Misplaced Pages

Solenogastres

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In biology , a common name of a taxon or organism (also known as a vernacular name , English name, colloquial name, country name, popular name, or farmer's name) is a name that is based on the normal language of everyday life; and is often contrasted with the scientific name for the same organism, which is often based in Latin . A common name is sometimes frequently used, but that is not always the case.

#999

115-602: The Solenogastres (less often referred to as Neomeniomorpha ), common name the solenogasters, are one class of small, worm-like, shell-less molluscs (Aplacophora), the other class being the Caudofoveata ( Chaetodermomorpha ). Some recent literature, and recent molecular evidence, indicates that the Aplacophora may be polyphyletic , and therefore these taxonomists divide Solenogastres and Caudofoveata into separate classes. In contrast to all other molluscan classes,

230-501: A r y ) ∧ Q ( J o h n ) ) {\displaystyle \exists Q(Q(Mary)\land Q(John))} " . In this case, the existential quantifier is applied to the predicate variable " Q {\displaystyle Q} " . The added expressive power is especially useful for mathematics since it allows for more succinct formulations of mathematical theories. But it has drawbacks in regard to its meta-logical properties and ontological implications, which

345-505: A proof system . Logic plays a central role in many fields, such as philosophy , mathematics , computer science , and linguistics . Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to work". Premises and conclusions express propositions or claims that can be true or false. An important feature of propositions

460-445: A central role in many arguments found in everyday discourse and the sciences. Ampliative arguments are not automatically incorrect. Instead, they just follow different standards of correctness. The support they provide for their conclusion usually comes in degrees. This means that strong ampliative arguments make their conclusion very likely while weak ones are less certain. As a consequence, the line between correct and incorrect arguments

575-480: A certain cost: the premises support the conclusion in the sense that they make its truth more likely but they do not ensure its truth. This means that the conclusion of an ampliative argument may be false even though all its premises are true. This characteristic is closely related to non-monotonicity and defeasibility : it may be necessary to retract an earlier conclusion upon receiving new information or in light of new inferences drawn. Ampliative reasoning plays

690-573: A complex argument to be successful, each link of the chain has to be successful. Arguments and inferences are either correct or incorrect. If they are correct then their premises support their conclusion. In the incorrect case, this support is missing. It can take different forms corresponding to the different types of reasoning . The strongest form of support corresponds to deductive reasoning . But even arguments that are not deductively valid may still be good arguments because their premises offer non-deductive support to their conclusions. For such cases,

805-425: A conclusion. Logic is interested in whether arguments are correct, i.e. whether their premises support the conclusion. These general characterizations apply to logic in the widest sense, i.e., to both formal and informal logic since they are both concerned with assessing the correctness of arguments. Formal logic is the traditionally dominant field, and some logicians restrict logic to formal logic. Formal logic

920-510: A formal language together with a set of axioms and a proof system used to draw inferences from these axioms. In logic, axioms are statements that are accepted without proof. They are used to justify other statements. Some theorists also include a semantics that specifies how the expressions of the formal language relate to real objects. Starting in the late 19th century, many new formal systems have been proposed. A formal language consists of an alphabet and syntactic rules. The alphabet

1035-686: A formal language while informal logic investigates them in their original form. On this view, the argument "Birds fly. Tweety is a bird. Therefore, Tweety flies." belongs to natural language and is examined by informal logic. But the formal translation "(1) ∀ x ( B i r d ( x ) → F l i e s ( x ) ) {\displaystyle \forall x(Bird(x)\to Flies(x))} ; (2) B i r d ( T w e e t y ) {\displaystyle Bird(Tweety)} ; (3) F l i e s ( T w e e t y ) {\displaystyle Flies(Tweety)} "

1150-415: A given argument is valid. Because of the reliance on formal language, natural language arguments cannot be studied directly. Instead, they need to be translated into formal language before their validity can be assessed. The term "logic" can also be used in a slightly different sense as a countable noun. In this sense, a logic is a logical formal system. Distinct logics differ from each other concerning

1265-551: A given conclusion based on a set of premises. This distinction does not just apply to logic but also to games. In chess , for example, the definitory rules dictate that bishops may only move diagonally. The strategic rules, on the other hand, describe how the allowed moves may be used to win a game, for instance, by controlling the center and by defending one's king . It has been argued that logicians should give more emphasis to strategic rules since they are highly relevant for effective reasoning. A formal system of logic consists of

SECTION 10

#1732787385001

1380-402: A great variety of topics. They include metaphysical theses about ontological categories and problems of scientific explanation. But in a more narrow sense, it is identical to term logic or syllogistics. A syllogism is a form of argument involving three propositions: two premises and a conclusion. Each proposition has three essential parts: a subject , a predicate, and a copula connecting

1495-419: A lack of multiple morphological characteristics that are necessary. Common name In chemistry , IUPAC defines a common name as one that, although it unambiguously defines a chemical, does not follow the current systematic naming convention, such as acetone , systematically 2-propanone , while a vernacular name describes one used in a lab, trade or industry that does not unambiguously describe

1610-614: A logical connective like "and" to form a new complex proposition. In Aristotelian logic, the subject can be universal , particular , indefinite , or singular . For example, the term "all humans" is a universal subject in the proposition "all humans are mortal". A similar proposition could be formed by replacing it with the particular term "some humans", the indefinite term "a human", or the singular term "Socrates". Aristotelian logic only includes predicates for simple properties of entities. But it lacks predicates corresponding to relations between entities. The predicate can be linked to

1725-485: A particularly common name is used varies; some common names have a very local application, while others are virtually universal within a particular language. Some such names even apply across ranges of languages; the word for cat , for instance, is easily recognizable in most Germanic and many Romance languages . Many vernacular names, however, are restricted to a single country and colloquial names to local districts. Some languages also have more than one common name for

1840-664: A sentence like "yesterday was Sunday and the weather was good". It is only true if both of its input variables, p {\displaystyle p} ("yesterday was Sunday") and q {\displaystyle q} ("the weather was good"), are true. In all other cases, the expression as a whole is false. Other important logical connectives are ¬ {\displaystyle \lnot } ( not ), ∨ {\displaystyle \lor } ( or ), → {\displaystyle \to } ( if...then ), and ↑ {\displaystyle \uparrow } ( Sheffer stroke ). Given

1955-433: A single chemical, such as copper sulfate , which may refer to either copper(I) sulfate or copper(II) sulfate. Sometimes common names are created by authorities on one particular subject, in an attempt to make it possible for members of the general public (including such interested parties as fishermen, farmers, etc.) to be able to refer to one particular species of organism without needing to be able to memorise or pronounce

2070-520: A spiny scleritome comprising spines or scale-like plates; this has been likened to the halwaxiid scleritome. Sclerites of Epimenia start out solid before developing a hollow stem that subsequently solidifies. Solenogastres can be found in a diverse range of habitats across the world, from the coast to the deep ocean. Solenogastres feed on cnidaria and ctenophores , either sucking their bodily fluids or eating their tissue. They do not use their radulae to rasp prey, as other molluscs do. There

2185-420: Is sound when its proof system cannot derive a conclusion from a set of premises unless it is semantically entailed by them. In other words, its proof system cannot lead to false conclusions, as defined by the semantics. A system is complete when its proof system can derive every conclusion that is semantically entailed by its premises. In other words, its proof system can lead to any true conclusion, as defined by

2300-490: Is a global system that attempts to denote particular organisms or taxa uniquely and definitively , on the assumption that such organisms or taxa are well-defined and generally also have well-defined interrelationships; accordingly the ICZN has formal rules for biological nomenclature and convenes periodic international meetings to further that purpose. The form of scientific names for organisms, called binomial nomenclature ,

2415-476: Is a red planet". For most types of logic, it is accepted that premises and conclusions have to be truth-bearers . This means that they have a truth value : they are either true or false. Contemporary philosophy generally sees them either as propositions or as sentences . Propositions are the denotations of sentences and are usually seen as abstract objects . For example, the English sentence "the tree

SECTION 20

#1732787385001

2530-441: Is a restricted version of classical logic. It uses the same symbols but excludes some rules of inference. For example, according to the law of double negation elimination, if a sentence is not not true, then it is true. This means that A {\displaystyle A} follows from ¬ ¬ A {\displaystyle \lnot \lnot A} . This is a valid rule of inference in classical logic but it

2645-416: Is also known as symbolic logic and is widely used in mathematical logic . It uses a formal approach to study reasoning: it replaces concrete expressions with abstract symbols to examine the logical form of arguments independent of their concrete content. In this sense, it is topic-neutral since it is only concerned with the abstract structure of arguments and not with their concrete content. Formal logic

2760-453: Is an example of the existential quantifier " ∃ {\displaystyle \exists } " applied to the individual variable " x {\displaystyle x} " . In higher-order logics, quantification is also allowed over predicates. This increases its expressive power. For example, to express the idea that Mary and John share some qualities, one could use the formula " ∃ Q ( Q ( M

2875-415: Is blurry in some cases, such as when the premises offer weak but non-negligible support. This contrasts with deductive arguments, which are either valid or invalid with nothing in-between. The terminology used to categorize ampliative arguments is inconsistent. Some authors, like James Hawthorne, use the term " induction " to cover all forms of non-deductive arguments. But in a more narrow sense, induction

2990-421: Is commonly defined in terms of arguments or inferences as the study of their correctness. An argument is a set of premises together with a conclusion. An inference is the process of reasoning from these premises to the conclusion. But these terms are often used interchangeably in logic. Arguments are correct or incorrect depending on whether their premises support their conclusion. Premises and conclusions, on

3105-407: Is controversial because it belongs to the field of psychology , not logic, and because appearances may be different for different people. Fallacies are usually divided into formal and informal fallacies. For formal fallacies, the source of the error is found in the form of the argument. For example, denying the antecedent is one type of formal fallacy, as in "if Othello is a bachelor, then he

3220-453: Is deductively valid. For deductive validity, it does not matter whether the premises or the conclusion are actually true. So the argument "(1) all frogs are mammals; (2) no cats are mammals; (3) therefore no cats are frogs" is also valid because the conclusion follows necessarily from the premises. According to an influential view by Alfred Tarski , deductive arguments have three essential features: (1) they are formal, i.e. they depend only on

3335-610: Is green" is different from the German sentence "der Baum ist grün" but both express the same proposition. Propositional theories of premises and conclusions are often criticized because they rely on abstract objects. For instance, philosophical naturalists usually reject the existence of abstract objects. Other arguments concern the challenges involved in specifying the identity criteria of propositions. These objections are avoided by seeing premises and conclusions not as propositions but as sentences, i.e. as concrete linguistic objects like

3450-461: Is in these remarks from a book on marine fish: In scientific binomial nomenclature, names commonly are derived from classical or modern Latin or Greek or Latinised forms of vernacular words or coinages; such names generally are difficult for laymen to learn, remember, and pronounce and so, in such books as field guides, biologists commonly publish lists of coined common names. Many examples of such common names simply are attempts to translate

3565-432: Is interested in deductively valid arguments, for which the truth of their premises ensures the truth of their conclusion. This means that it is impossible for the premises to be true and the conclusion to be false. For valid arguments, the logical structure of the premises and the conclusion follows a pattern called a rule of inference . For example, modus ponens is a rule of inference according to which all arguments of

Solenogastres - Misplaced Pages Continue

3680-415: Is invalid in intuitionistic logic. Another classical principle not part of intuitionistic logic is the law of excluded middle . It states that for every sentence, either it or its negation is true. This means that every proposition of the form A ∨ ¬ A {\displaystyle A\lor \lnot A} is true. These deviations from classical logic are based on the idea that truth

3795-447: Is male; Othello is not a bachelor; therefore Othello is not male". But most fallacies fall into the category of informal fallacies, of which a great variety is discussed in the academic literature. The source of their error is usually found in the content or the context of the argument. Informal fallacies are sometimes categorized as fallacies of ambiguity, fallacies of presumption, or fallacies of relevance. For fallacies of ambiguity,

3910-475: Is more than one tooth, there is no central radular tooth. The radula grows by dividing existing teeth in two, or by adding a new tooth at the centre of the radular row. The salivary glands are very elaborate, and are an important character for taxonomy. Next to the mouth they have a unique sense organ, the vestibulum. The solenogastres do not have true ctenidia, although their gill-like structures resemble them. During development many Solenogastres are covered by

4025-688: Is necessary, then it is also possible. This means that ◊ A {\displaystyle \Diamond A} follows from ◻ A {\displaystyle \Box A} . Another principle states that if a proposition is necessary then its negation is impossible and vice versa. This means that ◻ A {\displaystyle \Box A} is equivalent to ¬ ◊ ¬ A {\displaystyle \lnot \Diamond \lnot A} . Other forms of modal logic introduce similar symbols but associate different meanings with them to apply modal logic to other fields. For example, deontic logic concerns

4140-518: Is necessary. For example, if the formula B ( s ) {\displaystyle B(s)} stands for the sentence "Socrates is a banker" then the formula ◊ B ( s ) {\displaystyle \Diamond B(s)} articulates the sentence "It is possible that Socrates is a banker". To include these symbols in the logical formalism, modal logic introduces new rules of inference that govern what role they play in inferences. One rule of inference states that, if something

4255-407: Is not the best or most likely explanation. Not all arguments live up to the standards of correct reasoning. When they do not, they are usually referred to as fallacies . Their central aspect is not that their conclusion is false but that there is some flaw with the reasoning leading to this conclusion. So the argument "it is sunny today; therefore spiders have eight legs" is fallacious even though

4370-446: Is not the case for ampliative arguments, which arrive at genuinely new information not found in the premises. Many arguments in everyday discourse and the sciences are ampliative arguments. They are divided into inductive and abductive arguments. Inductive arguments are statistical generalizations, such as inferring that all ravens are black based on many individual observations of black ravens. Abductive arguments are inferences to

4485-541: Is only one type of ampliative argument alongside abductive arguments . Some philosophers, like Leo Groarke, also allow conductive arguments as another type. In this narrow sense, induction is often defined as a form of statistical generalization. In this case, the premises of an inductive argument are many individual observations that all show a certain pattern. The conclusion then is a general law that this pattern always obtains. In this sense, one may infer that "all elephants are gray" based on one's past observations of

4600-495: Is some uncertainty regarding the phylogenetic position of the solenogastres. Traditionally considered to be the most basal molluscan group and the sister group to the Caudofoveata, alternatives to both of these statements have been proposed on various lines of evidence. Indeed, some molecular datasets plot Solenogastres as an outgroup to Mollusca. However, there are cryptic species which are hard to delineate due to their being

4715-430: Is studied by formal logic. The study of natural language arguments comes with various difficulties. For example, natural language expressions are often ambiguous, vague, and context-dependent. Another approach defines informal logic in a wide sense as the normative study of the standards, criteria, and procedures of argumentation. In this sense, it includes questions about the role of rationality , critical thinking , and

Solenogastres - Misplaced Pages Continue

4830-459: Is superficially similar to the noun-adjective form of vernacular names or common names which were used by non-modern cultures. A collective name such as owl was made more precise by the addition of an adjective such as screech . Linnaeus himself published a flora of his homeland Sweden, Flora Svecica (1745), and in this, he recorded the Swedish common names, region by region, as well as

4945-604: Is the Cape dikkop (or "gewone dikkop", not to mention the presumably much older Zulu name "umBangaqhwa"); Burhinus vermiculatus is the "water dikkop". The thick joints in question are not even, in fact, the birds' knees, but the intertarsal joints —in lay terms the ankles. Furthermore, not all species in the genus have "thick knees", so the thickness of the "knees" of some species is not of clearly descriptive significance. The family Burhinidae has members that have various common names even in English, including " stone curlews ", so

5060-463: Is the case with say, ginkgo , okapi , and ratel . Folk taxonomy , which is a classification of objects using common names, has no formal rules and need not be consistent or logical in its assignment of names, so that say, not all flies are called flies (for example Braulidae , the so-called "bee lice") and not every animal called a fly is indeed a fly (such as dragonflies and mayflies ). In contrast, scientific or biological nomenclature

5175-410: Is the set of basic symbols used in expressions . The syntactic rules determine how these symbols may be arranged to result in well-formed formulas. For instance, the syntactic rules of propositional logic determine that " P ∧ Q {\displaystyle P\land Q} " is a well-formed formula but " ∧ Q {\displaystyle \land Q} " is not since

5290-399: Is their internal structure. For example, complex propositions are made up of simpler propositions linked by logical vocabulary like ∧ {\displaystyle \land } ( and ) or → {\displaystyle \to } ( if...then ). Simple propositions also have parts, like "Sunday" or "work" in the example. The truth of a proposition usually depends on

5405-432: Is to study the criteria according to which an argument is correct or incorrect. A fallacy is committed if these criteria are violated. In the case of formal logic, they are known as rules of inference . They are definitory rules, which determine whether an inference is correct or which inferences are allowed. Definitory rules contrast with strategic rules. Strategic rules specify which inferential moves are necessary to reach

5520-540: Is unable to address. Both provide criteria for assessing the correctness of arguments and distinguishing them from fallacies. Many characterizations of informal logic have been suggested but there is no general agreement on its precise definition. The most literal approach sees the terms "formal" and "informal" as applying to the language used to express arguments. On this view, informal logic studies arguments that are in informal or natural language. Formal logic can only examine them indirectly by translating them first into

5635-599: Is used to represent the ideas of knowing something in contrast to merely believing it to be the case. Higher-order logics extend classical logic not by using modal operators but by introducing new forms of quantification. Quantifiers correspond to terms like "all" or "some". In classical first-order logic, quantifiers are only applied to individuals. The formula " ∃ x ( A p p l e ( x ) ∧ S w e e t ( x ) ) {\displaystyle \exists x(Apple(x)\land Sweet(x))} " ( some apples are sweet)

5750-431: Is why first-order logic is still more commonly used. Deviant logics are logical systems that reject some of the basic intuitions of classical logic. Because of this, they are usually seen not as its supplements but as its rivals. Deviant logical systems differ from each other either because they reject different classical intuitions or because they propose different alternatives to the same issue. Intuitionistic logic

5865-459: The Aplacophora have no shell, and are instead covered by aragonitic sclerites ( calcareous spicules ), which can be solid or hollow. These spicules can be arranged perpendicular to one another within the cuticle to form a skeleton, or can stick up to form a palisade, or can lie flat against the cuticle. 80% of solenogaster species have a radula , while in others it is secondarily lost. The radula may bear one or more teeth per row; where there

SECTION 50

#1732787385001

5980-469: The Greek word "logos", which has a variety of translations, such as reason , discourse , or language . Logic is traditionally defined as the study of the laws of thought or correct reasoning , and is usually understood in terms of inferences or arguments . Reasoning is the activity of drawing inferences. Arguments are the outward expression of inferences. An argument is a set of premises together with

6095-649: The Hebrew Language publish from time to time short dictionaries of common name in Hebrew for species that occur in Israel or surrounding countries e.g. for Reptilia in 1938, Osteichthyes in 2012, and Odonata in 2015. Logic Logic is the study of correct reasoning . It includes both formal and informal logic . Formal logic is the study of deductively valid inferences or logical truths . It examines how conclusions follow from premises based on

6210-710: The SSAR switched to an online version with a searchable database. Standardized names for the amphibians and reptiles of Mexico in Spanish and English were first published in 1994, with a revised and updated list published in 2008. A set of guidelines for the creation of English names for birds was published in The Auk in 1978. It gave rise to Birds of the World: Recommended English Names and its Spanish and French companions. The Academy of

6325-534: The Secretariat for the AFNC. SSA is an accredited Standards Australia (Australia's peak non-government standards development organisation) Standards Development The Entomological Society of America maintains a database of official common names of insects, and proposals for new entries must be submitted and reviewed by a formal committee before being added to the listing. Efforts to standardize English names for

6440-418: The ambiguity and vagueness of natural language are responsible for their flaw, as in "feathers are light; what is light cannot be dark; therefore feathers cannot be dark". Fallacies of presumption have a wrong or unjustified premise but may be valid otherwise. In the case of fallacies of relevance, the premises do not support the conclusion because they are not relevant to it. The main focus of most logicians

6555-505: The amphibians and reptiles of North America (north of Mexico) began in the mid-1950s. The dynamic nature of taxonomy necessitates periodical updates and changes in the nomenclature of both scientific and common names. The Society for the Study of Amphibians and Reptiles (SSAR) published an updated list in 1978, largely following the previous established examples, and subsequently published eight revised editions ending in 2017. More recently

6670-399: The assessment of arguments. Premises and conclusions are the basic parts of inferences or arguments and therefore play a central role in logic. In the case of a valid inference or a correct argument, the conclusion follows from the premises, or in other words, the premises support the conclusion. For instance, the premises "Mars is red" and "Mars is a planet" support the conclusion "Mars

6785-515: The author introduced into it so many new English names, that are to be found in no dictionary, and that do not preclude the necessity of learning with what Latin names they are synonymous. A tolerable idea may be given of the danger of too great a multiplicity of vulgar names, by imagining what geography would be, or, for instance, the Post-office administration, supposing every town had a totally different name in every language. Various bodies and

6900-493: The authors of many technical and semi-technical books do not simply adapt existing common names for various organisms; they try to coin (and put into common use) comprehensive, useful, authoritative, and standardised lists of new names. The purpose typically is: Other attempts to reconcile differences between widely separated regions, traditions, and languages, by arbitrarily imposing nomenclature, often reflect narrow perspectives and have unfortunate outcomes. For example, members of

7015-495: The basic principles of classical logic. They introduce additional symbols and principles to apply it to fields like metaphysics , ethics , and epistemology . Modal logic is an extension of classical logic. In its original form, sometimes called "alethic modal logic", it introduces two new symbols: ◊ {\displaystyle \Diamond } expresses that something is possible while ◻ {\displaystyle \Box } expresses that something

SECTION 60

#1732787385001

7130-487: The best explanation, for example, when a doctor concludes that a patient has a certain disease which explains the symptoms they suffer. Arguments that fall short of the standards of correct reasoning often embody fallacies . Systems of logic are theoretical frameworks for assessing the correctness of arguments. Logic has been studied since antiquity . Early approaches include Aristotelian logic , Stoic logic , Nyaya , and Mohism . Aristotelian logic focuses on reasoning in

7245-408: The choice of the name "thick-knees" is not easy to defend but is a clear illustration of the hazards of the facile coinage of terminology. For collective nouns for various subjects, see a list of collective nouns (e.g. a flock of sheep, pack of wolves). Some organizations have created official lists of common names, or guidelines for creating common names, hoping to standardize

7360-645: The claim "either it is raining, or it is not". These two definitions of formal logic are not identical, but they are closely related. For example, if the inference from p to q is deductively valid then the claim "if p then q " is a logical truth. Formal logic uses formal languages to express and analyze arguments. They normally have a very limited vocabulary and exact syntactic rules . These rules specify how their symbols can be combined to construct sentences, so-called well-formed formulas . This simplicity and exactness of formal logic make it capable of formulating precise rules of inference. They determine whether

7475-495: The color of elephants. A closely related form of inductive inference has as its conclusion not a general law but one more specific instance, as when it is inferred that an elephant one has not seen yet is also gray. Some theorists, like Igor Douven, stipulate that inductive inferences rest only on statistical considerations. This way, they can be distinguished from abductive inference. Abductive inference may or may not take statistical observations into consideration. In either case,

7590-511: The conclusion "all ravens are black". A further approach is to define informal logic as the study of informal fallacies . Informal fallacies are incorrect arguments in which errors are present in the content and the context of the argument. A false dilemma , for example, involves an error of content by excluding viable options. This is the case in the fallacy "you are either with us or against us; you are not with us; therefore, you are against us". Some theorists state that formal logic studies

7705-458: The conclusion is true. Some theorists, like John Stuart Mill , give a more restrictive definition of fallacies by additionally requiring that they appear to be correct. This way, genuine fallacies can be distinguished from mere mistakes of reasoning due to carelessness. This explains why people tend to commit fallacies: because they have an alluring element that seduces people into committing and accepting them. However, this reference to appearances

7820-591: The conditional proposition p → q {\displaystyle p\to q} , one can form truth tables of its converse q → p {\displaystyle q\to p} , its inverse ( ¬ p → ¬ q {\displaystyle \lnot p\to \lnot q} ) , and its contrapositive ( ¬ q → ¬ p {\displaystyle \lnot q\to \lnot p} ) . Truth tables can also be defined for more complex expressions that use several propositional connectives. Logic

7935-438: The contrast between necessity and possibility and the problem of ethical obligation and permission. Similarly, it does not address the relations between past, present, and future. Such issues are addressed by extended logics. They build on the basic intuitions of classical logic and expand it by introducing new logical vocabulary. This way, the exact logical approach is applied to fields like ethics or epistemology that lie beyond

8050-451: The depth level. But they can be highly informative on the surface level by making implicit information explicit. This happens, for example, in mathematical proofs. Ampliative arguments are arguments whose conclusions contain additional information not found in their premises. In this regard, they are more interesting since they contain information on the depth level and the thinker may learn something genuinely new. But this feature comes with

8165-434: The field of ethics and introduces symbols to express the ideas of obligation and permission , i.e. to describe whether an agent has to perform a certain action or is allowed to perform it. The modal operators in temporal modal logic articulate temporal relations. They can be used to express, for example, that something happened at one time or that something is happening all the time. In epistemology, epistemic modal logic

8280-485: The form "(1) p , (2) if p then q , (3) therefore q " are valid, independent of what the terms p and q stand for. In this sense, formal logic can be defined as the science of valid inferences. An alternative definition sees logic as the study of logical truths . A proposition is logically true if its truth depends only on the logical vocabulary used in it. This means that it is true in all possible worlds and under all interpretations of its non-logical terms, like

8395-513: The form of syllogisms . It was considered the main system of logic in the Western world until it was replaced by modern formal logic, which has its roots in the work of late 19th-century mathematicians such as Gottlob Frege . Today, the most commonly used system is classical logic . It consists of propositional logic and first-order logic . Propositional logic only considers logical relations between full propositions. First-order logic also takes

8510-523: The form of the premises and the conclusion: how they have to be structured for the inference to be valid. Arguments that do not follow any rule of inference are deductively invalid. The modus ponens is a prominent rule of inference. It has the form " p ; if p , then q ; therefore q ". Knowing that it has just rained ( p {\displaystyle p} ) and that after rain the streets are wet ( p → q {\displaystyle p\to q} ), one can use modus ponens to deduce that

8625-419: The form of the premises and the conclusion; (2) they are a priori, i.e. no sense experience is needed to determine whether they obtain; (3) they are modal, i.e. that they hold by logical necessity for the given propositions, independent of any other circumstances. Because of the first feature, the focus on formality, deductive inference is usually identified with rules of inference. Rules of inference specify

8740-421: The general form of arguments while informal logic studies particular instances of arguments. Another approach is to hold that formal logic only considers the role of logical constants for correct inferences while informal logic also takes the meaning of substantive concepts into account. Further approaches focus on the discussion of logical topics with or without formal devices and on the role of epistemology for

8855-522: The genus Burhinus occur in Australia, Southern Africa, Eurasia, and South America. A recent trend in field manuals and bird lists is to use the name " thick-knee " for members of the genus. This, in spite of the fact that the majority of the species occur in non-English-speaking regions and have various common names, not always English. For example, "Dikkop" is the centuries-old South African vernacular name for their two local species: Burhinus capensis

8970-406: The internal parts of propositions into account, like predicates and quantifiers . Extended logics accept the basic intuitions behind classical logic and apply it to other fields, such as metaphysics , ethics , and epistemology . Deviant logics, on the other hand, reject certain classical intuitions and provide alternative explanations of the basic laws of logic. The word "logic" originates from

9085-407: The internal structure of propositions. This happens through devices such as singular terms, which refer to particular objects, predicates , which refer to properties and relations, and quantifiers, which treat notions like "some" and "all". For example, to express the proposition "this raven is black", one may use the predicate B {\displaystyle B} for the property "black" and

9200-522: The logical conjunction ∧ {\displaystyle \land } requires terms on both sides. A proof system is a collection of rules to construct formal proofs. It is a tool to arrive at conclusions from a set of axioms. Rules in a proof system are defined in terms of the syntactic form of formulas independent of their specific content. For instance, the classical rule of conjunction introduction states that P ∧ Q {\displaystyle P\land Q} follows from

9315-454: The meanings of all of its parts. However, this is not the case for logically true propositions. They are true only because of their logical structure independent of the specific meanings of the individual parts. Arguments can be either correct or incorrect. An argument is correct if its premises support its conclusion. Deductive arguments have the strongest form of support: if their premises are true then their conclusion must also be true. This

9430-711: The modern (now binding) International Code of Nomenclature for algae, fungi, and plants contains the following: Art. 68. Every friend of science ought to be opposed to the introduction into a modern language of names of plants that are not already there unless they are derived from a Latin botanical name that has undergone but a slight alteration. ... ought the fabrication of names termed vulgar names, totally different from Latin ones, to be proscribed. The public to whom they are addressed derives no advantage from them because they are novelties. Lindley's work, The Vegetable Kingdom, would have been better relished in England had not

9545-409: The other hand, are true or false depending on whether they are in accord with reality. In formal logic, a sound argument is an argument that is both correct and has only true premises. Sometimes a distinction is made between simple and complex arguments. A complex argument is made up of a chain of simple arguments. This means that the conclusion of one argument acts as a premise of later arguments. For

9660-444: The other hand, do not have propositional parts. But they can also be conceived as having an internal structure: they are made up of subpropositional parts, like singular terms and predicates . For example, the simple proposition "Mars is red" can be formed by applying the predicate "red" to the singular term "Mars". In contrast, the complex proposition "Mars is red and Venus is white" is made up of two simple propositions connected by

9775-485: The premises P {\displaystyle P} and Q {\displaystyle Q} . Such rules can be applied sequentially, giving a mechanical procedure for generating conclusions from premises. There are different types of proof systems including natural deduction and sequent calculi . A semantics is a system for mapping expressions of a formal language to their denotations. In many systems of logic, denotations are truth values. For instance,

9890-413: The premises offer support for the conclusion because the conclusion is the best explanation of why the premises are true. In this sense, abduction is also called the inference to the best explanation . For example, given the premise that there is a plate with breadcrumbs in the kitchen in the early morning, one may infer the conclusion that one's house-mate had a midnight snack and was too tired to clean

10005-470: The premises. But this point is not always accepted since it would mean, for example, that most of mathematics is uninformative. A different characterization distinguishes between surface and depth information. The surface information of a sentence is the information it presents explicitly. Depth information is the totality of the information contained in the sentence, both explicitly and implicitly. According to this view, deductive inferences are uninformative on

10120-485: The propositional connective "and". Whether a proposition is true depends, at least in part, on its constituents. For complex propositions formed using truth-functional propositional connectives, their truth only depends on the truth values of their parts. But this relation is more complicated in the case of simple propositions and their subpropositional parts. These subpropositional parts have meanings of their own, like referring to objects or classes of objects. Whether

10235-406: The propositions are formed. For example, the syllogism "all men are mortal; Socrates is a man; therefore Socrates is mortal" is valid. The syllogism "all cats are mortal; Socrates is mortal; therefore Socrates is a cat", on the other hand, is invalid. Classical logic is distinct from traditional or Aristotelian logic. It encompasses propositional logic and first-order logic. It is "classical" in

10350-417: The psychology of argumentation. Another characterization identifies informal logic with the study of non-deductive arguments. In this way, it contrasts with deductive reasoning examined by formal logic. Non-deductive arguments make their conclusion probable but do not ensure that it is true. An example is the inductive argument from the empirical observation that "all ravens I have seen so far are black" to

10465-436: The rules of inference they accept as valid and the formal languages used to express them. Starting in the late 19th century, many new formal systems have been proposed. There are disagreements about what makes a formal system a logic. For example, it has been suggested that only logically complete systems, like first-order logic , qualify as logics. For such reasons, some theorists deny that higher-order logics are logics in

10580-488: The same animal. For example, in Irish, there are many terms that are considered outdated but still well-known for their somewhat humorous and poetic descriptions of animals. w/ literal translations of the poetic terms Common names are used in the writings of both professionals and laymen . Lay people sometimes object to the use of scientific names over common names, but the use of scientific names can be defended, as it

10695-402: The scientific name into English or some other vernacular. Such translation may be confusing in itself, or confusingly inaccurate, for example, gratiosus does not mean "gracile" and gracilis does not mean "graceful". The practice of coining common names has long been discouraged; de Candolle's Laws of Botanical Nomenclature , 1868, the non-binding recommendations that form the basis of

10810-555: The scientific name. Creating an "official" list of common names can also be an attempt to standardize the use of common names, which can sometimes vary a great deal between one part of a country and another, as well as between one country and another country, even where the same language is spoken in both places. A common name intrinsically plays a part in a classification of objects, typically an incomplete and informal classification, in which some names are degenerate examples in that they are unique and lack reference to any other name, as

10925-579: The scientific names. The Swedish common names were all binomials (e.g. plant no. 84 Råg-losta and plant no. 85 Ren-losta); the vernacular binomial system thus preceded his scientific binomial system. Linnaean authority William T. Stearn said: By the introduction of his binomial system of nomenclature, Linnaeus gave plants and animals an essentially Latin nomenclature like vernacular nomenclature in style but linked to published, and hence relatively stable and verifiable, scientific concepts and thus suitable for international use. The geographic range over which

11040-492: The scope of mathematics. Propositional logic comprises formal systems in which formulae are built from atomic propositions using logical connectives . For instance, propositional logic represents the conjunction of two atomic propositions P {\displaystyle P} and Q {\displaystyle Q} as the complex formula P ∧ Q {\displaystyle P\land Q} . Unlike predicate logic where terms and predicates are

11155-418: The semantics for classical propositional logic assigns the formula P ∧ Q {\displaystyle P\land Q} the denotation "true" whenever P {\displaystyle P} and Q {\displaystyle Q} are true. From the semantic point of view, a premise entails a conclusion if the conclusion is true whenever the premise is true. A system of logic

11270-604: The semantics. Thus, soundness and completeness together describe a system whose notions of validity and entailment line up perfectly. Systems of logic are theoretical frameworks for assessing the correctness of reasoning and arguments. For over two thousand years, Aristotelian logic was treated as the canon of logic in the Western world, but modern developments in this field have led to a vast proliferation of logical systems. One prominent categorization divides modern formal logical systems into classical logic , extended logics, and deviant logics . Aristotelian logic encompasses

11385-518: The sense that it is based on basic logical intuitions shared by most logicians. These intuitions include the law of excluded middle , the double negation elimination , the principle of explosion , and the bivalence of truth. It was originally developed to analyze mathematical arguments and was only later applied to other fields as well. Because of this focus on mathematics, it does not include logical vocabulary relevant to many other topics of philosophical importance. Examples of concepts it overlooks are

11500-404: The simple proposition "Mars is red", are true or false. In such cases, the truth is called a logical truth: a proposition is logically true if its truth depends only on the logical vocabulary used in it. This means that it is true under all interpretations of its non-logical terms. In some modal logics , this means that the proposition is true in all possible worlds. Some theorists define logic as

11615-415: The simple proposition they form is true depends on their relation to reality, i.e. what the objects they refer to are like. This topic is studied by theories of reference . Some complex propositions are true independently of the substantive meanings of their parts. In classical logic, for example, the complex proposition "either Mars is red or Mars is not red" is true independent of whether its parts, like

11730-870: The singular term r {\displaystyle r} referring to the raven to form the expression B ( r ) {\displaystyle B(r)} . To express that some objects are black, the existential quantifier ∃ {\displaystyle \exists } is combined with the variable x {\displaystyle x} to form the proposition ∃ x B ( x ) {\displaystyle \exists xB(x)} . First-order logic contains various rules of inference that determine how expressions articulated this way can form valid arguments, for example, that one may infer ∃ x B ( x ) {\displaystyle \exists xB(x)} from B ( r ) {\displaystyle B(r)} . Extended logics are logical systems that accept

11845-474: The smallest units, propositional logic takes full propositions with truth values as its most basic component. Thus, propositional logics can only represent logical relationships that arise from the way complex propositions are built from simpler ones. But it cannot represent inferences that result from the inner structure of a proposition. First-order logic includes the same propositional connectives as propositional logic but differs from it because it articulates

11960-418: The streets are wet ( q {\displaystyle q} ). The third feature can be expressed by stating that deductively valid inferences are truth-preserving: it is impossible for the premises to be true and the conclusion to be false. Because of this feature, it is often asserted that deductive inferences are uninformative since the conclusion cannot arrive at new information not already present in

12075-437: The strict sense. When understood in a wide sense, logic encompasses both formal and informal logic. Informal logic uses non-formal criteria and standards to analyze and assess the correctness of arguments. Its main focus is on everyday discourse. Its development was prompted by difficulties in applying the insights of formal logic to natural language arguments. In this regard, it considers problems that formal logic on its own

12190-403: The structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies , critical thinking , and argumentation theory . Informal logic examines arguments expressed in natural language whereas formal logic uses formal language . When used as a countable noun , the term "a logic" refers to a specific logical formal system that articulates

12305-438: The study of logical truths. Truth tables can be used to show how logical connectives work or how the truth values of complex propositions depends on their parts. They have a column for each input variable. Each row corresponds to one possible combination of the truth values these variables can take; for truth tables presented in the English literature, the symbols "T" and "F" or "1" and "0" are commonly used as abbreviations for

12420-700: The subject in two ways: either by affirming it or by denying it. For example, the proposition "Socrates is not a cat" involves the denial of the predicate "cat" to the subject "Socrates". Using combinations of subjects and predicates, a great variety of propositions and syllogisms can be formed. Syllogisms are characterized by the fact that the premises are linked to each other and to the conclusion by sharing one predicate in each case. Thus, these three propositions contain three predicates, referred to as major term , minor term , and middle term . The central aspect of Aristotelian logic involves classifying all possible syllogisms into valid and invalid arguments according to how

12535-417: The subject to the predicate. For example, the proposition "Socrates is wise" is made up of the subject "Socrates", the predicate "wise", and the copula "is". The subject and the predicate are the terms of the proposition. Aristotelian logic does not contain complex propositions made up of simple propositions. It differs in this aspect from propositional logic, in which any two propositions can be linked using

12650-423: The symbols displayed on a page of a book. But this approach comes with new problems of its own: sentences are often context-dependent and ambiguous, meaning an argument's validity would not only depend on its parts but also on its context and on how it is interpreted. Another approach is to understand premises and conclusions in psychological terms as thoughts or judgments. This position is known as psychologism . It

12765-409: The table. This conclusion is justified because it is the best explanation of the current state of the kitchen. For abduction, it is not sufficient that the conclusion explains the premises. For example, the conclusion that a burglar broke into the house last night, got hungry on the job, and had a midnight snack, would also explain the state of the kitchen. But this conclusion is not justified because it

12880-399: The term ampliative or inductive reasoning is used. Deductive arguments are associated with formal logic in contrast to the relation between ampliative arguments and informal logic. A deductively valid argument is one whose premises guarantee the truth of its conclusion. For instance, the argument "(1) all frogs are amphibians; (2) no cats are amphibians; (3) therefore no cats are frogs"

12995-479: The truth values "true" and "false". The first columns present all the possible truth-value combinations for the input variables. Entries in the other columns present the truth values of the corresponding expressions as determined by the input values. For example, the expression " p ∧ q {\displaystyle p\land q} " uses the logical connective ∧ {\displaystyle \land } ( and ). It could be used to express

13110-832: The use of common names. For example, the Australian Fish Names List or AFNS was compiled through a process involving work by taxonomic and seafood industry experts, drafted using the CAAB (Codes for Australian Aquatic Biota) taxon management system of the CSIRO , and including input through public and industry consultations by the Australian Fish Names Committee (AFNC). The AFNS has been an official Australian Standard since July 2007 and has existed in draft form (The Australian Fish Names List) since 2001. Seafood Services Australia (SSA) serve as

13225-405: Was discussed at length around the turn of the 20th century but it is not widely accepted today. Premises and conclusions have an internal structure. As propositions or sentences, they can be either simple or complex. A complex proposition has other propositions as its constituents, which are linked to each other through propositional connectives like "and" or "if...then". Simple propositions, on

#999