Misplaced Pages

SBWR

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A boiling water reactor ( BWR ) is a type of light water nuclear reactor used for the generation of electrical power. It is the second most common type of electricity-generating nuclear reactor after the pressurized water reactor (PWR), which is also a type of light water nuclear reactor.

#121878

93-474: SBWR may refer to: Simplified Boiling Water Reactor , a nuclear reactor design by General Electric Sungei Buloh Wetland Reserve , a nature reserve in Singapore Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title SBWR . If an internal link led you here, you may wish to change

186-449: A LBLOCA (large-break loss-of-coolant accident – a massive pipe rupture leading to catastrophic loss of coolant pressure within the reactor, considered the most threatening "design basis accident" in probabilistic risk assessment and nuclear safety and security ), which is anticipated to lead to the temporary exposure of the core; this core drying-out event is termed core "uncovery", for the core loses its heat-removing cover of coolant, in

279-545: A boiling water reactor would be feasible for use in energy production. He found that it was, after subjecting his reactors to quite strenuous tests, proving the safety principles of the BWR. Following this series of tests, GE got involved and collaborated with Argonne National Laboratory to bring this technology to market. Larger-scale tests were conducted through the late 1950s/early/mid-1960s that only partially used directly generated (primary) nuclear boiler system steam to feed

372-512: A defence in depth philosophy, which is a design philosophy that is integrated throughout construction and commissioning . A BWR is similar to a pressurized water reactor (PWR) in that the reactor will continue to produce heat even after the fission reactions have stopped, which could make a core damage incident possible. This heat is produced by the radioactive decay of fission products and materials that have been activated by neutron absorption . BWRs contain multiple safety systems for cooling

465-514: A BWR and PWR is that in a BWR, the reactor core heats water, which turns to steam and then drives a steam turbine. In a PWR, the reactor core heats water, which does not boil. This hot water then exchanges heat with a lower pressure system, which turns water into steam that drives the turbine. The BWR was developed by the Argonne National Laboratory and General Electric (GE) in the mid-1950s. The main present manufacturer

558-409: A BWR core is substantiated by a calculation that proves that 99.9% of fuel rods in a BWR core will not enter the transition to film boiling during normal operation or anticipated operational occurrences. Since the BWR is boiling water, and steam does not transfer heat as well as liquid water, MFLCPR typically occurs at the top of a fuel assembly, where steam volume is the highest. FLLHGR (FDLRX, MFLPD)

651-482: A BWR tends to balance the savings due to the simpler design and greater thermal efficiency of a BWR when compared with a PWR. Most of the radioactivity in the water is very short-lived (mostly N-16, with a 7-second half-life ), so the turbine hall can be entered soon after the reactor is shut down. BWR steam turbines employ a high-pressure turbine designed to handle saturated steam, and multiple low-pressure turbines. The high-pressure turbine receives steam directly from

744-524: A BWR: MFLCPR, FLLHGR, and APLHGR must be kept less than 1.0 during normal operation; administrative controls are in place to assure some margin of error and margin of safety to these licensed limits. Typical computer simulations divide the reactor core into 24–25 axial planes ; relevant quantities (margins, burnup, power, void history) are tracked for each "node" in the reactor core (764 fuel assemblies x 25 nodes/assembly = 19100 nodal calculations/quantity). Specifically, MFLCPR represents how close

837-490: A PWR, where the turbine steam demand is set manually by the operators, in a BWR, the turbine valves will modulate to maintain reactor pressure at a setpoint. Under this control mode, the turbine output will automatically follow reactor power changes. When the turbine is offline or trips, the main steam bypass/dump valves will open to direct steam directly to the condenser. These bypass valves will automatically or manually modulate as necessary to maintain reactor pressure and control

930-632: A high power output (1350 MWe per reactor), and a significantly lowered probability of core damage. Most significantly, the ABWR was a completely standardized design, that could be made for series production. The ABWR was approved by the United States Nuclear Regulatory Commission for production as a standardized design in the early 1990s. Subsequently, numerous ABWRs were built in Japan. One development spurred by

1023-399: A list of operational and decommissioned BWRs, see List of BWRs . Experimental and other non-commercial BWRs include: Porosity Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material , and is a fraction of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0% and 100%. Strictly speaking, some tests measure

SECTION 10

#1732783465122

1116-402: A model of the fuel assembly but power it with resistive heaters. These mock fuel assemblies are put into a test stand where data points are taken at specific powers, flows, pressures. Experimental data is conservatively applied to BWR fuel to ensure that the transition to film boiling does not occur during normal or transient operation. Typical SLMCPR/MCPRSL (Safety Limit MCPR) licensing limit for

1209-399: A more homogeneous distribution of the power: in the upper side the density of the water is lower due to vapour formation, making the neutron moderation less efficient and the fission probability lower. In normal operation, the control rods are only used to keep a homogeneous power distribution in the reactor and to compensate for the consumption of the fuel, while the power is controlled through

1302-560: A proportionality between pore throat radii and pore volume. If the proportionality between pore throat radii and porosity exists then a proportionality between porosity and hydraulic conductivity may exist. However, as grain size or sorting decreases the proportionality between pore throat radii and porosity begins to fail and therefore so does the proportionality between porosity and hydraulic conductivity. For example: clays typically have very low hydraulic conductivity (due to their small pore throat radii) but also have very high porosities (due to

1395-444: A rock, or sedimentary layer, is an important consideration when attempting to evaluate the potential volume of water or hydrocarbons it may contain. Sedimentary porosity is a complicated function of many factors, including but not limited to: rate of burial, depth of burial, the nature of the connate fluids , the nature of overlying sediments (which may impede fluid expulsion). One commonly used relationship between porosity and depth

1488-410: A safety-related contingency developed. For example, if the reactor got too hot, it would trigger a system that would release soluble neutron absorbers (generally a solution of borated materials, or a solution of borax ), or materials that greatly hamper a chain reaction by absorbing neutrons, into the reactor core. The tank containing the soluble neutron absorbers would be located above the reactor, and

1581-402: A series of notched positions with fixed intervals between these positions. Due to the limitations of the manual control system, it is possible while starting-up that the core can be placed into a condition where movement of a single control rod can cause a large nonlinear reactivity change, which could heat fuel elements to the point they fail (melt, ignite, weaken, etc.). As a result, GE developed

1674-415: A set of rules in 1977 called BPWS (Banked Position Withdrawal Sequence) which help minimize the effect of any single control rod movement and prevent fuel damage in the case of a control rod drop accident. BPWS separates control rods into four groups, A1, A2, B1, and B2. Then, either all of the A control rods or B control rods are pulled full out in a defined sequence to create a " checkerboard " pattern. Next,

1767-514: A single core-damaging event during their 100-year lifetimes. Earlier designs of the BWR, the BWR/4, had core damage probabilities as high as 1×10 core-damage events per reactor-year. This extraordinarily low CDP for the ESBWR far exceeds the other large LWRs on the market. Reactor start up ( criticality ) is achieved by withdrawing control rods from the core to raise core reactivity to a level where it

1860-468: A small group of engineers accidentally increased the reactor power level on an experimental reactor to such an extent that the water quickly boiled. This shut down the reactor, indicating the useful self-moderating property in emergency circumstances. In particular, Samuel Untermyer II , a researcher at Argonne National Laboratory , proposed and oversaw a series of experiments: the BORAX experiments —to see if

1953-465: A tortuous path where the water droplets are slowed and directed out into the downcomer or annulus region. The "dry" steam then exits the RPV through four main steam lines and goes to the turbine. Reactor power is controlled via two methods: by inserting or withdrawing control rods (control blades) and by changing the water flow through the reactor core . Positioning (withdrawing or inserting) control rods

SECTION 20

#1732783465122

2046-451: Is GE Hitachi Nuclear Energy , which specializes in the design and construction of this type of reactor. A boiling water reactor uses demineralized water as a coolant and neutron moderator . Heat is produced by nuclear fission in the reactor core, and this causes the cooling water to boil, producing steam. The steam is directly used to drive a turbine , after which it is cooled in a condenser and converted back to liquid water. This water

2139-401: Is a limit on fuel rod power in the reactor core. For new fuel, this limit is typically around 13 kW/ft (43 kW/m) of fuel rod. This limit ensures that the centerline temperature of the fuel pellets in the rods will not exceed the melting point of the fuel material ( uranium / gadolinium oxides) in the event of the worst possible plant transient/scram anticipated to occur. To illustrate

2232-453: Is an associated concept. The ratio of holes to solid that the wind "sees". Aerodynamic porosity is less than visual porosity, by an amount that depends on the constriction of holes. Casting porosity is a consequence of one or more of the following: gasification of contaminants at molten-metal temperatures; shrinkage that takes place as molten metal solidifies; and unexpected or uncontrolled changes in temperature or humidity. While porosity

2325-425: Is between 1.5 and 1.7 g/cm . This calculates to a porosity between 0.43 and 0.36. Typical bulk density of clay soil is between 1.1 and 1.3 g/cm . This calculates to a porosity between 0.58 and 0.51. This seems counterintuitive because clay soils are termed heavy , implying lower porosity. Heavy apparently refers to a gravitational moisture content effect in combination with terminology that harkens back to

2418-469: Is complex. Traditional models regard porosity as continuous. This fails to account for anomalous features and produces only approximate results. Furthermore, it cannot help model the influence of environmental factors which affect pore geometry. A number of more complex models have been proposed, including fractals , bubble theory, cracking theory, Boolean grain process, packed sphere, and numerous other models. The characterisation of pore space in soil

2511-511: Is defined by the ratio : where V V is the volume of void-space (such as fluids) and V T is the total or bulk volume of material, including the solid and void components. Both the mathematical symbols ϕ {\displaystyle \phi } and n {\displaystyle n} are used to denote porosity. Porosity is a fraction between 0 and 1, typically ranging from less than 0.005 for solid granite to more than 0.5 for peat and clay . The porosity of

2604-503: Is done via cranes and under water. For this reason the spent fuel storage pools are above the reactor in typical installations. They are shielded by water several times their height, and stored in rigid arrays in which their geometry is controlled to avoid criticality. In the Fukushima Daiichi nuclear disaster this became problematic because water was lost (as it was heated by the spent fuel) from one or more spent fuel pools and

2697-421: Is easily varied by simply increasing or decreasing the forced recirculation flow through the recirculation pumps. The two-phase fluid (water and steam) above the core enters the riser area, which is the upper region contained inside of the shroud. The height of this region may be increased to increase the thermal natural recirculation pumping head. At the top of the riser area is the moisture separator. By swirling

2790-447: Is evident that the nuclear chain reaction is self-sustaining. This is known as "going critical". Control rod withdrawal is performed slowly, as to carefully monitor core conditions as the reactor approaches criticality. When the reactor is observed to become slightly super-critical, that is, reactor power is increasing on its own, the reactor is declared critical. Rod motion is performed using rod drive control systems. Newer BWRs such as

2883-569: Is in place to ensure that the highest powered fuel rod will not melt if its power was rapidly increased following a pressurization transient. Abiding by the LHGR limit precludes melting of fuel in a pressurization transient. APLHGR, being an average of the Linear Heat Generation Rate (LHGR), a measure of the decay heat present in the fuel bundles, is a margin of safety associated with the potential for fuel failure to occur during

SBWR - Misplaced Pages Continue

2976-459: Is inherent in die casting manufacturing, its presence may lead to component failure where pressure integrity is a critical characteristic. Porosity may take on several forms from interconnected micro-porosity, folds, and inclusions to macro porosity visible on the part surface. The end result of porosity is the creation of a leak path through the walls of a casting that prevents the part from holding pressure. Porosity may also lead to out-gassing during

3069-423: Is known as the advanced boiling water reactor (ABWR). The ABWR was developed in the late 1980s and early 1990s, and has been further improved to the present day. The ABWR incorporates advanced technologies in the design, including computer control, plant automation, control rod removal, motion, and insertion, in-core pumping, and nuclear safety to deliver improvements over the original series of production BWRs, with

3162-433: Is licensed to operate, the fuel vendor/licensee simulate events with computer models. Their approach is to simulate worst case events when the reactor is in its most vulnerable state. APLHGR is commonly pronounced as "Apple Hugger" in the industry. PCIOMR is a set of rules and limits to prevent cladding damage due to pellet-clad interaction. During the first nuclear heatup, nuclear fuel pellets can crack. The jagged edges of

3255-408: Is monitored with an empirical correlation that is formulated by vendors of BWR fuel (GE, Westinghouse, AREVA-NP). The vendors have test rigs where they simulate nuclear heat with resistive heating and determine experimentally what conditions of coolant flow, fuel assembly power, and reactor pressure will be in/out of the transition boiling region for a particular fuel design. In essence, the vendors make

3348-402: Is more easily measured through the volume of gas or liquid that can flow into the rock, whereas fluids cannot access unconnected pores. Porosity is the ratio of pore volume to its total volume. Porosity is controlled by: rock type, pore distribution, cementation, diagenetic history and composition. Porosity is not controlled by grain size, as the volume of between-grain space is related only to

3441-400: Is related to volumetric flow rates of the gas and the liquid phase, and to the ratio of the velocity of the two phases (called slip ratio ). Used in geology , hydrogeology , soil science , and building science , the porosity of a porous medium (such as rock or sediment ) describes the fraction of void space in the material, where the void may contain, for example, air or water. It

3534-453: Is required that the decay heat stored in the fuel assemblies at any one time does not overwhelm the ECCS. As such, the measure of decay heat generation known as LHGR was developed by GE's engineers, and from this measure, APLHGR is derived. APLHGR is monitored to ensure that the reactor is not operated at an average power level that would defeat the primary containment systems. When a refueled core

3627-435: Is saturated with a steam quality of about 15%. Typical core flow may be 45,000,000 kg/h (100,000,000 lb/h) with 6,500,000 kg/h (14,500,000 lb/h) steam flow. However, core-average void fraction is a significantly higher fraction (~40%). These sort of values may be found in each plant's publicly available Technical Specifications, Final Safety Analysis Report, or Core Operating Limits Report. The heating from

3720-408: Is switched to a "Three-Element" control mode, where the controller looks at the current water level in the reactor, as well as the amount of water going in and the amount of steam leaving the reactor. By using the water injection and steam flow rates, the feed water control system can rapidly anticipate water level deviations and respond to maintain water level within a few inches of set point. If one of

3813-492: Is terminated by the automatic insertion of the control rods. So, when the reactor is isolated from the turbine rapidly, pressure in the vessel rises rapidly, which collapses the water vapor, which causes a power excursion which is terminated by the Reactor Protection System. If a fuel pin was operating at 13.0 kW/ft prior to the transient, the void collapse would cause its power to rise. The FLLHGR limit

SBWR - Misplaced Pages Continue

3906-671: Is the compaction coefficient (m ). The letter e {\displaystyle e} with a negative exponent denotes the decreasing exponential function. The porosity of the sediment exponentially decreases with depth, as a function of its compaction. A value for porosity can alternatively be calculated from the bulk density ρ bulk {\displaystyle \rho _{\text{bulk}}} , saturating fluid density ρ fluid {\displaystyle \rho _{\text{fluid}}} and particle density ρ particle {\displaystyle \rho _{\text{particle}}} : If

3999-515: Is the decreasing exponential function given by the Athy (1930) equation: where, ϕ ( z ) {\displaystyle \phi (z)} is the porosity of the sediment at a given depth ( z {\displaystyle z} ) (m), ϕ 0 {\displaystyle \phi _{0}} is the initial porosity of the sediment at the surface of soil (before its burial), and k {\displaystyle k}

4092-501: Is the normal method for controlling power when starting up a BWR. As control rods are withdrawn, neutron absorption decreases in the control material and increases in the fuel, so reactor power increases. As control rods are inserted, neutron absorption increases in the control material and decreases in the fuel, so reactor power decreases. Differently from the PWR, in a BWR the control rods ( boron carbide plates) are inserted from below to give

4185-429: Is then returned to the reactor core, completing the loop. The cooling water is maintained at about 75 atm (7.6 MPa , 1000–1100 psi ) so that it boils in the core at about 285 °C (550 °F). In comparison, there is no significant boiling allowed in a pressurized water reactor (PWR) because of the high pressure maintained in its primary loop—approximately 158 atm (16 MPa, 2300 psi). The core damage frequency of

4278-554: The ABWR and ESBWR as well as all German and Swedish BWRs use the Fine Motion Control Rod Drive system, which allows multiple rods to be controlled with very smooth motions. This allows a reactor operator to evenly increase the core's reactivity until the reactor is critical. Older BWR designs use a manual control system, which is usually limited to controlling one or four control rods at a time, and only through

4371-565: The Emergency Core Cooling System . The ECCS is designed to rapidly flood the reactor pressure vessel, spray water on the core itself, and sufficiently cool the reactor fuel in this event. However, like any system, the ECCS has limits, in this case, to its cooling capacity, and there is a possibility that fuel could be designed that produces so much decay heat that the ECCS would be overwhelmed and could not cool it down successfully. So as to prevent this from happening, it

4464-473: The "accessible void", the total amount of void space accessible from the surface (cf. closed-cell foam ). There are many ways to test porosity in a substance or part, such as industrial CT scanning . The term porosity is used in multiple fields including pharmaceutics , ceramics , metallurgy , materials , manufacturing , petrophysics , hydrology , earth sciences , soil mechanics , rock mechanics , and engineering . In gas-liquid two-phase flow ,

4557-482: The US's first research effort in nuclear power being devoted to the PWR, which was highly suited for naval vessels (submarines, especially), as space was at a premium, and PWRs could be made compact and high-power enough to fit into such vessels. But other researchers wanted to investigate whether the supposed instability caused by boiling water in a reactor core would really cause instability. During early reactor development,

4650-499: The absorption solution, once the system was triggered, would flow into the core through force of gravity, and bring the reaction to a near-complete stop. Another example was the Isolation Condenser system , which relied on the principle of hot water/steam rising to bring hot coolant into large heat exchangers located above the reactor in very deep tanks of water, thus accomplishing residual heat removal. Yet another example

4743-436: The case of a BWR, light water. If the core is uncovered for too long, fuel failure can occur; for the purpose of design, fuel failure is assumed to occur when the temperature of the uncovered fuel reaches a critical temperature (1100 °C, 2200 °F). BWR designs incorporate failsafe protection systems to rapidly cool and make safe the uncovered fuel prior to it reaching this temperature; these failsafe systems are known as

SECTION 50

#1732783465122

4836-471: The cladding remains intact for the life of the rod. The BWR concept was developed slightly later than the PWR concept. Development of the BWR started in the early 1950s, and was a collaboration between General Electric (GE) and several US national laboratories. Research into nuclear power in the US was led by the three military services. The Navy, seeing the possibility of turning submarines into full-time underwater vehicles, and ships that could steam around

4929-477: The core after emergency shut down. The reactor fuel rods are occasionally replaced by moving them from the reactor pressure vessel to the spent fuel pool. A typical fuel cycle lasts 18–24 months, with about one third of fuel assemblies being replaced during a refueling outage. The remaining fuel assemblies are shuffled to new core locations to maximize the efficiency and power produced in the next fuel cycle. Because they are hot both radioactively and thermally, this

5022-454: The core creates a thermal head that assists the recirculation pumps in recirculating the water inside of the RPV. A BWR can be designed with no recirculation pumps and rely entirely on the thermal head to recirculate the water inside of the RPV. The forced recirculation head from the recirculation pumps is very useful in controlling power, however, and allows achieving higher power levels that would not otherwise be possible. The thermal power level

5115-408: The downcomer or annulus region, which is separated from the core by a tall shroud. The water then goes through either jet pumps or internal recirculation pumps that provide additional pumping power (hydraulic head). The water now makes a 180-degree turn and moves up through the lower core plate into the nuclear core, where the fuel elements heat the water. Water exiting the fuel channels at the top guide

5208-400: The earthquake could have altered the geometry. The fact that the fuel rods' cladding is a zirconium alloy was also problematic since this element can react with steam at temperatures above 1,500 K (1,230 °C) to produce hydrogen, which can ignite with oxygen in the air. Normally the fuel rods are kept sufficiently cool in the reactor and spent fuel pools that this is not a concern, and

5301-532: The event of a major safety contingency for at least 48 hours following the safety contingency; thence, it would only require periodic refilling of cooling water tanks located completely outside of the reactor, isolated from the cooling system, and designed to remove reactor waste heat through evaporation. The simplified boiling water reactor was submitted to the United States Nuclear Regulatory Commission , however, it

5394-428: The event of a transient requiring the quenching of steam), as well as the drywell, the elimination of the heat exchanger, the steam dryer, the distinctive general layout of the reactor building, and the standardization of reactor control and safety systems. The first, General Electric ( GE ), series of production BWRs evolved through 6 iterative design phases, each termed BWR/1 through BWR/6. (BWR/4s, BWR/5s, and BWR/6s are

5487-449: The feedwater heaters enters the reactor pressure vessel (RPV) through nozzles high on the vessel, well above the top of the nuclear fuel assemblies (these nuclear fuel assemblies constitute the "core") but below the water level. The feedwater enters into the downcomer or annulus region and combines with water exiting the moisture separators. The feedwater subcools the saturated water from the moisture separators. This water now flows down

5580-442: The fuel, and reactor power increases. As flow of water through the core is decreased, steam voids remain longer in the core, the amount of liquid water in the core decreases, neutron moderation decreases, fewer neutrons are slowed enough to be absorbed by the fuel, and reactor power decreases. Thus the BWR has a negative void coefficient . Reactor pressure in a BWR is controlled by the main turbine or main steam bypass valves. Unlike

5673-405: The heated surface to increase drastically to once again reach equilibrium heat transfer with the cooling fluid. In other words, steam semi-insulates the heated surface and surface temperature rises to allow heat to get to the cooling fluid (through convection and radiative heat transfer). Nuclear fuel could be damaged by film boiling; this would cause the fuel cladding to overheat and fail. MFLCPR

SECTION 60

#1732783465122

5766-405: The inner walls of the fuel cladding which are resistant to perforation due to pellet-clad interactions, and the second is a set of rules created under PCIOMR. The PCIOMR rules require initial "conditioning" of new fuel. This means, for the first nuclear heatup of each fuel element, that local bundle power must be ramped very slowly to prevent cracking of the fuel pellets and limit the differences in

5859-400: The leading fuel bundle is to "dry-out" (or "departure from nucleate boiling" for a PWR). Transition boiling is the unstable transient region where nucleate boiling tends toward film boiling . A water drop dancing on a hot frying pan is an example of film boiling. During film boiling a volume of insulating vapor separates the heated surface from the cooling fluid; this causes the temperature of

5952-437: The link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=SBWR&oldid=1233216032 " Category : Disambiguation pages Hidden categories: Short description is different from Wikidata All article disambiguation pages All disambiguation pages Boiling water reactor#Economic simplified boiling water reactor The main difference between

6045-597: The method of grain packing. Rocks normally decrease in porosity with age and depth of burial. Tertiary age Gulf Coast sandstones are in general more porous than Cambrian age sandstones. There are exceptions to this rule, usually because of the depth of burial and thermal history. Porosity of surface soil typically decreases as particle size increases. This is due to soil aggregate formation in finer textured surface soils when subject to soil biological processes. Aggregation involves particulate adhesion and higher resistance to compaction. Typical bulk density of sandy soil

6138-571: The most common types in service today.) The vast majority of BWRs in service throughout the world belong to one of these design phases. Containment variants were constructed using either concrete or steel for the Primary Containment, Drywell and Wetwell in various combinations. Apart from the GE designs there were others by ABB (Asea-Atom), MITSU, Toshiba and KWU (Kraftwerk Union). See List of boiling water reactors . A newer design of BWR

6231-447: The one with a higher porosity will typically have a higher hydraulic conductivity (more open area for the flow of water), but there are many complications to this relationship. The principal complication is that there is not a direct proportionality between porosity and hydraulic conductivity but rather an inferred proportionality. There is a clear proportionality between pore throat radii and hydraulic conductivity. Also, there tends to be

6324-469: The opposing group (B or A) is pulled in a defined sequence to positions 02, then 04, 08, 16, and finally full out (48). By following a BPWS compliant start-up sequence, the manual control system can be used to evenly and safely raise the entire core to critical, and prevent any fuel rods from exceeding 280 cal/gm energy release during any postulated event which could potentially damage the fuel. Several calculated/measured quantities are tracked while operating

6417-404: The pellet can rub and interact with the inner cladding wall. During power increases in the fuel pellet, the ceramic fuel material expands faster than the fuel cladding, and the jagged edges of the fuel pellet begin to press into the cladding, potentially causing a perforation. To prevent this from occurring, two corrective actions were taken. The first is the inclusion of a thin barrier layer against

6510-600: The pores (where all water flow takes place), drastically reducing porosity and hydraulic conductivity, while only being a small fraction of the total volume of the material. For tables of common porosity values for earth materials , see the "further reading" section in the Hydrogeology article. Consolidated rocks (e.g., sandstone , shale , granite or limestone ) potentially have more complex "dual" porosities, as compared with alluvial sediment . This can be split into connected and unconnected porosity. Connected porosity

6603-479: The pumps could be repaired during the next refueling outage. Instead, the designers of the simplified boiling water reactor used thermal analysis to design the reactor core such that natural circulation (cold water falls, hot water rises) would bring water to the center of the core to be boiled. The ultimate result of the passive safety features of the SBWR would be a reactor that would not require human intervention in

6696-510: The rates of thermal expansion of the fuel. PCIOMR rules also limit the maximum local power change (in kW/ft*hr), prevent pulling control rods below the tips of adjacent control rods, and require control rod sequences to be analyzed against core modelling software to prevent pellet-clad interactions. PCIOMR analysis look at local power peaks and xenon transients which could be caused by control rod position changes or rapid power changes to ensure that local power rates never exceed maximum ratings. For

6789-472: The reactor core passes through steam separators and dryer plates above the core and then directly to the turbine , which is part of the reactor circuit. Because the water around the core of a reactor is always contaminated with traces of radionuclides due to neutron capture from the water, the turbine must be shielded during normal operation, and radiological protection must be provided during maintenance. The increased cost related to operation and maintenance of

6882-456: The reactor was estimated to be between 10 and 10 (i.e., one core damage accident per every 10,000 to 10,000,000 reactor years). Steam exiting the turbine flows into condensers located underneath the low-pressure turbines, where the steam is cooled and returned to the liquid state (condensate). The condensate is then pumped through feedwater heaters that raise its temperature using extraction steam from various turbine stages. Feedwater from

6975-401: The reactor's heatup and cooldown rates while steaming is still in progress. Reactor water level is controlled by the main feedwater system. From about 0.5% power to 100% power, feedwater will automatically control the water level in the reactor. At low power conditions, the feedwater controller acts as a simple PID control by watching reactor water level. At high power conditions, the controller

7068-414: The reactor. The high-pressure turbine exhaust passes through a steam reheater which superheats the steam to over 400 degrees F (204.4 degrees celcius) for the low-pressure turbines to use. The exhaust of the low-pressure turbines is sent to the main condenser. The steam reheaters take some of the turbine's steam and use it as a heating source to reheat what comes out of the high-pressure turbine exhaust. While

7161-562: The reheaters take steam away from the turbine, the net result is that the reheaters improve the thermodynamic efficiency of the plant. A modern BWR fuel assembly comprises 74 to 100 fuel rods , and there are up to approximately 800 assemblies in a reactor core , holding up to approximately 140 short tons of low-enriched uranium . The number of fuel assemblies in a specific reactor is based on considerations of desired reactor power output, reactor core size and reactor power density. A modern reactor has many safety systems that are designed with

7254-458: The relative force required to pull a tillage implement through the clayey soil at field moisture content as compared to sand. Porosity of subsurface soil is lower than in surface soil due to compaction by gravity. Porosity of 0.20 is considered normal for unsorted gravel size material at depths below the biomantle . Porosity in finer material below the aggregating influence of pedogenesis can be expected to approximate this value. Soil porosity

7347-479: The response of LHGR in transient imagine the rapid closure of the valves that admit steam to the turbines at full power. This causes the immediate cessation of steam flow and an immediate rise in BWR pressure. This rise in pressure effectively subcools the reactor coolant instantaneously; the voids (vapor) collapse into solid water. When the voids collapse in the reactor, the fission reaction is encouraged (more thermal neutrons); power increases drastically (120%) until it

7440-755: The resulting design to a larger size of 1,600  MWe (4,500 MWth). This Economic Simplified Boiling Water Reactor (ESBWR) design was submitted to the US Nuclear Regulatory Commission for approval in April 2005, and design certification was granted by the NRC in September 2014. Reportedly, this design has been advertised as having a core damage probability of only 3×10 core damage events per reactor-year. That is, there would need to be 3 million ESBWRs operating before one would expect

7533-464: The so-called "100% rod line", power may be varied from approximately 30% to 100% of rated power by changing the reactor recirculation system flow by varying the speed of the recirculation pumps or modulating flow control valves. As flow of water through the core is increased, steam bubbles ("voids") are more quickly removed from the core, the amount of liquid water in the core increases, neutron moderation increases, more neutrons are slowed to be absorbed by

7626-473: The structured nature of clay minerals ), which means clays can hold a large volume of water per volume of bulk material, but they do not release water rapidly and therefore have low hydraulic conductivity. Well sorted (grains of approximately all one size) materials have higher porosity than similarly sized poorly sorted materials (where smaller particles fill the gaps between larger particles). The graphic illustrates how some smaller grains can effectively fill

7719-440: The success of the ABWR in Japan is that General Electric's nuclear energy division merged with Hitachi Corporation's nuclear energy division, forming GE Hitachi Nuclear Energy , which is now the major worldwide developer of the BWR design. Parallel to the development of the ABWR, General Electric also developed a different concept, known as the simplified boiling water reactor (SBWR). This smaller 600 megawatt electrical reactor

7812-461: The turbine and incorporated heat exchangers for the generation of secondary steam to drive separate parts of the turbines. The literature does not indicate why this was the case, but it was eliminated on production models of the BWR. The first generation of production boiling water reactors saw the incremental development of the unique and distinctive features of the BWR: the torus (used to quench steam in

7905-515: The two feedwater pumps fails during operation, the feedwater system will command the recirculation system to rapidly reduce core flow, effectively reducing reactor power from 100% to 50% in a few seconds. At this power level a single feedwater pump can maintain the core water level. If all feedwater is lost, the reactor will scram and the Emergency Core Cooling System is used to restore reactor water level. Steam produced in

7998-418: The two-phase flow in cyclone separators, the steam is separated and rises upwards towards the steam dryer while the water remains behind and flows horizontally out into the downcomer or annulus region. In the downcomer or annulus region, it combines with the feedwater flow and the cycle repeats. The saturated steam that rises above the separator is dried by a chevron dryer structure. The "wet" steam goes through

8091-451: The void fraction is defined as the fraction of the flow-channel volume that is occupied by the gas phase or, alternatively, as the fraction of the cross-sectional area of the channel that is occupied by the gas phase. Void fraction usually varies from location to location in the flow channel (depending on the two-phase flow pattern). It fluctuates with time and its value is usually time averaged. In separated (i.e., non- homogeneous ) flow, it

8184-455: The void space is filled with air, the following simpler form may be used: A mean normal particle density can be taken as approximately 2.65 g/cm ( silica , siliceous sediments or aggregates), or 2.70 g/cm ( calcite , carbonate sediments or aggregates), although a better estimation can be obtained by examining the lithology of the particles. Porosity can be proportional to hydraulic conductivity ; for two similar sandy aquifers ,

8277-478: The water flow (see below). Some early BWRs and the proposed ESBWR (Economic Simplified BWR made by General Electric Hitachi) designs use only natural circulation with control rod positioning to control power from zero to 100% because they do not have reactor recirculation systems. Changing (increasing or decreasing) the flow of water through the core is the normal and convenient method for controlling power from approximately 30% to 100% reactor power. When operating on

8370-546: The world without refueling, sent their man in engineering, Captain Hyman Rickover to run their nuclear power program. Rickover decided on the PWR route for the Navy, as the early researchers in the field of nuclear power feared that the direct production of steam within a reactor would cause instability, while they knew that the use of pressurized water would definitively work as a means of heat transfer. This concern led to

8463-407: Was notable for its incorporation—for the first time ever in a light water reactor —of " passive safety " design principles. The concept of passive safety means that the reactor, rather than requiring the intervention of active systems, such as emergency injection pumps, to keep the reactor within safety margins, was instead designed to return to a safe state solely through operation of natural forces if

8556-439: Was the omission of recirculation pumps within the core; these pumps were used in other BWR designs to keep cooling water moving; they were expensive, hard to reach to repair, and could occasionally fail; so as to improve reliability, the ABWR incorporated no less than 10 of these recirculation pumps, so that even if several failed, a sufficient number would remain serviceable so that an unscheduled shutdown would not be necessary, and

8649-399: Was withdrawn prior to approval; still, the concept remained intriguing to General Electric's designers, and served as the basis of future developments. During a period beginning in the late 1990s, GE engineers proposed to combine the features of the advanced boiling water reactor design with the distinctive safety features of the simplified boiling water reactor design, along with scaling up

#121878