Misplaced Pages

Solid state

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Solid is one of the four fundamental states of matter along with liquid , gas , and plasma . The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structural rigidity (as in rigid bodies ) and resistance to a force applied to the surface. Unlike a liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire available volume like a gas. The atoms in a solid are bound to each other, either in a regular geometric lattice ( crystalline solids , which include metals and ordinary ice ), or irregularly (an amorphous solid such as common window glass). Solids cannot be compressed with little pressure whereas gases can be compressed with little pressure because the molecules in a gas are loosely packed.

#270729

64-421: Solid state , or solid matter, is one of the four fundamental states of matter. Solid state may also refer to: Solid The branch of physics that deals with solids is called solid-state physics , and is the main branch of condensed matter physics (which also includes liquids). Materials science is primarily concerned with the physical and chemical properties of solids. Solid-state chemistry

128-881: A planet , dwarf planet , or natural satellite . It is usually distinguished from the underlying mantle by its chemical makeup; however, in the case of icy satellites, it may be distinguished based on its phase (solid crust vs. liquid mantle). The crusts of Earth , Mercury , Venus , Mars , Io , the Moon and other planetary bodies formed via igneous processes and were later modified by erosion , impact cratering , volcanism, and sedimentation. Most terrestrial planets have fairly uniform crusts. Earth, however, has two distinct types: continental crust and oceanic crust . These two types have different chemical compositions and physical properties and were formed by different geological processes. Planetary geologists divide crust into three categories based on how and when it formed. This

192-515: A rock sample is a random aggregate of minerals and/or mineraloids , and has no specific chemical composition. The vast majority of the rocks of the Earth's crust consist of quartz (crystalline SiO 2 ), feldspar, mica, chlorite , kaolin , calcite, epidote , olivine , augite , hornblende , magnetite , hematite , limonite and a few other minerals. Some minerals, like quartz , mica or feldspar are common, while others have been found in only

256-541: A composite made up of a thermoplastic matrix such as acrylonitrile butadiene styrene (ABS) in which calcium carbonate chalk, talc , glass fibers or carbon fibers have been added for strength, bulk, or electro-static dispersion. These additions may be referred to as reinforcing fibers, or dispersants, depending on their purpose. Thus, the matrix material surrounds and supports the reinforcement materials by maintaining their relative positions. The reinforcements impart their special mechanical and physical properties to enhance

320-1043: A few locations worldwide. The largest group of minerals by far is the silicates (most rocks are ≥95% silicates), which are composed largely of silicon and oxygen , with the addition of ions of aluminium, magnesium , iron, calcium and other metals. Ceramic solids are composed of inorganic compounds, usually oxides of chemical elements. They are chemically inert, and often are capable of withstanding chemical erosion that occurs in an acidic or caustic environment. Ceramics generally can withstand high temperatures ranging from 1,000 to 1,600 °C (1,830 to 2,910 °F). Exceptions include non-oxide inorganic materials, such as nitrides , borides and carbides . Traditional ceramic raw materials include clay minerals such as kaolinite , more recent materials include aluminium oxide ( alumina ). The modern ceramic materials, which are classified as advanced ceramics, include silicon carbide and tungsten carbide . Both are valued for their abrasion resistance, and hence find use in such applications as

384-459: A large scale, for example diamonds, where each diamond is a single crystal . Solid objects that are large enough to see and handle are rarely composed of a single crystal, but instead are made of a large number of single crystals, known as crystallites , whose size can vary from a few nanometers to several meters. Such materials are called polycrystalline . Almost all common metals, and many ceramics , are polycrystalline. In other materials, there

448-580: A material can absorb before mechanical failure, while fracture toughness (denoted K Ic ) describes the ability of a material with inherent microstructural flaws to resist fracture via crack growth and propagation. If a material has a large value of fracture toughness , the basic principles of fracture mechanics suggest that it will most likely undergo ductile fracture. Brittle fracture is very characteristic of most ceramic and glass-ceramic materials that typically exhibit low (and inconsistent) values of K Ic . For an example of applications of ceramics,

512-558: A material that indicates its ability to conduct heat . Solids also have a specific heat capacity , which is the capacity of a material to store energy in the form of heat (or thermal lattice vibrations). Electrical properties include both electrical resistivity and conductivity , dielectric strength , electromagnetic permeability , and permittivity . Electrical conductors such as metals and alloys are contrasted with electrical insulators such as glasses and ceramics. Semiconductors behave somewhere in between. Whereas conductivity in metals

576-440: A meltdown of the metallic parts. Work is also being done in developing ceramic parts for gas turbine engines . Turbine engines made with ceramics could operate more efficiently, giving aircraft greater range and payload for a set amount of fuel. Such engines are not in production, however, because the manufacturing of ceramic parts in the sufficient precision and durability is difficult and costly. Processing methods often result in

640-578: A metallic conductor, current is carried by the flow of electrons, but in semiconductors, current can be carried either by electrons or by the positively charged " holes " in the electronic band structure of the material. Common semiconductor materials include silicon, germanium and gallium arsenide . Many traditional solids exhibit different properties when they shrink to nanometer sizes. For example, nanoparticles of usually yellow gold and gray silicon are red in color; gold nanoparticles melt at much lower temperatures (~300 °C for 2.5 nm size) than

704-422: A non-crystalline intergranular phase. Glass-ceramics are used to make cookware (originally known by the brand name CorningWare ) and stovetops that have high resistance to thermal shock and extremely low permeability to liquids. The negative coefficient of thermal expansion of the crystalline ceramic phase can be balanced with the positive coefficient of the glassy phase. At a certain point (~70% crystalline)

SECTION 10

#1732776295271

768-529: A periodic lattice. Mathematically, the potential of the ion cores can be treated by various models, the simplest being the nearly free electron model . Minerals are naturally occurring solids formed through various geological processes under high pressures. To be classified as a true mineral, a substance must have a crystal structure with uniform physical properties throughout. Minerals range in composition from pure elements and simple salts to very complex silicates with thousands of known forms. In contrast,

832-423: A piezoelectric response several times larger than the traditional piezoelectric material quartz (crystalline SiO 2 ). The deformation (~0.1%) lends itself to useful technical applications such as high-voltage sources, loudspeakers, lasers, as well as chemical, biological, and acousto-optic sensors and/or transducers. Crust (geology)#Earth's crust In geology , the crust is the outermost solid shell of

896-499: A resin during processing, which is then shaped into a final form. Polymers that have been around, and that are in current widespread use, include carbon-based polyethylene , polypropylene , polyvinyl chloride , polystyrene , nylons, polyesters , acrylics , polyurethane , and polycarbonates , and silicon-based silicones . Plastics are generally classified as "commodity", "specialty" and "engineering" plastics. Composite materials contain two or more macroscopic phases, one of which

960-442: A significant portion of the fields of solid-state chemistry, physics, materials science and engineering. Metallic solids are held together by a high density of shared, delocalized electrons, known as " metallic bonding ". In a metal, atoms readily lose their outermost ("valence") electrons , forming positive ions . The free electrons are spread over the entire solid, which is held together firmly by electrostatic interactions between

1024-692: A way that the strain is directly proportional to the stress ( Hooke's law ). The coefficient of the proportion is called the modulus of elasticity or Young's modulus . This region of deformation is known as the linearly elastic region. Three models can describe how a solid responds to an applied stress: Many materials become weaker at high temperatures. Materials that retain their strength at high temperatures, called refractory materials , are useful for many purposes. For example, glass-ceramics have become extremely useful for countertop cooking, as they exhibit excellent mechanical properties and can sustain repeated and quick temperature changes up to 1000 °C. In

1088-471: A wide distribution of microscopic flaws that frequently play a detrimental role in the sintering process, resulting in the proliferation of cracks, and ultimate mechanical failure. Glass-ceramic materials share many properties with both non-crystalline glasses and crystalline ceramics . They are formed as a glass, and then partially crystallized by heat treatment, producing both amorphous and crystalline phases so that crystalline grains are embedded within

1152-414: A wide variety of polymers and plastics . Wood is a natural organic material consisting primarily of cellulose fibers embedded in a matrix of lignin . Regarding mechanical properties, the fibers are strong in tension, and the lignin matrix resists compression. Thus wood has been an important construction material since humans began building shelters and using boats. Wood to be used for construction work

1216-474: Is a natural organic material consisting primarily of cellulose fibers embedded in a matrix of organic lignin . In materials science, composites of more than one constituent material can be designed to have desired properties. The forces between the atoms in a solid can take a variety of forms. For example, a crystal of sodium chloride (common salt) is made up of ionic sodium and chlorine , which are held together by ionic bonds . In diamond or silicon,

1280-527: Is a planet's "original" crust. It forms from solidification of a magma ocean. Toward the end of planetary accretion , the terrestrial planets likely had surfaces that were magma oceans. As these cooled, they solidified into crust. This crust was likely destroyed by large impacts and re-formed many times as the Era of Heavy Bombardment drew to a close. The nature of primary crust is still debated: its chemical, mineralogic, and physical properties are unknown, as are

1344-686: Is also a fundamental feature of many biological materials and the manner by which the structures are assembled from the molecular level up. Thus, self-assembly is emerging as a new strategy in the chemical synthesis of high performance biomaterials. Physical properties of elements and compounds that provide conclusive evidence of chemical composition include odor, color, volume, density (mass per unit volume), melting point, boiling point, heat capacity, physical form and shape at room temperature (solid, liquid or gas; cubic, trigonal crystals, etc.), hardness, porosity, index of refraction and many others. This section discusses some physical properties of materials in

SECTION 20

#1732776295271

1408-469: Is caused by electrons, both electrons and holes contribute to current in semiconductors. Alternatively, ions support electric current in ionic conductors . Many materials also exhibit superconductivity at low temperatures; they include metallic elements such as tin and aluminium, various metallic alloys, some heavily doped semiconductors, and certain ceramics. The electrical resistivity of most electrical (metallic) conductors generally decreases gradually as

1472-416: Is commonly known as lumber or timber . In construction, wood is not only a structural material, but is also used to form the mould for concrete. Wood-based materials are also extensively used for packaging (e.g. cardboard) and paper, which are both created from the refined pulp. The chemical pulping processes use a combination of high temperature and alkaline (kraft) or acidic (sulfite) chemicals to break

1536-495: Is debated. The anorthosite highlands of the Moon are primary crust, formed as plagioclase crystallized out of the Moon's initial magma ocean and floated to the top; however, it is unlikely that Earth followed a similar pattern, as the Moon was a water-less system and Earth had water. The Martian meteorite ALH84001 might represent primary crust of Mars; however, again, this is debated. Like Earth, Venus lacks primary crust, as

1600-400: Is especially concerned with the synthesis of novel materials, as well as the science of identification and chemical composition . The atoms, molecules or ions that make up solids may be arranged in an orderly repeating pattern, or irregularly. Materials whose constituents are arranged in a regular pattern are known as crystals . In some cases, the regular ordering can continue unbroken over

1664-496: Is needed to create tertiary crust, and Earth is the only planet in the Solar System with plate tectonics. Earth's crust is a thin shell on the outside of Earth, accounting for less than 1% of Earth's volume. It is the top component of the lithosphere , a division of Earth's layers that includes the crust and the upper part of the mantle . The lithosphere is broken into tectonic plates that move, allowing heat to escape from

1728-411: Is no long-range order in the position of the atoms. These solids are known as amorphous solids ; examples include polystyrene and glass. Whether a solid is crystalline or amorphous depends on the material involved, and the conditions in which it was formed. Solids that are formed by slow cooling will tend to be crystalline, while solids that are frozen rapidly are more likely to be amorphous. Likewise,

1792-464: Is often ceramic. For example, a continuous matrix, and a dispersed phase of ceramic particles or fibers. Applications of composite materials range from structural elements such as steel-reinforced concrete, to the thermally insulative tiles that play a key and integral role in NASA's Space Shuttle thermal protection system , which is used to protect the surface of the shuttle from the heat of re-entry into

1856-409: Is the ability of crystals to generate a voltage in response to an applied mechanical stress. The piezoelectric effect is reversible in that piezoelectric crystals, when subjected to an externally applied voltage, can change shape by a small amount. Polymer materials like rubber, wool, hair, wood fiber, and silk often behave as electrets . For example, the polymer polyvinylidene fluoride (PVDF) exhibits

1920-400: Is the study of the behavior of solid matter under external actions such as external forces and temperature changes. A solid does not exhibit macroscopic flow, as fluids do. Any degree of departure from its original shape is called deformation . The proportion of deformation to original size is called strain. If the applied stress is sufficiently low, almost all solid materials behave in such

1984-483: Is used in capacitors. A capacitor is an electrical device that can store energy in the electric field between a pair of closely spaced conductors (called 'plates'). When voltage is applied to the capacitor, electric charges of equal magnitude, but opposite polarity, build up on each plate. Capacitors are used in electrical circuits as energy-storage devices, as well as in electronic filters to differentiate between high-frequency and low-frequency signals. Piezoelectricity

Solid state - Misplaced Pages Continue

2048-473: The adiabatic rise of mantle causes partial melting. Tertiary crust is more chemically-modified than either primary or secondary. It can form in several ways: The only known example of tertiary crust is the continental crust of the Earth. It is unknown whether other terrestrial planets can be said to have tertiary crust, though the evidence so far suggests that they do not. This is likely because plate tectonics

2112-513: The periodic table moving diagonally downward right from boron . They separate the electrical conductors (or metals, to the left) from the insulators (to the right). Devices made from semiconductor materials are the foundation of modern electronics, including radio, computers, telephones, etc. Semiconductor devices include the transistor , solar cells , diodes and integrated circuits . Solar photovoltaic panels are large semiconductor devices that directly convert light into electrical energy. In

2176-405: The Earth's atmosphere. One example is Reinforced Carbon-Carbon (RCC), the light gray material that withstands reentry temperatures up to 1,510 °C (2,750 °F) and protects the nose cap and leading edges of Space Shuttle's wings. RCC is a laminated composite material made from graphite rayon cloth and impregnated with a phenolic resin . After curing at high temperature in an autoclave,

2240-427: The aerospace industry, high performance materials used in the design of aircraft and/or spacecraft exteriors must have a high resistance to thermal shock. Thus, synthetic fibers spun out of organic polymers and polymer/ceramic/metal composite materials and fiber-reinforced polymers are now being designed with this purpose in mind. Because solids have thermal energy , their atoms vibrate about fixed mean positions within

2304-493: The atoms share electrons and form covalent bonds . In metals, electrons are shared in metallic bonding . Some solids, particularly most organic compounds, are held together with van der Waals forces resulting from the polarization of the electronic charge cloud on each molecule. The dissimilarities between the types of solid result from the differences between their bonding. Metals typically are strong, dense, and good conductors of both electricity and heat . The bulk of

2368-663: The chemical bonds of the lignin before burning it out. One important property of carbon in organic chemistry is that it can form certain compounds, the individual molecules of which are capable of attaching themselves to one another, thereby forming a chain or a network. The process is called polymerization and the chains or networks polymers, while the source compound is a monomer. Two main groups of polymers exist: those artificially manufactured are referred to as industrial polymers or synthetic polymers (plastics) and those naturally occurring as biopolymers. Monomers can have various chemical substituents, or functional groups, which can affect

2432-467: The chemical properties of organic compounds, such as solubility and chemical reactivity, as well as the physical properties, such as hardness, density, mechanical or tensile strength, abrasion resistance, heat resistance, transparency, color, etc.. In proteins, these differences give the polymer the ability to adopt a biologically active conformation in preference to others (see self-assembly ). People have been using natural organic polymers for centuries in

2496-423: The crust ranges between about 20 and 120 km. Crust on the far side of the Moon averages about 12 km thicker than that on the near side . Estimates of average thickness fall in the range from about 50 to 60 km. Most of this plagioclase-rich crust formed shortly after formation of the Moon, between about 4.5 and 4.3 billion years ago. Perhaps 10% or less of the crust consists of igneous rock added after

2560-411: The early 1980s, Toyota researched production of an adiabatic ceramic engine with an operating temperature of over 6,000 °F (3,320 °C). Ceramic engines do not require a cooling system and hence allow a major weight reduction and therefore greater fuel efficiency. In a conventional metallic engine, much of the energy released from the fuel must be dissipated as waste heat in order to prevent

2624-543: The elements in the periodic table , those to the left of a diagonal line drawn from boron to polonium , are metals. Mixtures of two or more elements in which the major component is a metal are known as alloys . People have been using metals for a variety of purposes since prehistoric times. The strength and reliability of metals has led to their widespread use in construction of buildings and other structures, as well as in most vehicles, many appliances and tools, pipes, road signs and railroad tracks. Iron and aluminium are

Solid state - Misplaced Pages Continue

2688-453: The entire planet has been repeatedly resurfaced and modified. Secondary crust is formed by partial melting of mostly silicate materials in the mantle, and so is usually basaltic in composition. This is the most common type of crust in the Solar System. Most of the surfaces of Mercury, Venus, Earth, and Mars comprise secondary crust, as do the lunar maria . On Earth secondary crust forms primarily at mid-ocean spreading centers , where

2752-578: The extreme hardness of zirconia is utilized in the manufacture of knife blades, as well as other industrial cutting tools. Ceramics such as alumina , boron carbide and silicon carbide have been used in bulletproof vests to repel large-caliber rifle fire. Silicon nitride parts are used in ceramic ball bearings, where their high hardness makes them wear resistant. In general, ceramics are also chemically resistant and can be used in wet environments where steel bearings would be susceptible to oxidation (or rust). As another example of ceramic applications, in

2816-433: The form of waxes and shellac , which is classified as a thermoplastic polymer. A plant polymer named cellulose provided the tensile strength for natural fibers and ropes, and by the early 19th century natural rubber was in widespread use. Polymers are the raw materials (the resins) used to make what are commonly called plastics. Plastics are the final product, created after one or more polymers or additives have been added to

2880-463: The formation of the initial plagioclase-rich material. The best-characterized and most voluminous of these later additions are the mare basalts formed between about 3.9 and 3.2 billion years ago. Minor volcanism continued after 3.2 billion years, perhaps as recently as 1 billion years ago. There is no evidence of plate tectonics . Study of the Moon has established that a crust can form on a rocky planetary body significantly smaller than Earth. Although

2944-535: The glass-ceramic has a net coefficient of thermal expansion close to zero. This type of glass-ceramic exhibits excellent mechanical properties and can sustain repeated and quick temperature changes up to 1000 °C. Glass ceramics may also occur naturally when lightning strikes the crystalline (e.g. quartz) grains found in most beach sand . In this case, the extreme and immediate heat of the lightning (~2500 °C) creates hollow, branching rootlike structures called fulgurite via fusion . Organic chemistry studies

3008-673: The gold slabs (1064 °C); and metallic nanowires are much stronger than the corresponding bulk metals. The high surface area of nanoparticles makes them extremely attractive for certain applications in the field of energy. For example, platinum metals may provide improvements as automotive fuel catalysts , as well as proton exchange membrane (PEM) fuel cells. Also, ceramic oxides (or cermets) of lanthanum , cerium , manganese and nickel are now being developed as solid oxide fuel cells (SOFC). Lithium, lithium-titanate and tantalum nanoparticles are being applied in lithium-ion batteries. Silicon nanoparticles have been shown to dramatically expand

3072-491: The igneous mechanisms that formed them. This is because it is difficult to study: none of Earth's primary crust has survived to today. Earth's high rates of erosion and crustal recycling from plate tectonics has destroyed all rocks older than about 4 billion years , including whatever primary crust Earth once had. However, geologists can glean information about primary crust by studying it on other terrestrial planets. Mercury's highlands might represent primary crust, though this

3136-556: The incoming light prior to capture. Here again, surface area of the nanoparticles (and thin films) plays a critical role in maximizing the amount of absorbed radiation. Many natural (or biological) materials are complex composites with remarkable mechanical properties. These complex structures, which have risen from hundreds of million years of evolution, are inspiring materials scientists in the design of novel materials. Their defining characteristics include structural hierarchy, multifunctionality and self-healing capability. Self-organization

3200-416: The interior of Earth into space. A theoretical protoplanet named " Theia " is thought to have collided with the forming Earth, and part of the material ejected into space by the collision accreted to form the Moon. As the Moon formed, the outer part of it is thought to have been molten, a " lunar magma ocean ". Plagioclase feldspar crystallized in large amounts from this magma ocean and floated toward

3264-448: The ions and the electron cloud. The large number of free electrons gives metals their high values of electrical and thermal conductivity. The free electrons also prevent transmission of visible light, making metals opaque, shiny and lustrous . More advanced models of metal properties consider the effect of the positive ions cores on the delocalised electrons. As most metals have crystalline structure, those ions are usually arranged into

SECTION 50

#1732776295271

3328-499: The laminate is pyrolized to convert the resin to carbon, impregnated with furfural alcohol in a vacuum chamber, and cured/pyrolized to convert the furfural alcohol to carbon. In order to provide oxidation resistance for reuse capability, the outer layers of the RCC are converted to silicon carbide. Domestic examples of composites can be seen in the "plastic" casings of television sets, cell-phones and so on. These plastic casings are usually

3392-418: The matrix properties. A synergism produces material properties unavailable from the individual constituent materials, while the wide variety of matrix and strengthening materials provides the designer with the choice of an optimum combination. Semiconductors are materials that have an electrical resistivity (and conductivity) between that of metallic conductors and non-metallic insulators. They can be found in

3456-409: The ordered (or disordered) lattice. The spectrum of lattice vibrations in a crystalline or glassy network provides the foundation for the kinetic theory of solids . This motion occurs at the atomic level, and thus cannot be observed or detected without highly specialized equipment, such as that used in spectroscopy . Thermal properties of solids include thermal conductivity , which is the property of

3520-499: The production of polycrystalline transparent ceramics such as transparent alumina and alumina compounds for such applications as high-power lasers. Advanced ceramics are also used in the medicine, electrical and electronics industries. Ceramic engineering is the science and technology of creating solid-state ceramic materials, parts and devices. This is done either by the action of heat, or, at lower temperatures, using precipitation reactions from chemical solutions. The term includes

3584-439: The purification of raw materials, the study and production of the chemical compounds concerned, their formation into components, and the study of their structure, composition and properties. Mechanically speaking, ceramic materials are brittle, hard, strong in compression and weak in shearing and tension. Brittle materials may exhibit significant tensile strength by supporting a static load. Toughness indicates how much energy

3648-527: The solid state. The mechanical properties of materials describe characteristics such as their strength and resistance to deformation. For example, steel beams are used in construction because of their high strength, meaning that they neither break nor bend significantly under the applied load. Mechanical properties include elasticity , plasticity , tensile strength , compressive strength , shear strength , fracture toughness , ductility (low in brittle materials) and indentation hardness . Solid mechanics

3712-447: The specific crystal structure adopted by a crystalline solid depends on the material involved and on how it was formed. While many common objects, such as an ice cube or a coin, are chemically identical throughout, many other common materials comprise a number of different substances packed together. For example, a typical rock is an aggregate of several different minerals and mineraloids , with no specific chemical composition. Wood

3776-479: The storage capacity of lithium-ion batteries during the expansion/contraction cycle. Silicon nanowires cycle without significant degradation and present the potential for use in batteries with greatly expanded storage times. Silicon nanoparticles are also being used in new forms of solar energy cells. Thin film deposition of silicon quantum dots on the polycrystalline silicon substrate of a photovoltaic (solar) cell increases voltage output as much as 60% by fluorescing

3840-442: The structure, properties, composition, reactions, and preparation by synthesis (or other means) of chemical compounds of carbon and hydrogen , which may contain any number of other elements such as nitrogen , oxygen and the halogens: fluorine , chlorine , bromine and iodine . Some organic compounds may also contain the elements phosphorus or sulfur . Examples of organic solids include wood, paraffin wax , naphthalene and

3904-444: The surface. The cumulate rocks form much of the crust. The upper part of the crust probably averages about 88% plagioclase (near the lower limit of 90% defined for anorthosite ): the lower part of the crust may contain a higher percentage of ferromagnesian minerals such as the pyroxenes and olivine , but even that lower part probably averages about 78% plagioclase. The underlying mantle is denser and olivine-rich. The thickness of

SECTION 60

#1732776295271

3968-508: The temperature is lowered, but remains finite. In a superconductor, however, the resistance drops abruptly to zero when the material is cooled below its critical temperature. An electric current flowing in a loop of superconducting wire can persist indefinitely with no power source. A dielectric , or electrical insulator, is a substance that is highly resistant to the flow of electric current. A dielectric, such as plastic, tends to concentrate an applied electric field within itself, which property

4032-794: The two most commonly used structural metals. They are also the most abundant metals in the Earth's crust . Iron is most commonly used in the form of an alloy, steel, which contains up to 2.1% carbon , making it much harder than pure iron. Because metals are good conductors of electricity, they are valuable in electrical appliances and for carrying an electric current over long distances with little energy loss or dissipation. Thus, electrical power grids rely on metal cables to distribute electricity. Home electrical systems, for example, are wired with copper for its good conducting properties and easy machinability. The high thermal conductivity of most metals also makes them useful for stovetop cooking utensils. The study of metallic elements and their alloys makes up

4096-464: The wear plates of crushing equipment in mining operations. Most ceramic materials, such as alumina and its compounds, are formed from fine powders, yielding a fine grained polycrystalline microstructure that is filled with light-scattering centers comparable to the wavelength of visible light . Thus, they are generally opaque materials, as opposed to transparent materials . Recent nanoscale (e.g. sol-gel ) technology has, however, made possible

#270729