal languages to express and analyze arguments. They normally have a very limited vocabulary and exact syntactic rules . These rules specify how their symbols can be combined to construct sentences, so-called well-formed formulas . This simplicity and exactness of formal logic make it capable of formulating precise rules of inference. They determine whether
11703-495: The color of elephants. A closely related form of inductive inference has as its conclusion not a general law but one more specific instance, as when it is inferred that an elephant one has not seen yet is also gray. Some theorists, like Igor Douven, stipulate that inductive inferences rest only on statistical considerations. This way, they can be distinguished from abductive inference. Abductive inference may or may not take statistical observations into consideration. In either case,
11844-502: The conclusion "I don't have to work". Premises and conclusions express propositions or claims that can be true or false. An important feature of propositions is their internal structure. For example, complex propositions are made up of simpler propositions linked by logical vocabulary like ∧ {\displaystyle \land } ( and ) or → {\displaystyle \to } ( if...then ). Simple propositions also have parts, like "Sunday" or "work" in
11985-511: The conclusion "all ravens are black". A further approach is to define informal logic as the study of informal fallacies . Informal fallacies are incorrect arguments in which errors are present in the content and the context of the argument. A false dilemma , for example, involves an error of content by excluding viable options. This is the case in the fallacy "you are either with us or against us; you are not with us; therefore, you are against us". Some theorists state that formal logic studies
12126-458: The conclusion is true. Some theorists, like John Stuart Mill , give a more restrictive definition of fallacies by additionally requiring that they appear to be correct. This way, genuine fallacies can be distinguished from mere mistakes of reasoning due to carelessness. This explains why people tend to commit fallacies: because they have an alluring element that seduces people into committing and accepting them. However, this reference to appearances
12267-591: The conditional proposition p → q {\displaystyle p\to q} , one can form truth tables of its converse q → p {\displaystyle q\to p} , its inverse ( ¬ p → ¬ q {\displaystyle \lnot p\to \lnot q} ) , and its contrapositive ( ¬ q → ¬ p {\displaystyle \lnot q\to \lnot p} ) . Truth tables can also be defined for more complex expressions that use several propositional connectives. Logic
12408-438: The contrast between necessity and possibility and the problem of ethical obligation and permission. Similarly, it does not address the relations between past, present, and future. Such issues are addressed by extended logics. They build on the basic intuitions of classical logic and expand it by introducing new logical vocabulary. This way, the exact logical approach is applied to fields like ethics or epistemology that lie beyond
12549-451: The depth level. But they can be highly informative on the surface level by making implicit information explicit. This happens, for example, in mathematical proofs. Ampliative arguments are arguments whose conclusions contain additional information not found in their premises. In this regard, they are more interesting since they contain information on the depth level and the thinker may learn something genuinely new. But this feature comes with
12690-409: The example. The truth of a proposition usually depends on the meanings of all of its parts. However, this is not the case for logically true propositions. They are true only because of their logical structure independent of the specific meanings of the individual parts. Arguments can be either correct or incorrect. An argument is correct if its premises support its conclusion. Deductive arguments have
12831-434: The field of ethics and introduces symbols to express the ideas of obligation and permission , i.e. to describe whether an agent has to perform a certain action or is allowed to perform it. The modal operators in temporal modal logic articulate temporal relations. They can be used to express, for example, that something happened at one time or that something is happening all the time. In epistemology, epistemic modal logic
12972-485: The form "(1) p , (2) if p then q , (3) therefore q " are valid, independent of what the terms p and q stand for. In this sense, formal logic can be defined as the science of valid inferences. An alternative definition sees logic as the study of logical truths . A proposition is logically true if its truth depends only on the logical vocabulary used in it. This means that it is true in all possible worlds and under all interpretations of its non-logical terms, like
13113-513: The form of syllogisms . It was considered the main system of logic in the Western world until it was replaced by modern formal logic, which has its roots in the work of late 19th-century mathematicians such as Gottlob Frege . Today, the most commonly used system is classical logic . It consists of propositional logic and first-order logic . Propositional logic only considers logical relations between full propositions. First-order logic also takes
13254-523: The form of the premises and the conclusion: how they have to be structured for the inference to be valid. Arguments that do not follow any rule of inference are deductively invalid. The modus ponens is a prominent rule of inference. It has the form " p ; if p , then q ; therefore q ". Knowing that it has just rained ( p {\displaystyle p} ) and that after rain the streets are wet ( p → q {\displaystyle p\to q} ), one can use modus ponens to deduce that
13395-419: The form of the premises and the conclusion; (2) they are a priori, i.e. no sense experience is needed to determine whether they obtain; (3) they are modal, i.e. that they hold by logical necessity for the given propositions, independent of any other circumstances. Because of the first feature, the focus on formality, deductive inference is usually identified with rules of inference. Rules of inference specify
13536-421: The general form of arguments while informal logic studies particular instances of arguments. Another approach is to hold that formal logic only considers the role of logical constants for correct inferences while informal logic also takes the meaning of substantive concepts into account. Further approaches focus on the discussion of logical topics with or without formal devices and on the role of epistemology for
13677-435: The history of logic , linguistics , philosophy of language , and related disciplines. Some researchers have doubted whether a consistent definition of propositionhood is possible, David Lewis even remarking that "the conception we associate with the word ‘proposition’ may be something of a jumble of conflicting desiderata". The term is often used broadly and has been used to refer to various related concepts. In relation to
13818-406: The internal parts of propositions into account, like predicates and quantifiers . Extended logics accept the basic intuitions behind classical logic and apply it to other fields, such as metaphysics , ethics , and epistemology . Deviant logics, on the other hand, reject certain classical intuitions and provide alternative explanations of the basic laws of logic. The word "logic" originates from
13959-407: The internal structure of propositions. This happens through devices such as singular terms, which refer to particular objects, predicates , which refer to properties and relations, and quantifiers, which treat notions like "some" and "all". For example, to express the proposition "this raven is black", one may use the predicate B {\displaystyle B} for the property "black" and
14100-430: The intuitionistic negation ¬ P {\displaystyle \neg P} of P {\displaystyle P} is defined as P → ⊥ {\displaystyle P\rightarrow \bot } . Then negation introduction and elimination are just special cases of implication introduction ( conditional proof ) and elimination ( modus ponens ). In this case one must also add as
14241-522: The logical conjunction ∧ {\displaystyle \land } requires terms on both sides. A proof system is a collection of rules to construct formal proofs. It is a tool to arrive at conclusions from a set of axioms. Rules in a proof system are defined in terms of the syntactic form of formulas independent of their specific content. For instance, the classical rule of conjunction introduction states that P ∧ Q {\displaystyle P\land Q} follows from
14382-399: The mind, propositions are discussed primarily as they fit into propositional attitudes . Propositional attitudes are simply attitudes characteristic of folk psychology (belief, desire, etc.) that one can take toward a proposition (e.g. 'it is raining,' 'snow is white,' etc.). In English, propositions usually follow folk psychological attitudes by a "that clause" (e.g. "Jane believes that it
14523-412: The negative sign since this is equivalent to taking the arithmetic negative value of the number) as it basically creates the opposite (negative value equivalent) or mathematical complement of the value (where both values are added together they create a whole). To get the absolute (positive equivalent) value of a given integer the following would work as the " - " changes it from negative to positive (it
14664-409: The other hand, are true or false depending on whether they are in accord with reality. In formal logic, a sound argument is an argument that is both correct and has only true premises. Sometimes a distinction is made between simple and complex arguments. A complex argument is made up of a chain of simple arguments. This means that the conclusion of one argument acts as a premise of later arguments. For
14805-444: The other hand, do not have propositional parts. But they can also be conceived as having an internal structure: they are made up of subpropositional parts, like singular terms and predicates . For example, the simple proposition "Mars is red" can be formed by applying the predicate "red" to the singular term "Mars". In contrast, the complex proposition "Mars is red and Venus is white" is made up of two simple propositions connected by
14946-600: The other is the existential quantifier ∃ {\displaystyle \exists } (means "there exists"). The negation of one quantifier is the other quantifier ( ¬ ∀ x P ( x ) ≡ ∃ x ¬ P ( x ) {\displaystyle \neg \forall xP(x)\equiv \exists x\neg P(x)} and ¬ ∃ x P ( x ) ≡ ∀ x ¬ P ( x ) {\displaystyle \neg \exists xP(x)\equiv \forall x\neg P(x)} ). For example, with
15087-466: The phrase !voting means "not voting". Another example is the phrase !clue which is used as a synonym for "no-clue" or "clueless". In Kripke semantics where the semantic values of formulae are sets of possible worlds , negation can be taken to mean set-theoretic complementation (see also possible world semantics for more). Logic Logic is the study of correct reasoning . It includes both formal and informal logic . Formal logic
15228-494: The predicate P as " x is mortal" and the domain of x as the collection of all humans, ∀ x P ( x ) {\displaystyle \forall xP(x)} means "a person x in all humans is mortal" or "all humans are mortal". The negation of it is ¬ ∀ x P ( x ) ≡ ∃ x ¬ P ( x ) {\displaystyle \neg \forall xP(x)\equiv \exists x\neg P(x)} , meaning "there exists
15369-485: The premises P {\displaystyle P} and Q {\displaystyle Q} . Such rules can be applied sequentially, giving a mechanical procedure for generating conclusions from premises. There are different types of proof systems including natural deduction and sequent calculi . A semantics is a system for mapping expressions of a formal language to their denotations. In many systems of logic, denotations are truth values. For instance,
15510-413: The premises offer support for the conclusion because the conclusion is the best explanation of why the premises are true. In this sense, abduction is also called the inference to the best explanation . For example, given the premise that there is a plate with breadcrumbs in the kitchen in the early morning, one may infer the conclusion that one's house-mate had a midnight snack and was too tired to clean
15651-470: The premises. But this point is not always accepted since it would mean, for example, that most of mathematics is uninformative. A different characterization distinguishes between surface and depth information. The surface information of a sentence is the information it presents explicitly. Depth information is the totality of the information contained in the sentence, both explicitly and implicitly. According to this view, deductive inferences are uninformative on
15792-413: The problem of ambiguity in common language, resulting in a mistaken equivalence of the statements. “I am Spartacus” spoken by Spartacus is the declaration that the individual speaking is called Spartacus and it is true. When spoken by John Smith, it is a declaration about a different speaker and it is false. The term “I” means different things, so “I am Spartacus” means different things. A related problem
15933-423: The proposition that the sky is blue could be modeled as the set { w , w ′ } {\displaystyle \{w,w'\}} . Numerous refinements and alternative notions of proposition-hood have been proposed including inquisitive propositions and structured propositions . Propositions are called structured propositions if they have constituents, in some broad sense. Assuming
16074-485: The propositional connective "and". Whether a proposition is true depends, at least in part, on its constituents. For complex propositions formed using truth-functional propositional connectives, their truth only depends on the truth values of their parts. But this relation is more complicated in the case of simple propositions and their subpropositional parts. These subpropositional parts have meanings of their own, like referring to objects or classes of objects. Whether
16215-406: The propositions are formed. For example, the syllogism "all men are mortal; Socrates is a man; therefore Socrates is mortal" is valid. The syllogism "all cats are mortal; Socrates is mortal; therefore Socrates is a cat", on the other hand, is invalid. Classical logic is distinct from traditional or Aristotelian logic. It encompasses propositional logic and first-order logic. It is "classical" in
16356-417: The psychology of argumentation. Another characterization identifies informal logic with the study of non-deductive arguments. In this way, it contrasts with deductive reasoning examined by formal logic. Non-deductive arguments make their conclusion probable but do not ensure that it is true. An example is the inductive argument from the empirical observation that "all ravens I have seen so far are black" to
16497-534: The relation of propositions to the mind is especially difficult for non-mentalist views of propositions, such as those of the logical positivists and Russell described above, and Gottlob Frege 's view that propositions are Platonist entities, that is, existing in an abstract, non-physical realm. So some recent views of propositions have taken them to be mental. Although propositions cannot be particular thoughts since those are not shareable, they could be types of cognitive events or properties of thoughts (which could be
16638-517: The rules for intuitionistic negation the same way but by excluding double negation elimination. Negation introduction states that if an absurdity can be drawn as conclusion from P {\displaystyle P} then P {\displaystyle P} must not be the case (i.e. P {\displaystyle P} is false (classically) or refutable (intuitionistically) or etc.). Negation elimination states that anything follows from an absurdity. Sometimes negation elimination
16779-436: The rules of inference they accept as valid and the formal languages used to express them. Starting in the late 19th century, many new formal systems have been proposed. There are disagreements about what makes a formal system a logic. For example, it has been suggested that only logically complete systems, like first-order logic , qualify as logics. For such reasons, some theorists deny that higher-order logics are logics in
16920-462: The same across different thinkers). Philosophical debates surrounding propositions as they relate to propositional attitudes have also recently centered on whether they are internal or external to the agent, or whether they are mind-dependent or mind-independent entities. For more, see the entry on internalism and externalism in philosophy of mind. In modern logic, propositions are standardly understood semantically as indicator functions that take
17061-406: The same proposition, if and only if they mean the same thing. The above definitions can result in two identical sentences/sentence-tokens appearing to have the same meaning, and thus expressing the same proposition and yet having different truth-values, as in "I am Spartacus" said by Spartacus and said by John Smith, and "It is Wednesday" said on a Wednesday and on a Thursday. These examples reflect
17202-492: The scope of mathematics. Propositional logic comprises formal systems in which formulae are built from atomic propositions using logical connectives . For instance, propositional logic represents the conjunction of two atomic propositions P {\displaystyle P} and Q {\displaystyle Q} as the complex formula P ∧ Q {\displaystyle P\land Q} . Unlike predicate logic where terms and predicates are
17343-418: The semantics for classical propositional logic assigns the formula P ∧ Q {\displaystyle P\land Q} the denotation "true" whenever P {\displaystyle P} and Q {\displaystyle Q} are true. From the semantic point of view, a premise entails a conclusion if the conclusion is true whenever the premise is true. A system of logic
17484-604: The semantics. Thus, soundness and completeness together describe a system whose notions of validity and entailment line up perfectly. Systems of logic are theoretical frameworks for assessing the correctness of reasoning and arguments. For over two thousand years, Aristotelian logic was treated as the canon of logic in the Western world, but modern developments in this field have led to a vast proliferation of logical systems. One prominent categorization divides modern formal logical systems into classical logic , extended logics, and deviant logics . Aristotelian logic encompasses
17625-518: The sense that it is based on basic logical intuitions shared by most logicians. These intuitions include the law of excluded middle , the double negation elimination , the principle of explosion , and the bivalence of truth. It was originally developed to analyze mathematical arguments and was only later applied to other fields as well. Because of this focus on mathematics, it does not include logical vocabulary relevant to many other topics of philosophical importance. Examples of concepts it overlooks are
17766-404: The simple proposition "Mars is red", are true or false. In such cases, the truth is called a logical truth: a proposition is logically true if its truth depends only on the logical vocabulary used in it. This means that it is true under all interpretations of its non-logical terms. In some modal logics , this means that the proposition is true in all possible worlds. Some theorists define logic as
17907-415: The simple proposition they form is true depends on their relation to reality, i.e. what the objects they refer to are like. This topic is studied by theories of reference . Some complex propositions are true independently of the substantive meanings of their parts. In classical logic, for example, the complex proposition "either Mars is red or Mars is not red" is true independent of whether its parts, like
18048-870: The singular term r {\displaystyle r} referring to the raven to form the expression B ( r ) {\displaystyle B(r)} . To express that some objects are black, the existential quantifier ∃ {\displaystyle \exists } is combined with the variable x {\displaystyle x} to form the proposition ∃ x B ( x ) {\displaystyle \exists xB(x)} . First-order logic contains various rules of inference that determine how expressions articulated this way can form valid arguments, for example, that one may infer ∃ x B ( x ) {\displaystyle \exists xB(x)} from B ( r ) {\displaystyle B(r)} . Extended logics are logical systems that accept
18189-474: The smallest units, propositional logic takes full propositions with truth values as its most basic component. Thus, propositional logics can only represent logical relationships that arise from the way complex propositions are built from simpler ones. But it cannot represent inferences that result from the inner structure of a proposition. First-order logic includes the same propositional connectives as propositional logic but differs from it because it articulates
18330-418: The streets are wet ( q {\displaystyle q} ). The third feature can be expressed by stating that deductively valid inferences are truth-preserving: it is impossible for the premises to be true and the conclusion to be false. Because of this feature, it is often asserted that deductive inferences are uninformative since the conclusion cannot arrive at new information not already present in
18471-437: The strict sense. When understood in a wide sense, logic encompasses both formal and informal logic. Informal logic uses non-formal criteria and standards to analyze and assess the correctness of arguments. Its main focus is on everyday discourse. Its development was prompted by difficulties in applying the insights of formal logic to natural language arguments. In this regard, it considers problems that formal logic on its own
18612-550: The strongest form of support: if their premises are true then their conclusion must also be true. This is not the case for ampliative arguments, which arrive at genuinely new information not found in the premises. Many arguments in everyday discourse and the sciences are ampliative arguments. They are divided into inductive and abductive arguments. Inductive arguments are statistical generalizations, such as inferring that all ravens are black based on many individual observations of black ravens. Abductive arguments are inferences to
18753-438: The study of logical truths. Truth tables can be used to show how logical connectives work or how the truth values of complex propositions depends on their parts. They have a column for each input variable. Each row corresponds to one possible combination of the truth values these variables can take; for truth tables presented in the English literature, the symbols "T" and "F" or "1" and "0" are commonly used as abbreviations for
18894-700: The subject in two ways: either by affirming it or by denying it. For example, the proposition "Socrates is not a cat" involves the denial of the predicate "cat" to the subject "Socrates". Using combinations of subjects and predicates, a great variety of propositions and syllogisms can be formed. Syllogisms are characterized by the fact that the premises are linked to each other and to the conclusion by sharing one predicate in each case. Thus, these three propositions contain three predicates, referred to as major term , minor term , and middle term . The central aspect of Aristotelian logic involves classifying all possible syllogisms into valid and invalid arguments according to how
19035-417: The subject to the predicate. For example, the proposition "Socrates is wise" is made up of the subject "Socrates", the predicate "wise", and the copula "is". The subject and the predicate are the terms of the proposition. Aristotelian logic does not contain complex propositions made up of simple propositions. It differs in this aspect from propositional logic, in which any two propositions can be linked using
19176-423: The symbols displayed on a page of a book. But this approach comes with new problems of its own: sentences are often context-dependent and ambiguous, meaning an argument's validity would not only depend on its parts but also on its context and on how it is interpreted. Another approach is to understand premises and conclusions in psychological terms as thoughts or judgments. This position is known as psychologism . It
19317-409: The table. This conclusion is justified because it is the best explanation of the current state of the kitchen. For abduction, it is not sufficient that the conclusion explains the premises. For example, the conclusion that a burglar broke into the house last night, got hungry on the job, and had a midnight snack, would also explain the state of the kitchen. But this conclusion is not justified because it
19458-399: The term ampliative or inductive reasoning is used. Deductive arguments are associated with formal logic in contrast to the relation between ampliative arguments and informal logic. A deductively valid argument is one whose premises guarantee the truth of its conclusion. For instance, the argument "(1) all frogs are amphibians; (2) no cats are amphibians; (3) therefore no cats are frogs"
19599-479: The truth values "true" and "false". The first columns present all the possible truth-value combinations for the input variables. Entries in the other columns present the truth values of the corresponding expressions as determined by the input values. For example, the expression " p ∧ q {\displaystyle p\land q} " uses the logical connective ∧ {\displaystyle \land } ( and ). It could be used to express
19740-428: The use of the term " statement ". In Aristotelian logic a proposition was defined as a particular kind of sentence (a declarative sentence ) that affirms or denies a predicate of a subject , optionally with the help of a copula . Aristotelian propositions take forms like "All men are mortal" and "Socrates is a man." Aristotelian logic identifies a categorical proposition as a sentence which affirms or denies
19881-405: Was discussed at length around the turn of the 20th century but it is not widely accepted today. Premises and conclusions have an internal structure. As propositions or sentences, they can be either simple or complex. A complex proposition has other propositions as its constituents, which are linked to each other through propositional connectives like "and" or "if...then". Simple propositions, on
#996003