Solid is one of the four fundamental states of matter along with liquid , gas , and plasma . The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structural rigidity (as in rigid bodies ) and resistance to a force applied to the surface. Unlike a liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire available volume like a gas. The atoms in a solid are bound to each other, either in a regular geometric lattice ( crystalline solids , which include metals and ordinary ice ), or irregularly (an amorphous solid such as common window glass). Solids cannot be compressed with little pressure whereas gases can be compressed with little pressure because the molecules in a gas are loosely packed.
120-582: The branch of physics that deals with solids is called solid-state physics , and is the main branch of condensed matter physics (which also includes liquids). Materials science is primarily concerned with the physical and chemical properties of solids. Solid-state chemistry is especially concerned with the synthesis of novel materials, as well as the science of identification and chemical composition . The atoms, molecules or ions that make up solids may be arranged in an orderly repeating pattern, or irregularly. Materials whose constituents are arranged in
240-499: A Platonist by Stephen Hawking , a view Penrose discusses in his book, The Road to Reality . Hawking referred to himself as an "unashamed reductionist" and took issue with Penrose's views. Mathematics provides a compact and exact language used to describe the order in nature. This was noted and advocated by Pythagoras , Plato , Galileo, and Newton. Some theorists, like Hilary Putnam and Penelope Maddy , hold that logical truths, and therefore mathematical reasoning, depend on
360-488: A frame of reference that is in motion with respect to an observer; the special theory of relativity is concerned with motion in the absence of gravitational fields and the general theory of relativity with motion and its connection with gravitation . Both quantum theory and the theory of relativity find applications in many areas of modern physics. While physics itself aims to discover universal laws, its theories lie in explicit domains of applicability. Loosely speaking,
480-515: A rock sample is a random aggregate of minerals and/or mineraloids , and has no specific chemical composition. The vast majority of the rocks of the Earth's crust consist of quartz (crystalline SiO 2 ), feldspar, mica, chlorite , kaolin , calcite, epidote , olivine , augite , hornblende , magnetite , hematite , limonite and a few other minerals. Some minerals, like quartz , mica or feldspar are common, while others have been found in only
600-455: A basic awareness of the motions of the Sun, Moon, and stars. The stars and planets, believed to represent gods, were often worshipped. While the explanations for the observed positions of the stars were often unscientific and lacking in evidence, these early observations laid the foundation for later astronomy, as the stars were found to traverse great circles across the sky, which could not explain
720-541: A composite made up of a thermoplastic matrix such as acrylonitrile butadiene styrene (ABS) in which calcium carbonate chalk, talc , glass fibers or carbon fibers have been added for strength, bulk, or electro-static dispersion. These additions may be referred to as reinforcing fibers, or dispersants, depending on their purpose. Thus, the matrix material surrounds and supports the reinforcement materials by maintaining their relative positions. The reinforcements impart their special mechanical and physical properties to enhance
840-1042: A few locations worldwide. The largest group of minerals by far is the silicates (most rocks are ≥95% silicates), which are composed largely of silicon and oxygen , with the addition of ions of aluminium, magnesium , iron, calcium and other metals. Ceramic solids are composed of inorganic compounds, usually oxides of chemical elements. They are chemically inert, and often are capable of withstanding chemical erosion that occurs in an acidic or caustic environment. Ceramics generally can withstand high temperatures ranging from 1,000 to 1,600 °C (1,830 to 2,910 °F). Exceptions include non-oxide inorganic materials, such as nitrides , borides and carbides . Traditional ceramic raw materials include clay minerals such as kaolinite , more recent materials include aluminium oxide ( alumina ). The modern ceramic materials, which are classified as advanced ceramics, include silicon carbide and tungsten carbide . Both are valued for their abrasion resistance, and hence find use in such applications as
960-420: A hard-to-find physical meaning. The final mathematical solution has an easier-to-find meaning, because it is what the solver is looking for. Physics is a branch of fundamental science (also called basic science). Physics is also called " the fundamental science" because all branches of natural science including chemistry, astronomy, geology, and biology are constrained by laws of physics. Similarly, chemistry
1080-580: A material can absorb before mechanical failure, while fracture toughness (denoted K Ic ) describes the ability of a material with inherent microstructural flaws to resist fracture via crack growth and propagation. If a material has a large value of fracture toughness , the basic principles of fracture mechanics suggest that it will most likely undergo ductile fracture. Brittle fracture is very characteristic of most ceramic and glass-ceramic materials that typically exhibit low (and inconsistent) values of K Ic . For an example of applications of ceramics,
1200-558: A material that indicates its ability to conduct heat . Solids also have a specific heat capacity , which is the capacity of a material to store energy in the form of heat (or thermal lattice vibrations). Electrical properties include both electrical resistivity and conductivity , dielectric strength , electromagnetic permeability , and permittivity . Electrical conductors such as metals and alloys are contrasted with electrical insulators such as glasses and ceramics. Semiconductors behave somewhere in between. Whereas conductivity in metals
1320-440: A meltdown of the metallic parts. Work is also being done in developing ceramic parts for gas turbine engines . Turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. Such engines are not in production, however, because the manufacturing of ceramic parts in the sufficient precision and durability is difficult and costly. Processing methods often result in
SECTION 10
#17327768359261440-578: A metallic conductor, current is carried by the flow of electrons, but in semiconductors, current can be carried either by electrons or by the positively charged " holes " in the electronic band structure of the material. Common semiconductor materials include silicon, germanium and gallium arsenide . Many traditional solids exhibit different properties when they shrink to nanometer sizes. For example, nanoparticles of usually yellow gold and gray silicon are red in color; gold nanoparticles melt at much lower temperatures (~300 °C for 2.5 nm size) than
1560-422: A non-crystalline intergranular phase. Glass-ceramics are used to make cookware (originally known by the brand name CorningWare ) and stovetops that have high resistance to thermal shock and extremely low permeability to liquids. The negative coefficient of thermal expansion of the crystalline ceramic phase can be balanced with the positive coefficient of the glassy phase. At a certain point (~70% crystalline)
1680-528: A periodic lattice. Mathematically, the potential of the ion cores can be treated by various models, the simplest being the nearly free electron model . Minerals are naturally occurring solids formed through various geological processes under high pressures. To be classified as a true mineral, a substance must have a crystal structure with uniform physical properties throughout. Minerals range in composition from pure elements and simple salts to very complex silicates with thousands of known forms. In contrast,
1800-483: A piezoelectric response several times larger than the traditional piezoelectric material quartz (crystalline SiO 2 ). The deformation (~0.1%) lends itself to useful technical applications such as high-voltage sources, loudspeakers, lasers, as well as chemical, biological, and acousto-optic sensors and/or transducers. Physics Physics is the scientific study of matter , its fundamental constituents , its motion and behavior through space and time , and
1920-565: A regular pattern are known as crystals . In some cases, the regular ordering can continue unbroken over a large scale, for example diamonds, where each diamond is a single crystal . Solid objects that are large enough to see and handle are rarely composed of a single crystal, but instead are made of a large number of single crystals, known as crystallites , whose size can vary from a few nanometers to several meters. Such materials are called polycrystalline . Almost all common metals, and many ceramics , are polycrystalline. In other materials, there
2040-499: A resin during processing, which is then shaped into a final form. Polymers that have been around, and that are in current widespread use, include carbon-based polyethylene , polypropylene , polyvinyl chloride , polystyrene , nylons, polyesters , acrylics , polyurethane , and polycarbonates , and silicon-based silicones . Plastics are generally classified as "commodity", "specialty" and "engineering" plastics. Composite materials contain two or more macroscopic phases, one of which
2160-442: A significant portion of the fields of solid-state chemistry, physics, materials science and engineering. Metallic solids are held together by a high density of shared, delocalized electrons, known as " metallic bonding ". In a metal, atoms readily lose their outermost ("valence") electrons , forming positive ions . The free electrons are spread over the entire solid, which is held together firmly by electrostatic interactions between
2280-465: A specific practical application as a goal, other than the deeper insight into the phenomema themselves. Applied physics is a general term for physics research and development that is intended for a particular use. An applied physics curriculum usually contains a few classes in an applied discipline, like geology or electrical engineering. It usually differs from engineering in that an applied physicist may not be designing something in particular, but rather
2400-426: A speed much less than the speed of light. These theories continue to be areas of active research today. Chaos theory , an aspect of classical mechanics, was discovered in the 20th century, three centuries after the original formulation of classical mechanics by Newton (1642–1727). These central theories are important tools for research into more specialized topics, and any physicist, regardless of their specialization,
2520-399: A subfield of mechanics , is used in the building of bridges and other static structures. The understanding and use of acoustics results in sound control and better concert halls; similarly, the use of optics creates better optical devices. An understanding of physics makes for more realistic flight simulators , video games, and movies, and is often critical in forensic investigations. With
SECTION 20
#17327768359262640-466: A substantial treatise on " Physics " – in the 4th century BC. Aristotelian physics was influential for about two millennia. His approach mixed some limited observation with logical deductive arguments, but did not rely on experimental verification of deduced statements. Aristotle's foundational work in Physics, though very imperfect, formed a framework against which later thinkers further developed
2760-692: A way that the strain is directly proportional to the stress ( Hooke's law ). The coefficient of the proportion is called the modulus of elasticity or Young's modulus . This region of deformation is known as the linearly elastic region. Three models can describe how a solid responds to an applied stress: Many materials become weaker at high temperatures. Materials that retain their strength at high temperatures, called refractory materials , are useful for many purposes. For example, glass-ceramics have become extremely useful for countertop cooking, as they exhibit excellent mechanical properties and can sustain repeated and quick temperature changes up to 1000 °C. In
2880-471: A wide distribution of microscopic flaws that frequently play a detrimental role in the sintering process, resulting in the proliferation of cracks, and ultimate mechanical failure. Glass-ceramic materials share many properties with both non-crystalline glasses and crystalline ceramics . They are formed as a glass, and then partially crystallized by heat treatment, producing both amorphous and crystalline phases so that crystalline grains are embedded within
3000-414: A wide variety of polymers and plastics . Wood is a natural organic material consisting primarily of cellulose fibers embedded in a matrix of lignin . Regarding mechanical properties, the fibers are strong in tension, and the lignin matrix resists compression. Thus wood has been an important construction material since humans began building shelters and using boats. Wood to be used for construction work
3120-472: Is a natural organic material consisting primarily of cellulose fibers embedded in a matrix of organic lignin . In materials science, composites of more than one constituent material can be designed to have desired properties. The forces between the atoms in a solid can take a variety of forms. For example, a crystal of sodium chloride (common salt) is made up of ionic sodium and chlorine , which are held together by ionic bonds . In diamond or silicon,
3240-527: Is a planet's "original" crust. It forms from solidification of a magma ocean. Toward the end of planetary accretion , the terrestrial planets likely had surfaces that were magma oceans. As these cooled, they solidified into crust. This crust was likely destroyed by large impacts and re-formed many times as the Era of Heavy Bombardment drew to a close. The nature of primary crust is still debated: its chemical, mineralogic, and physical properties are unknown, as are
3360-686: Is also a fundamental feature of many biological materials and the manner by which the structures are assembled from the molecular level up. Thus, self-assembly is emerging as a new strategy in the chemical synthesis of high performance biomaterials. Physical properties of elements and compounds that provide conclusive evidence of chemical composition include odor, color, volume, density (mass per unit volume), melting point, boiling point, heat capacity, physical form and shape at room temperature (solid, liquid or gas; cubic, trigonal crystals, etc.), hardness, porosity, index of refraction and many others. This section discusses some physical properties of materials in
3480-469: Is caused by electrons, both electrons and holes contribute to current in semiconductors. Alternatively, ions support electric current in ionic conductors . Many materials also exhibit superconductivity at low temperatures; they include metallic elements such as tin and aluminium, various metallic alloys, some heavily doped semiconductors, and certain ceramics. The electrical resistivity of most electrical (metallic) conductors generally decreases gradually as
3600-413: Is clear-cut, but not always obvious. For example, mathematical physics is the application of mathematics in physics. Its methods are mathematical, but its subject is physical. The problems in this field start with a " mathematical model of a physical situation " (system) and a "mathematical description of a physical law" that will be applied to that system. Every mathematical statement used for solving has
3720-416: Is commonly known as lumber or timber . In construction, wood is not only a structural material, but is also used to form the mould for concrete. Wood-based materials are also extensively used for packaging (e.g. cardboard) and paper, which are both created from the refined pulp. The chemical pulping processes use a combination of high temperature and alkaline (kraft) or acidic (sulfite) chemicals to break
Solid - Misplaced Pages Continue
3840-419: Is concerned with bodies acted on by forces and bodies in motion and may be divided into statics (study of the forces on a body or bodies not subject to an acceleration), kinematics (study of motion without regard to its causes), and dynamics (study of motion and the forces that affect it); mechanics may also be divided into solid mechanics and fluid mechanics (known together as continuum mechanics ),
3960-400: Is concerned with the most basic units of matter; this branch of physics is also known as high-energy physics because of the extremely high energies necessary to produce many types of particles in particle accelerators . On this scale, ordinary, commonsensical notions of space, time, matter, and energy are no longer valid. The two chief theories of modern physics present a different picture of
4080-495: Is debated. The anorthosite highlands of the Moon are primary crust, formed as plagioclase crystallized out of the Moon's initial magma ocean and floated to the top; however, it is unlikely that Earth followed a similar pattern, as the Moon was a water-less system and Earth had water. The Martian meteorite ALH84001 might represent primary crust of Mars; however, again, this is debated. Like Earth, Venus lacks primary crust, as
4200-425: Is expected to be literate in them. These include classical mechanics, quantum mechanics, thermodynamics and statistical mechanics , electromagnetism , and special relativity. Classical physics includes the traditional branches and topics that were recognized and well-developed before the beginning of the 20th century—classical mechanics, acoustics , optics , thermodynamics, and electromagnetism. Classical mechanics
4320-429: Is generally concerned with matter and energy on the normal scale of observation, while much of modern physics is concerned with the behavior of matter and energy under extreme conditions or on a very large or very small scale. For example, atomic and nuclear physics study matter on the smallest scale at which chemical elements can be identified. The physics of elementary particles is on an even smaller scale since it
4440-496: Is needed to create tertiary crust, and Earth is the only planet in the Solar System with plate tectonics. Earth's crust is a thin shell on the outside of Earth, accounting for less than 1% of Earth's volume. It is the top component of the lithosphere , a division of Earth's layers that includes the crust and the upper part of the mantle . The lithosphere is broken into tectonic plates that move, allowing heat to escape from
4560-411: Is no long-range order in the position of the atoms. These solids are known as amorphous solids ; examples include polystyrene and glass. Whether a solid is crystalline or amorphous depends on the material involved, and the conditions in which it was formed. Solids that are formed by slow cooling will tend to be crystalline, while solids that are frozen rapidly are more likely to be amorphous. Likewise,
4680-593: Is often called the central science because of its role in linking the physical sciences. For example, chemistry studies properties, structures, and reactions of matter (chemistry's focus on the molecular and atomic scale distinguishes it from physics ). Structures are formed because particles exert electrical forces on each other, properties include physical characteristics of given substances, and reactions are bound by laws of physics, like conservation of energy , mass , and charge . Fundamental physics seeks to better explain and understand phenomena in all spheres, without
4800-464: Is often ceramic. For example, a continuous matrix, and a dispersed phase of ceramic particles or fibers. Applications of composite materials range from structural elements such as steel-reinforced concrete, to the thermally insulative tiles that play a key and integral role in NASA's Space Shuttle thermal protection system , which is used to protect the surface of the shuttle from the heat of re-entry into
4920-506: Is possible only in discrete steps proportional to their frequency. This, along with the photoelectric effect and a complete theory predicting discrete energy levels of electron orbitals , led to the theory of quantum mechanics improving on classical physics at very small scales. Quantum mechanics would come to be pioneered by Werner Heisenberg , Erwin Schrödinger and Paul Dirac . From this early work, and work in related fields,
Solid - Misplaced Pages Continue
5040-409: Is the ability of crystals to generate a voltage in response to an applied mechanical stress. The piezoelectric effect is reversible in that piezoelectric crystals, when subjected to an externally applied voltage, can change shape by a small amount. Polymer materials like rubber, wool, hair, wood fiber, and silk often behave as electrets . For example, the polymer polyvinylidene fluoride (PVDF) exhibits
5160-400: Is the study of the behavior of solid matter under external actions such as external forces and temperature changes. A solid does not exhibit macroscopic flow, as fluids do. Any degree of departure from its original shape is called deformation . The proportion of deformation to original size is called strain. If the applied stress is sufficiently low, almost all solid materials behave in such
5280-483: Is used in capacitors. A capacitor is an electrical device that can store energy in the electric field between a pair of closely spaced conductors (called 'plates'). When voltage is applied to the capacitor, electric charges of equal magnitude, but opposite polarity, build up on each plate. Capacitors are used in electrical circuits as energy-storage devices, as well as in electronic filters to differentiate between high-frequency and low-frequency signals. Piezoelectricity
5400-431: Is using physics or conducting physics research with the aim of developing new technologies or solving a problem. The approach is similar to that of applied mathematics . Applied physicists use physics in scientific research. For instance, people working on accelerator physics might seek to build better particle detectors for research in theoretical physics. Physics is used heavily in engineering. For example, statics,
5520-536: The Industrial Revolution as energy needs increased. The laws comprising classical physics remain widely used for objects on everyday scales travelling at non-relativistic speeds, since they provide a close approximation in such situations, and theories such as quantum mechanics and the theory of relativity simplify to their classical equivalents at such scales. Inaccuracies in classical mechanics for very small objects and very high velocities led to
5640-660: The Latin physica ('study of nature'), which itself is a borrowing of the Greek φυσική ( phusikḗ 'natural science'), a term derived from φύσις ( phúsis 'origin, nature, property'). Astronomy is one of the oldest natural sciences . Early civilizations dating before 3000 BCE, such as the Sumerians , ancient Egyptians , and the Indus Valley Civilisation , had a predictive knowledge and
5760-608: The Northern Hemisphere . Natural philosophy has its origins in Greece during the Archaic period (650 BCE – 480 BCE), when pre-Socratic philosophers like Thales rejected non-naturalistic explanations for natural phenomena and proclaimed that every event had a natural cause. They proposed ideas verified by reason and observation, and many of their hypotheses proved successful in experiment; for example, atomism
5880-637: The Scientific Revolution in the 17th century, these natural sciences branched into separate research endeavors. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry , and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms studied by other sciences and suggest new avenues of research in these and other academic disciplines such as mathematics and philosophy. Advances in physics often enable new technologies . For example, advances in
6000-619: The Standard Model of particle physics was derived. Following the discovery of a particle with properties consistent with the Higgs boson at CERN in 2012, all fundamental particles predicted by the standard model, and no others, appear to exist; however, physics beyond the Standard Model , with theories such as supersymmetry , is an active area of research. Areas of mathematics in general are important to this field, such as
6120-473: The adiabatic rise of mantle causes partial melting. Tertiary crust is more chemically-modified than either primary or secondary. It can form in several ways: The only known example of tertiary crust is the continental crust of the Earth. It is unknown whether other terrestrial planets can be said to have tertiary crust, though the evidence so far suggests that they do not. This is likely because plate tectonics
SECTION 50
#17327768359266240-439: The camera obscura (his thousand-year-old version of the pinhole camera ) and delved further into the way the eye itself works. Using the knowledge of previous scholars, he began to explain how light enters the eye. He asserted that the light ray is focused, but the actual explanation of how light projected to the back of the eye had to wait until 1604. His Treatise on Light explained the camera obscura , hundreds of years before
6360-925: The crust is the outermost solid shell of a planet , dwarf planet , or natural satellite . It is usually distinguished from the underlying mantle by its chemical makeup; however, in the case of icy satellites, it may be distinguished based on its phase (solid crust vs. liquid mantle). The crusts of Earth , Mercury , Venus , Mars , Io , the Moon and other planetary bodies formed via igneous processes and were later modified by erosion , impact cratering , volcanism, and sedimentation. Most terrestrial planets have fairly uniform crusts. Earth, however, has two distinct types: continental crust and oceanic crust . These two types have different chemical compositions and physical properties and were formed by different geological processes. Planetary geologists divide crust into three categories based on how and when it formed. This
6480-579: The empirical world. This is usually combined with the claim that the laws of logic express universal regularities found in the structural features of the world, which may explain the peculiar relation between these fields. Physics uses mathematics to organise and formulate experimental results. From those results, precise or estimated solutions are obtained, or quantitative results, from which new predictions can be made and experimentally confirmed or negated. The results from physics experiments are numerical data, with their units of measure and estimates of
6600-513: The periodic table moving diagonally downward right from boron . They separate the electrical conductors (or metals, to the left) from the insulators (to the right). Devices made from semiconductor materials are the foundation of modern electronics, including radio, computers, telephones, etc. Semiconductor devices include the transistor , solar cells , diodes and integrated circuits . Solar photovoltaic panels are large semiconductor devices that directly convert light into electrical energy. In
6720-491: The standard consensus that the laws of physics are universal and do not change with time, physics can be used to study things that would ordinarily be mired in uncertainty . For example, in the study of the origin of the Earth, a physicist can reasonably model Earth's mass, temperature, and rate of rotation, as a function of time allowing the extrapolation forward or backward in time and so predict future or prior events. It also allows for simulations in engineering that speed up
6840-435: The 16th and 17th centuries, and Isaac Newton 's discovery and unification of the laws of motion and universal gravitation (that would come to bear his name). Newton also developed calculus , the mathematical study of continuous change, which provided new mathematical methods for solving physical problems. The discovery of laws in thermodynamics , chemistry , and electromagnetics resulted from research efforts during
6960-405: The Earth's atmosphere. One example is Reinforced Carbon-Carbon (RCC), the light gray material that withstands reentry temperatures up to 1,510 °C (2,750 °F) and protects the nose cap and leading edges of Space Shuttle's wings. RCC is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin . After curing at high temperature in an autoclave,
7080-427: The aerospace industry, high performance materials used in the design of aircraft and/or spacecraft exteriors must have a high resistance to thermal shock. Thus, synthetic fibers spun out of organic polymers and polymer/ceramic/metal composite materials and fiber-reinforced polymers are now being designed with this purpose in mind. Because solids have thermal energy , their atoms vibrate about fixed mean positions within
7200-489: The atoms share electrons and form covalent bonds . In metals, electrons are shared in metallic bonding . Some solids, particularly most organic compounds, are held together with van der Waals forces resulting from the polarization of the electronic charge cloud on each molecule. The dissimilarities between the types of solid result from the differences between their bonding. Metals typically are strong, dense, and good conductors of both electricity and heat . The bulk of
7320-511: The attacks from invaders and continued to advance various fields of learning, including physics. In the sixth century, Isidore of Miletus created an important compilation of Archimedes ' works that are copied in the Archimedes Palimpsest . In sixth-century Europe John Philoponus , a Byzantine scholar, questioned Aristotle 's teaching of physics and noted its flaws. He introduced the theory of impetus . Aristotle's physics
SECTION 60
#17327768359267440-663: The chemical bonds of the lignin before burning it out. One important property of carbon in organic chemistry is that it can form certain compounds, the individual molecules of which are capable of attaching themselves to one another, thereby forming a chain or a network. The process is called polymerization and the chains or networks polymers, while the source compound is a monomer. Two main groups of polymers exist: those artificially manufactured are referred to as industrial polymers or synthetic polymers (plastics) and those naturally occurring as biopolymers. Monomers can have various chemical substituents, or functional groups, which can affect
7560-467: The chemical properties of organic compounds, such as solubility and chemical reactivity, as well as the physical properties, such as hardness, density, mechanical or tensile strength, abrasion resistance, heat resistance, transparency, color, etc.. In proteins, these differences give the polymer the ability to adopt a biologically active conformation in preference to others (see self-assembly ). People have been using natural organic polymers for centuries in
7680-434: The concepts of space, time, and matter from that presented by classical physics. Classical mechanics approximates nature as continuous, while quantum theory is concerned with the discrete nature of many phenomena at the atomic and subatomic level and with the complementary aspects of particles and waves in the description of such phenomena. The theory of relativity is concerned with the description of phenomena that take place in
7800-409: The constant speed predicted by Maxwell's equations of electromagnetism. This discrepancy was corrected by Einstein's theory of special relativity , which replaced classical mechanics for fast-moving bodies and allowed for a constant speed of light. Black-body radiation provided another problem for classical physics, which was corrected when Planck proposed that the excitation of material oscillators
7920-423: The crust ranges between about 20 and 120 km. Crust on the far side of the Moon averages about 12 km thicker than that on the near side . Estimates of average thickness fall in the range from about 50 to 60 km. Most of this plagioclase-rich crust formed shortly after formation of the Moon, between about 4.5 and 4.3 billion years ago. Perhaps 10% or less of the crust consists of igneous rock added after
8040-466: The development of a new technology. There is also considerable interdisciplinarity , so many other important fields are influenced by physics (e.g., the fields of econophysics and sociophysics ). Physicists use the scientific method to test the validity of a physical theory . By using a methodical approach to compare the implications of a theory with the conclusions drawn from its related experiments and observations, physicists are better able to test
8160-429: The development of modern physics in the 20th century. Modern physics began in the early 20th century with the work of Max Planck in quantum theory and Albert Einstein 's theory of relativity. Both of these theories came about due to inaccuracies in classical mechanics in certain situations. Classical mechanics predicted that the speed of light depends on the motion of the observer, which could not be resolved with
8280-407: The development of new experiments (and often related equipment). Physicists who work at the interplay of theory and experiment are called phenomenologists , who study complex phenomena observed in experiment and work to relate them to a fundamental theory . Theoretical physics has historically taken inspiration from philosophy; electromagnetism was unified this way. Beyond the known universe,
8400-411: The early 1980s, Toyota researched production of an adiabatic ceramic engine with an operating temperature of over 6,000 °F (3,320 °C). Ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. In a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent
8520-543: The elements in the periodic table , those to the left of a diagonal line drawn from boron to polonium , are metals. Mixtures of two or more elements in which the major component is a metal are known as alloys . People have been using metals for a variety of purposes since prehistoric times. The strength and reliability of metals has led to their widespread use in construction of buildings and other structures, as well as in most vehicles, many appliances and tools, pipes, road signs and railroad tracks. Iron and aluminium are
8640-453: The entire planet has been repeatedly resurfaced and modified. Secondary crust is formed by partial melting of mostly silicate materials in the mantle, and so is usually basaltic in composition. This is the most common type of crust in the Solar System. Most of the surfaces of Mercury, Venus, Earth, and Mars comprise secondary crust, as do the lunar maria . On Earth secondary crust forms primarily at mid-ocean spreading centers , where
8760-682: The errors in the measurements. Technologies based on mathematics, like computation have made computational physics an active area of research. Ontology is a prerequisite for physics, but not for mathematics. It means physics is ultimately concerned with descriptions of the real world, while mathematics is concerned with abstract patterns, even beyond the real world. Thus physics statements are synthetic, while mathematical statements are analytic. Mathematics contains hypotheses, while physics contains theories. Mathematics statements have to be only logically true, while predictions of physics statements must match observed and experimental data. The distinction
8880-578: The extreme hardness of zirconia is utilized in the manufacture of knife blades, as well as other industrial cutting tools. Ceramics such as alumina , boron carbide and silicon carbide have been used in bulletproof vests to repel large-caliber rifle fire. Silicon nitride parts are used in ceramic ball bearings, where their high hardness makes them wear resistant. In general, ceramics are also chemically resistant and can be used in wet environments where steel bearings would be susceptible to oxidation (or rust). As another example of ceramic applications, in
9000-878: The field of theoretical physics also deals with hypothetical issues, such as parallel universes , a multiverse , and higher dimensions . Theorists invoke these ideas in hopes of solving particular problems with existing theories; they then explore the consequences of these ideas and work toward making testable predictions. Experimental physics expands, and is expanded by, engineering and technology. Experimental physicists who are involved in basic research design and perform experiments with equipment such as particle accelerators and lasers , whereas those involved in applied research often work in industry, developing technologies such as magnetic resonance imaging (MRI) and transistors . Feynman has noted that experimentalists may seek areas that have not been explored well by theorists. Crust (geology)#Earth's crust In geology ,
9120-415: The field. His approach is entirely superseded today. He explained ideas such as motion (and gravity ) with the theory of four elements . Aristotle believed that each of the four classical elements (air, fire, water, earth) had its own natural place. Because of their differing densities, each element will revert to its own specific place in the atmosphere. So, because of their weights, fire would be at
9240-433: The form of waxes and shellac , which is classified as a thermoplastic polymer. A plant polymer named cellulose provided the tensile strength for natural fibers and ropes, and by the early 19th century natural rubber was in widespread use. Polymers are the raw materials (the resins) used to make what are commonly called plastics. Plastics are the final product, created after one or more polymers or additives have been added to
9360-463: The formation of the initial plagioclase-rich material. The best-characterized and most voluminous of these later additions are the mare basalts formed between about 3.9 and 3.2 billion years ago. Minor volcanism continued after 3.2 billion years, perhaps as recently as 1 billion years ago. There is no evidence of plate tectonics . Study of the Moon has established that a crust can form on a rocky planetary body significantly smaller than Earth. Although
9480-535: The glass-ceramic has a net coefficient of thermal expansion close to zero. This type of glass-ceramic exhibits excellent mechanical properties and can sustain repeated and quick temperature changes up to 1000 °C. Glass ceramics may also occur naturally when lightning strikes the crystalline (e.g. quartz) grains found in most beach sand . In this case, the extreme and immediate heat of the lightning (~2500 °C) creates hollow, branching rootlike structures called fulgurite via fusion . Organic chemistry studies
9600-670: The gold slabs (1064 °C); and metallic nanowires are much stronger than the corresponding bulk metals. The high surface area of nanoparticles makes them extremely attractive for certain applications in the field of energy. For example, platinum metals may provide improvements as automotive fuel catalysts , as well as proton exchange membrane (PEM) fuel cells. Also, ceramic oxides (or cermets) of lanthanum , cerium , manganese and nickel are now being developed as solid oxide fuel cells (SOFC). Lithium, lithium-titanate and tantalum nanoparticles are being applied in lithium-ion batteries. Silicon nanoparticles have been shown to dramatically expand
9720-491: The igneous mechanisms that formed them. This is because it is difficult to study: none of Earth's primary crust has survived to today. Earth's high rates of erosion and crustal recycling from plate tectonics has destroyed all rocks older than about 4 billion years , including whatever primary crust Earth once had. However, geologists can glean information about primary crust by studying it on other terrestrial planets. Mercury's highlands might represent primary crust, though this
9840-556: The incoming light prior to capture. Here again, surface area of the nanoparticles (and thin films) plays a critical role in maximizing the amount of absorbed radiation. Many natural (or biological) materials are complex composites with remarkable mechanical properties. These complex structures, which have risen from hundreds of million years of evolution, are inspiring materials scientists in the design of novel materials. Their defining characteristics include structural hierarchy, multifunctionality and self-healing capability. Self-organization
9960-416: The interior of Earth into space. A theoretical protoplanet named " Theia " is thought to have collided with the forming Earth, and part of the material ejected into space by the collision accreted to form the Moon. As the Moon formed, the outer part of it is thought to have been molten, a " lunar magma ocean ". Plagioclase feldspar crystallized in large amounts from this magma ocean and floated toward
10080-447: The ions and the electron cloud. The large number of free electrons gives metals their high values of electrical and thermal conductivity. The free electrons also prevent transmission of visible light, making metals opaque, shiny and lustrous . More advanced models of metal properties consider the effect of the positive ions cores on the delocalised electrons. As most metals have crystalline structure, those ions are usually arranged into
10200-499: The laminate is pyrolized to convert the resin to carbon, impregnated with furfural alcohol in a vacuum chamber, and cured/pyrolized to convert the furfural alcohol to carbon. In order to provide oxidation resistance for reuse capability, the outer layers of the RCC are converted to silicon carbide. Domestic examples of composites can be seen in the "plastic" casings of television sets, cell-phones and so on. These plastic casings are usually
10320-400: The latter include such branches as hydrostatics , hydrodynamics and pneumatics . Acoustics is the study of how sound is produced, controlled, transmitted and received. Important modern branches of acoustics include ultrasonics , the study of sound waves of very high frequency beyond the range of human hearing; bioacoustics , the physics of animal calls and hearing, and electroacoustics ,
10440-490: The laws of classical physics accurately describe systems whose important length scales are greater than the atomic scale and whose motions are much slower than the speed of light. Outside of this domain, observations do not match predictions provided by classical mechanics. Einstein contributed the framework of special relativity, which replaced notions of absolute time and space with spacetime and allowed an accurate description of systems whose components have speeds approaching
10560-412: The manipulation of audible sound waves using electronics. Optics, the study of light, is concerned not only with visible light but also with infrared and ultraviolet radiation , which exhibit all of the phenomena of visible light except visibility, e.g., reflection, refraction, interference, diffraction, dispersion, and polarization of light. Heat is a form of energy, the internal energy possessed by
10680-418: The matrix properties. A synergism produces material properties unavailable from the individual constituent materials, while the wide variety of matrix and strengthening materials provides the designer with the choice of an optimum combination. Semiconductors are materials that have an electrical resistivity (and conductivity) between that of metallic conductors and non-metallic insulators. They can be found in
10800-704: The modern development of photography. The seven-volume Book of Optics ( Kitab al-Manathir ) influenced thinking across disciplines from the theory of visual perception to the nature of perspective in medieval art, in both the East and the West, for more than 600 years. This included later European scholars and fellow polymaths, from Robert Grosseteste and Leonardo da Vinci to Johannes Kepler . The translation of The Book of Optics had an impact on Europe. From it, later European scholars were able to build devices that replicated those Ibn al-Haytham had built and understand
10920-409: The ordered (or disordered) lattice. The spectrum of lattice vibrations in a crystalline or glassy network provides the foundation for the kinetic theory of solids . This motion occurs at the atomic level, and thus cannot be observed or detected without highly specialized equipment, such as that used in spectroscopy . Thermal properties of solids include thermal conductivity , which is the property of
11040-468: The other Philoponus' criticism of Aristotelian principles of physics served as an inspiration for Galileo Galilei ten centuries later, during the Scientific Revolution . Galileo cited Philoponus substantially in his works when arguing that Aristotelian physics was flawed. In the 1300s Jean Buridan , a teacher in the faculty of arts at the University of Paris , developed the concept of impetus. It
11160-459: The other, you will see that the ratio of the times required for the motion does not depend on the ratio of the weights, but that the difference in time is a very small one. And so, if the difference in the weights is not considerable, that is, of one is, let us say, double the other, there will be no difference, or else an imperceptible difference, in time, though the difference in weight is by no means negligible, with one body weighing twice as much as
11280-572: The particles of which a substance is composed; thermodynamics deals with the relationships between heat and other forms of energy. Electricity and magnetism have been studied as a single branch of physics since the intimate connection between them was discovered in the early 19th century; an electric current gives rise to a magnetic field , and a changing magnetic field induces an electric current. Electrostatics deals with electric charges at rest, electrodynamics with moving charges, and magnetostatics with magnetic poles at rest. Classical physics
11400-602: The positions of the planets . According to Asger Aaboe , the origins of Western astronomy can be found in Mesopotamia , and all Western efforts in the exact sciences are descended from late Babylonian astronomy . Egyptian astronomers left monuments showing knowledge of the constellations and the motions of the celestial bodies, while Greek poet Homer wrote of various celestial objects in his Iliad and Odyssey ; later Greek astronomers provided names, which are still used today, for most constellations visible from
11520-499: The production of polycrystalline transparent ceramics such as transparent alumina and alumina compounds for such applications as high-power lasers. Advanced ceramics are also used in the medicine, electrical and electronics industries. Ceramic engineering is the science and technology of creating solid-state ceramic materials, parts and devices. This is done either by the action of heat, or, at lower temperatures, using precipitation reactions from chemical solutions. The term includes
11640-439: The purification of raw materials, the study and production of the chemical compounds concerned, their formation into components, and the study of their structure, composition and properties. Mechanically speaking, ceramic materials are brittle, hard, strong in compression and weak in shearing and tension. Brittle materials may exhibit significant tensile strength by supporting a static load. Toughness indicates how much energy
11760-399: The related entities of energy and force . Physics is one of the most fundamental scientific disciplines. A scientist who specializes in the field of physics is called a physicist . Physics is one of the oldest academic disciplines . Over much of the past two millennia, physics, chemistry , biology , and certain branches of mathematics were a part of natural philosophy , but during
11880-527: The solid state. The mechanical properties of materials describe characteristics such as their strength and resistance to deformation. For example, steel beams are used in construction because of their high strength, meaning that they neither break nor bend significantly under the applied load. Mechanical properties include elasticity , plasticity , tensile strength , compressive strength , shear strength , fracture toughness , ductility (low in brittle materials) and indentation hardness . Solid mechanics
12000-447: The specific crystal structure adopted by a crystalline solid depends on the material involved and on how it was formed. While many common objects, such as an ice cube or a coin, are chemically identical throughout, many other common materials comprise a number of different substances packed together. For example, a typical rock is an aggregate of several different minerals and mineraloids , with no specific chemical composition. Wood
12120-440: The speed being proportional to the weight and the speed of the object that is falling depends inversely on the density object it is falling through (e.g. density of air). He also stated that, when it comes to violent motion (motion of an object when a force is applied to it by a second object) that the speed that object moves, will only be as fast or strong as the measure of force applied to it. The problem of motion and its causes
12240-412: The speed of light. Planck, Schrödinger, and others introduced quantum mechanics, a probabilistic notion of particles and interactions that allowed an accurate description of atomic and subatomic scales. Later, quantum field theory unified quantum mechanics and special relativity. General relativity allowed for a dynamical, curved spacetime, with which highly massive systems and the large-scale structure of
12360-479: The storage capacity of lithium-ion batteries during the expansion/contraction cycle. Silicon nanowires cycle without significant degradation and present the potential for use in batteries with greatly expanded storage times. Silicon nanoparticles are also being used in new forms of solar energy cells. Thin film deposition of silicon quantum dots on the polycrystalline silicon substrate of a photovoltaic (solar) cell increases voltage output as much as 60% by fluorescing
12480-442: The structure, properties, composition, reactions, and preparation by synthesis (or other means) of chemical compounds of carbon and hydrogen , which may contain any number of other elements such as nitrogen , oxygen and the halogens: fluorine , chlorine , bromine and iodine . Some organic compounds may also contain the elements phosphorus or sulfur . Examples of organic solids include wood, paraffin wax , naphthalene and
12600-412: The study of probabilities and groups . Physics deals with a wide variety of systems, although certain theories are used by all physicists. Each of these theories was experimentally tested numerous times and found to be an adequate approximation of nature. For instance, the theory of classical mechanics accurately describes the motion of objects, provided they are much larger than atoms and moving at
12720-444: The surface. The cumulate rocks form much of the crust. The upper part of the crust probably averages about 88% plagioclase (near the lower limit of 90% defined for anorthosite ): the lower part of the crust may contain a higher percentage of ferromagnesian minerals such as the pyroxenes and olivine , but even that lower part probably averages about 78% plagioclase. The underlying mantle is denser and olivine-rich. The thickness of
12840-508: The temperature is lowered, but remains finite. In a superconductor, however, the resistance drops abruptly to zero when the material is cooled below its critical temperature. An electric current flowing in a loop of superconducting wire can persist indefinitely with no power source. A dielectric , or electrical insulator, is a substance that is highly resistant to the flow of electric current. A dielectric, such as plastic, tends to concentrate an applied electric field within itself, which property
12960-444: The top, air underneath fire, then water, then lastly earth. He also stated that when a small amount of one element enters the natural place of another, the less abundant element will automatically go towards its own natural place. For example, if there is a fire on the ground, the flames go up into the air in an attempt to go back into its natural place where it belongs. His laws of motion included: that heavier objects will fall faster,
13080-794: The two most commonly used structural metals. They are also the most abundant metals in the Earth's crust . Iron is most commonly used in the form of an alloy, steel, which contains up to 2.1% carbon , making it much harder than pure iron. Because metals are good conductors of electricity, they are valuable in electrical appliances and for carrying an electric current over long distances with little energy loss or dissipation. Thus, electrical power grids rely on metal cables to distribute electricity. Home electrical systems, for example, are wired with copper for its good conducting properties and easy machinability. The high thermal conductivity of most metals also makes them useful for stovetop cooking utensils. The study of metallic elements and their alloys makes up
13200-423: The understanding of electromagnetism , solid-state physics , and nuclear physics led directly to the development of technologies that have transformed modern society, such as television, computers, domestic appliances , and nuclear weapons ; advances in thermodynamics led to the development of industrialization; and advances in mechanics inspired the development of calculus . The word physics comes from
13320-423: The universe can be well-described. General relativity has not yet been unified with the other fundamental descriptions; several candidate theories of quantum gravity are being developed. Physics, as with the rest of science, relies on the philosophy of science and its " scientific method " to advance knowledge of the physical world. The scientific method employs a priori and a posteriori reasoning as well as
13440-573: The use of Bayesian inference to measure the validity of a given theory. Study of the philosophical issues surrounding physics, the philosophy of physics , involves issues such as the nature of space and time , determinism , and metaphysical outlooks such as empiricism , naturalism , and realism . Many physicists have written about the philosophical implications of their work, for instance Laplace , who championed causal determinism , and Erwin Schrödinger , who wrote on quantum mechanics. The mathematical physicist Roger Penrose has been called
13560-988: The validity of a theory in a logical, unbiased, and repeatable way. To that end, experiments are performed and observations are made in order to determine the validity or invalidity of a theory. A scientific law is a concise verbal or mathematical statement of a relation that expresses a fundamental principle of some theory, such as Newton's law of universal gravitation. Theorists seek to develop mathematical models that both agree with existing experiments and successfully predict future experimental results, while experimentalists devise and perform experiments to test theoretical predictions and explore new phenomena. Although theory and experiment are developed separately, they strongly affect and depend upon each other. Progress in physics frequently comes about when experimental results defy explanation by existing theories, prompting intense focus on applicable modelling, and when new theories generate experimentally testable predictions , which inspire
13680-579: The way vision works. Physics became a separate science when early modern Europeans used experimental and quantitative methods to discover what are now considered to be the laws of physics . Major developments in this period include the replacement of the geocentric model of the Solar System with the heliocentric Copernican model , the laws governing the motion of planetary bodies (determined by Kepler between 1609 and 1619), Galileo's pioneering work on telescopes and observational astronomy in
13800-464: The wear plates of crushing equipment in mining operations. Most ceramic materials, such as alumina and its compounds, are formed from fine powders, yielding a fine grained polycrystalline microstructure that is filled with light-scattering centers comparable to the wavelength of visible light . Thus, they are generally opaque materials, as opposed to transparent materials . Recent nanoscale (e.g. sol-gel ) technology has, however, made possible
13920-399: The works of many scientists like Ibn Sahl , Al-Kindi , Ibn al-Haytham , Al-Farisi and Avicenna . The most notable work was The Book of Optics (also known as Kitāb al-Manāẓir), written by Ibn al-Haytham, in which he presented the alternative to the ancient Greek idea about vision. In his Treatise on Light as well as in his Kitāb al-Manāẓir , he presented a study of the phenomenon of
14040-550: Was a step toward the modern ideas of inertia and momentum. Islamic scholarship inherited Aristotelian physics from the Greeks and during the Islamic Golden Age developed it further, especially placing emphasis on observation and a priori reasoning, developing early forms of the scientific method . The most notable innovations under Islamic scholarship were in the field of optics and vision, which came from
14160-513: Was found to be correct approximately 2000 years after it was proposed by Leucippus and his pupil Democritus . During the classical period in Greece (6th, 5th and 4th centuries BCE) and in Hellenistic times , natural philosophy developed along many lines of inquiry. Aristotle ( Greek : Ἀριστοτέλης , Aristotélēs ) (384–322 BCE), a student of Plato , wrote on many subjects, including
14280-417: Was not scrutinized until Philoponus appeared; unlike Aristotle, who based his physics on verbal argument, Philoponus relied on observation. On Aristotle's physics Philoponus wrote: But this is completely erroneous, and our view may be corroborated by actual observation more effectively than by any sort of verbal argument. For if you let fall from the same height two weights of which one is many times as heavy as
14400-548: Was studied carefully, leading to the philosophical notion of a " prime mover " as the ultimate source of all motion in the world (Book 8 of his treatise Physics ). The Western Roman Empire fell to invaders and internal decay in the fifth century, resulting in a decline in intellectual pursuits in western Europe. By contrast, the Eastern Roman Empire (usually known as the Byzantine Empire ) resisted
#925074