Misplaced Pages

SecA

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The SecA protein is a cell membrane associated subunit of the bacterial Sec or Type II secretory pathway , a system which is responsible for the secretion of proteins through the cell membrane. Within this system the SecA ATPase forms a translocase complex with the SecYEG channel , thereby driving the movement of the protein substrate across the membrane.

#664335

117-485: SecA is a complex protein whose structure consists of six characterized domains that can explain SecA's capabilities to bind substrates and to move them. The following five domains seem to be present in all SecA proteins that have been structurally analyzed so far. This amino acid domain is subdivided into the two nucleotide binding folds 1 and 2 (NBF1 and NBF2) where ATP is bound and hydrolyzed. The chemical energy from

234-438: A protein ultimately encodes its uniquely folded three-dimensional (3D) conformation. The most important factor governing the folding of a protein into 3D structure is the distribution of polar and non-polar side chains. Folding is driven by the burial of hydrophobic side chains into the interior of the molecule so to avoid contact with the aqueous environment. Generally proteins have a core of hydrophobic residues surrounded by

351-433: A quaternary structure , which consists of several polypeptide chains that associate into an oligomeric molecule. Each polypeptide chain in such a protein is called a subunit. Hemoglobin, for example, consists of two α and two β subunits. Each of the four chains has an all-α globin fold with a heme pocket. Domain swapping is a mechanism for forming oligomeric assemblies. In domain swapping, a secondary or tertiary element of

468-472: A "sandwich" shape, the immunoglobulin fold , held together by a disulfide bond. Secreted antibodies can occur as a single Y-shaped unit, a monomer . However, some antibody classes also form dimers with two Ig units (as with IgA), tetramers with four Ig units (like teleost fish IgM), or pentamers with five Ig units (like shark IgW or mammalian IgM, which occasionally forms hexamers as well, with six units). IgG can also form hexamers, though no J chain

585-405: A 'split value' from the number of each type of contact when the protein is divided arbitrarily into two parts. This split value is large when the two parts of the structure are distinct. The method of Wodak and Janin was based on the calculated interface areas between two chain segments repeatedly cleaved at various residue positions. Interface areas were calculated by comparing surface areas of

702-523: A B cell changes during cell development and activation. Immature B cells, which have never been exposed to an antigen, express only the IgM isotype in a cell surface bound form. The B lymphocyte, in this ready-to-respond form, is known as a " naive B lymphocyte ." The naive B lymphocyte expresses both surface IgM and IgD. The co-expression of both of these immunoglobulin isotypes renders the B cell ready to respond to antigen. B cell activation follows engagement of

819-600: A Y shape. In humans and most other mammals , an antibody unit consists of four polypeptide chains ; two identical heavy chains and two identical light chains connected by disulfide bonds . Each chain is a series of domains : somewhat similar sequences of about 110 amino acids each. These domains are usually represented in simplified schematics as rectangles. Light chains consist of one variable domain V L and one constant domain C L , while heavy chains contain one variable domain V H and three to four constant domains C H 1, C H 2, ... Structurally an antibody

936-742: A concerted manner with its neighbours. Domains can either serve as modules for building up large assemblies such as virus particles or muscle fibres, or can provide specific catalytic or binding sites as found in enzymes or regulatory proteins. An appropriate example is pyruvate kinase (see first figure), a glycolytic enzyme that plays an important role in regulating the flux from fructose-1,6-biphosphate to pyruvate. It contains an all-β nucleotide-binding domain (in blue), an α/β-substrate binding domain (in grey) and an α/β-regulatory domain (in olive green), connected by several polypeptide linkers. Each domain in this protein occurs in diverse sets of protein families . The central α/β-barrel substrate binding domain

1053-441: A distinct epitope of an antigen. Although a huge repertoire of different antibodies is generated in a single individual, the number of genes available to make these proteins is limited by the size of the human genome. Several complex genetic mechanisms have evolved that allow vertebrate B cells to generate a diverse pool of antibodies from a relatively small number of antibody genes. The chromosomal region that encodes an antibody

1170-472: A domain having been inserted into another. Sequence or structural similarities to other domains demonstrate that homologues of inserted and parent domains can exist independently. An example is that of the 'fingers' inserted into the 'palm' domain within the polymerases of the Pol I family. Since a domain can be inserted into another, there should always be at least one continuous domain in a multidomain protein. This

1287-452: A domain really is has meant that domain assignments have varied enormously, with each researcher using a unique set of criteria. A structural domain is a compact, globular sub-structure with more interactions within it than with the rest of the protein. Therefore, a structural domain can be determined by two visual characteristics: its compactness and its extent of isolation. Measures of local compactness in proteins have been used in many of

SECTION 10

#1732790091665

1404-565: A fixed stoichiometric ratio of the enzymatic activity necessary for a sequential set of reactions. Structural alignment is an important tool for determining domains. Several motifs pack together to form compact, local, semi-independent units called domains. The overall 3D structure of the polypeptide chain is referred to as the protein's tertiary structure . Domains are the fundamental units of tertiary structure, each domain containing an individual hydrophobic core built from secondary structural units connected by loop regions. The packing of

1521-542: A given microbe – that is, the ability of the microbe to enter the body and begin to replicate (not necessarily to cause disease) – depends on sustained production of large quantities of antibodies, meaning that effective vaccines ideally elicit persistent high levels of antibody, which relies on long-lived plasma cells. At the same time, many microbes of medical importance have the ability to mutate to escape antibodies elicited by prior infections, and long-lived plasma cells cannot undergo affinity maturation or class switching. This

1638-408: A huge number of antibodies, each with different paratopes , and thus different antigen specificities. The rearrangement of several subgenes (i.e. V2 family) for lambda light chain immunoglobulin is coupled with the activation of microRNA miR-650, which further influences biology of B-cells. RAG proteins play an important role with V(D)J recombination in cutting DNA at a particular region. Without

1755-440: A manifestation of immunological memory. In the course of an immune response, B cells can progressively differentiate into antibody-secreting cells or into memory B cells. Antibody-secreting cells comprise plasmablasts and plasma cells , which differ mainly in the degree to which they secrete antibody, their lifespan, metabolic adaptations, and surface markers. Plasmablasts are rapidly proliferating, short-lived cells produced in

1872-400: A mast cell, triggering its degranulation : the release of molecules stored in its granules. Binds to allergens and triggers histamine release from mast cells and basophils , and is involved in allergy . Humans and other animals evolved IgE to protect against parasitic worms , though in the present, IgE is primarily related to allergies and asthma. Although The antibody isotype of

1989-457: A monomeric protein is replaced by the same element of another protein. Domain swapping can range from secondary structure elements to whole structural domains. It also represents a model of evolution for functional adaptation by oligomerisation, e.g. oligomeric enzymes that have their active site at subunit interfaces. Nature is a tinkerer and not an inventor , new sequences are adapted from pre-existing sequences rather than invented. Domains are

2106-839: A multi-enzyme polypeptide containing the GAR synthetase , AIR synthetase and GAR transformylase domains (GARs-AIRs-GARt; GAR: glycinamide ribonucleotide synthetase/transferase; AIR: aminoimidazole ribonucleotide synthetase). In insects, the polypeptide appears as GARs-(AIRs)2-GARt, in yeast GARs-AIRs is encoded separately from GARt, and in bacteria each domain is encoded separately. Multidomain proteins are likely to have emerged from selective pressure during evolution to create new functions. Various proteins have diverged from common ancestors by different combinations and associations of domains. Modular units frequently move about, within and between biological systems through mechanisms of genetic shuffling: The simplest multidomain organization seen in proteins

2223-444: A part of a virus that is essential for its invasion). More narrowly, an antibody ( Ab ) can refer to the free (secreted) form of these proteins, as opposed to the membrane-bound form found in a B cell receptor. The term immunoglobulin can then refer to both forms. Since they are, broadly speaking, the same protein, the terms are often treated as synonymous. To allow the immune system to recognize millions of different antigens,

2340-462: A secondary immune response, undergoing class switching, affinity maturation, and differentiating into antibody-secreting cells. Antibodies are central to the immune protection elicited by most vaccines and infections (although other components of the immune system certainly participate and for some diseases are considerably more important than antibodies in generating an immune response, e.g. herpes zoster ). Durable protection from infections caused by

2457-560: A shell of hydrophilic residues. Since the peptide bonds themselves are polar they are neutralised by hydrogen bonding with each other when in the hydrophobic environment. This gives rise to regions of the polypeptide that form regular 3D structural patterns called secondary structure . There are two main types of secondary structure: α-helices and β-sheets . Some simple combinations of secondary structure elements have been found to frequently occur in protein structure and are referred to as supersecondary structure or motifs . For example,

SECTION 20

#1732790091665

2574-588: A single structural/functional unit. This combined superdomain can occur in diverse proteins that are not related by gene duplication alone. An example of a superdomain is the protein tyrosine phosphatase – C2 domain pair in PTEN , tensin , auxilin and the membrane protein TPTE2. This superdomain is found in proteins in animals, plants and fungi. A key feature of the PTP-C2 superdomain is amino acid residue conservation in

2691-432: A specific antigen is present in the body and triggers B cell activation. The BCR is composed of surface-bound IgD or IgM antibodies and associated Ig-α and Ig-β heterodimers , which are capable of signal transduction . A typical human B cell will have 50,000 to 100,000 antibodies bound to its surface. Upon antigen binding, they cluster in large patches, which can exceed 1 micrometer in diameter, on lipid rafts that isolate

2808-429: A strong survival signal during interactions with other cells, whereas those with low affinity antibodies will not, and will die by apoptosis . Thus, B cells expressing antibodies with a higher affinity for the antigen will outcompete those with weaker affinities for function and survival allowing the average affinity of antibodies to increase over time. The process of generating antibodies with increased binding affinities

2925-437: A subset of protein domains which are found across a range of different proteins with a particularly versatile structure. Examples can be found among extracellular proteins associated with clotting, fibrinolysis, complement, the extracellular matrix, cell surface adhesion molecules and cytokine receptors. Four concrete examples of widespread protein modules are the following domains: SH2 , immunoglobulin , fibronectin type 3 and

3042-577: Is a decrease in energy and loss of entropy with increasing tertiary structure formation. The local roughness of the funnel reflects kinetic traps, corresponding to the accumulation of misfolded intermediates. A folding chain progresses toward lower intra-chain free-energies by increasing its compactness. The chain's conformational options become increasingly narrowed ultimately toward one native structure. The organisation of large proteins by structural domains represents an advantage for protein folding, with each domain being able to individually fold, accelerating

3159-437: Is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as bacteria and viruses , including those that cause disease. Antibodies can recognize virtually any size antigen with diverse chemical compositions from molecules. Each antibody recognizes one or more specific antigens . Antigen literally means "antibody generator", as it

3276-522: Is also partitioned into two antigen-binding fragments (Fab), containing one V L , V H , C L , and C H 1 domain each, as well as the crystallisable fragment (Fc), forming the trunk of the Y shape. In between them is a hinge region of the heavy chains, whose flexibility allows antibodies to bind to pairs of epitopes at various distances, to form complexes ( dimers , trimers, etc.), and to bind effector molecules more easily. In an electrophoresis test of blood proteins , antibodies mostly migrate to

3393-825: Is bound to SecYEG. Protein domain In molecular biology , a protein domain is a region of a protein 's polypeptide chain that is self-stabilizing and that folds independently from the rest. Each domain forms a compact folded three-dimensional structure . Many proteins consist of several domains, and a domain may appear in a variety of different proteins. Molecular evolution uses domains as building blocks and these may be recombined in different arrangements to create proteins with different functions. In general, domains vary in length from between about 50 amino acids up to 250 amino acids in length. The shortest domains, such as zinc fingers , are stabilized by metal ions or disulfide bridges . Domains often form functional units, such as

3510-415: Is called affinity maturation . Affinity maturation occurs in mature B cells after V(D)J recombination, and is dependent on help from helper T cells . Isotype or class switching is a biological process occurring after activation of the B cell, which allows the cell to produce different classes of antibody (IgA, IgE, or IgG). The different classes of antibody, and thus effector functions, are defined by

3627-448: Is closer to human IgG2 than human IgG1 in terms of its function. The term humoral immunity is often treated as synonymous with the antibody response, describing the function of the immune system that exists in the body's humors (fluids) in the form of soluble proteins, as distinct from cell-mediated immunity , which generally describes the responses of T cells (especially cytotoxic T cells). In general, antibodies are considered part of

SecA - Misplaced Pages Continue

3744-544: Is compensated for through memory B cells: novel variants of a microbe that still retain structural features of previously encountered antigens can elicit memory B cell responses that adapt to those changes. It has been suggested that long-lived plasma cells secrete B cell receptors with higher affinity than those on the surfaces of memory B cells, but findings are not entirely consistent on this point. Antibodies are heavy (~150 k Da ) proteins of about 10 nm in size, arranged in three globular regions that roughly form

3861-403: Is considered as a progressive organisation of an ensemble of partially folded structures through which a protein passes on its way to the folded structure. This has been described in terms of a folding funnel , in which an unfolded protein has a large number of conformational states available and there are fewer states available to the folded protein. A funnel implies that for protein folding there

3978-399: Is essential for the generation of the domain databases, especially as the number of known protein structures is increasing. Although the boundaries of a domain can be determined by visual inspection, construction of an automated method is not straightforward. Problems occur when faced with domains that are discontinuous or highly associated. The fact that there is no standard definition of what

4095-507: Is large and contains several distinct gene loci for each domain of the antibody—the chromosome region containing heavy chain genes ( IGH@ ) is found on chromosome 14 , and the loci containing lambda and kappa light chain genes ( IGL@ and IGK@ ) are found on chromosomes 22 and 2 in humans. One of these domains is called the variable domain, which is present in each heavy and light chain of every antibody, but can differ in different antibodies generated from distinct B cells. Differences between

4212-405: Is no obvious sequence similarity between them. The active site is located at a cleft between the two β-barrel domains, in which functionally important residues are contributed from each domain. Genetically engineered mutants of the chymotrypsin serine protease were shown to have some proteinase activity even though their active site residues were abolished and it has therefore been postulated that

4329-519: Is not bound to SecYEG. Together with IRA1, a conserved salt bridge called Gate 1 might function to prevent unnecessary conformational change. Gate 1 seems to functionally connect the nucleotide ( ATP ) binding site of the DEAD motor domain with the PPXD domain which results in regulation of ATP hydrolysis only upon preprotein binding. However, this coordinative behaviour has only been shown to occur when SecA

4446-522: Is one of the most common enzyme folds. It is seen in many different enzyme families catalysing completely unrelated reactions. The α/β-barrel is commonly called the TIM barrel named after triose phosphate isomerase, which was the first such structure to be solved. It is currently classified into 26 homologous families in the CATH domain database. The TIM barrel is formed from a sequence of β-α-β motifs closed by

4563-458: Is present, ensuring that antibody levels to the antigen in question do not fall to 0, provided the plasma cell stays alive. The rate of antibody secretion, however, can be regulated, for example, by the presence of adjuvant molecules that stimulate the immune response such as TLR ligands. Long-lived plasma cells can live for potentially the entire lifetime of the organism. Classically, the survival niches that house long-lived plasma cells reside in

4680-489: Is protein regions that behave approximately as rigid units in the course of structural fluctuations, has been introduced by Potestio et al. and, among other applications was also used to compare the consistency of the dynamics-based domain subdivisions with standard structure-based ones. The method, termed PiSQRD , is publicly available in the form of a webserver. The latter allows users to optimally subdivide single-chain or multimeric proteins into quasi-rigid domains based on

4797-430: Is required. IgA tetramers and pentamers have also been reported. Antibodies also form complexes by binding to antigen: this is called an antigen-antibody complex or immune complex . Small antigens can cross-link two antibodies, also leading to the formation of antibody dimers, trimers, tetramers, etc. Multivalent antigens (e.g., cells with multiple epitopes) can form larger complexes with antibodies. An extreme example

SecA - Misplaced Pages Continue

4914-625: Is reversible, and the antibody's affinity towards an antigen is relative rather than absolute. Relatively weak binding also means it is possible for an antibody to cross-react with different antigens of different relative affinities. The main categories of antibody action include the following: More indirectly, an antibody can signal immune cells to present antibody fragments to T cells , or downregulate other immune cells to avoid autoimmunity . Activated B cells differentiate into either antibody-producing cells called plasma cells that secrete soluble antibody or memory cells that survive in

5031-427: Is that of a single domain repeated in tandem. The domains may interact with each other ( domain-domain interaction ) or remain isolated, like beads on string. The giant 30,000 residue muscle protein titin comprises about 120 fibronectin-III-type and Ig-type domains. In the serine proteases, a gene duplication event has led to the formation of a two β-barrel domain enzyme. The repeats have diverged so widely that there

5148-410: Is the clumping, or agglutination , of red blood cells with antibodies in blood typing to determine blood groups : the large clumps become insoluble, leading to visually apparent precipitation . The membrane-bound form of an antibody may be called a surface immunoglobulin (sIg) or a membrane immunoglobulin (mIg). It is part of the B cell receptor (BCR), which allows a B cell to detect when

5265-496: Is the main difference between definitions of structural domains and evolutionary/functional domains. An evolutionary domain will be limited to one or two connections between domains, whereas structural domains can have unlimited connections, within a given criterion of the existence of a common core. Several structural domains could be assigned to an evolutionary domain. A superdomain consists of two or more conserved domains of nominally independent origin, but subsequently inherited as

5382-463: Is the presence of an antigen that drives the formation of an antigen-specific antibody. Each tip of the "Y" of an antibody contains a paratope that specifically binds to one particular epitope on an antigen, allowing the two molecules to bind together with precision. Using this mechanism, antibodies can effectively "tag" a microbe or an infected cell for attack by other parts of the immune system, or can neutralize it directly (for example, by blocking

5499-558: Is the α/β-barrel super-fold, as described previously. The majority of proteins, two-thirds in unicellular organisms and more than 80% in metazoa, are multidomain proteins. However, other studies concluded that 40% of prokaryotic proteins consist of multiple domains while eukaryotes have approximately 65% multi-domain proteins. Many domains in eukaryotic multidomain proteins can be found as independent proteins in prokaryotes, suggesting that domains in multidomain proteins have once existed as independent proteins. For example, vertebrates have

5616-529: Is thought to be, in part, the result of natural antibodies circulating in the serum of the recipient binding to α-Gal antigens expressed on the donor tissue. Virtually all microbes can trigger an antibody response. Successful recognition and eradication of many different types of microbes requires diversity among antibodies; their amino acid composition varies allowing them to interact with many different antigens. It has been estimated that humans generate about 10 billion different antibodies, each capable of binding

5733-454: Is triggered by cytokines; the isotype generated depends on which cytokines are present in the B cell environment. Class switching occurs in the heavy chain gene locus by a mechanism called class switch recombination (CSR). This mechanism relies on conserved nucleotide motifs, called switch (S) regions , found in DNA upstream of each constant region gene (except in the δ-chain). The DNA strand

5850-987: Is used to define domains in the FSSP domain database. Swindells (1995) developed a method, DETECTIVE, for identification of domains in protein structures based on the idea that domains have a hydrophobic interior. Deficiencies were found to occur when hydrophobic cores from different domains continue through the interface region. RigidFinder is a novel method for identification of protein rigid blocks (domains and loops) from two different conformations. Rigid blocks are defined as blocks where all inter residue distances are conserved across conformations. The method RIBFIND developed by Pandurangan and Topf identifies rigid bodies in protein structures by performing spacial clustering of secondary structural elements in proteins. The RIBFIND rigid bodies have been used to flexibly fit protein structures into cryo electron microscopy density maps. A general method to identify dynamical domains , that

5967-519: The DEAD motor domain , to the PPXD domain. Since SecA's essential function is the transport of preprotein across the membrane the ability to actually bind preprotein must be given. The PPXD domain fulfils this function upon substrate binding. This domain lies in the center of the SecA protomer and contacts via α-helical interactions all other subdomains. In addition it contains the intramolecular regulator of ATP hydrolysis 1 (IRA1) subdomain which seems to prevent unwanted ATP hydrolysis when SecA

SECTION 50

#1732790091665

6084-416: The adaptive immune system , though this classification can become complicated. For example, natural IgM, which are made by B-1 lineage cells that have properties more similar to innate immune cells than adaptive, refers to IgM antibodies made independently of an immune response that demonstrate polyreactivity- they recognize multiple distinct (unrelated) antigens. These can work with the complement system in

6201-736: The iota (ι) chain, are found in other vertebrates like sharks ( Chondrichthyes ) and bony fishes ( Teleostei ). In most placental mammals , the structure of antibodies is generally the same. Jawed fish appear to be the most primitive animals that are able to make antibodies similar to those of mammals, although many features of their adaptive immunity appeared somewhat earlier. Cartilaginous fish (such as sharks) produce heavy-chain-only antibodies (i.e., lacking light chains) which moreover feature longer chain pentamers (with five constant units per molecule). Camelids (such as camels, llamas, alpacas) are also notable for producing heavy-chain-only antibodies. The antibody's paratope interacts with

6318-484: The kringle . Molecular evolution gives rise to families of related proteins with similar sequence and structure. However, sequence similarities can be extremely low between proteins that share the same structure. Protein structures may be similar because proteins have diverged from a common ancestor. Alternatively, some folds may be more favored than others as they represent stable arrangements of secondary structures and some proteins may converge towards these folds over

6435-524: The β-hairpin motif consists of two adjacent antiparallel β-strands joined by a small loop. It is present in most antiparallel β structures both as an isolated ribbon and as part of more complex β-sheets. Another common super-secondary structure is the β-α-β motif, which is frequently used to connect two parallel β-strands. The central α-helix connects the C-termini of the first strand to the N-termini of

6552-437: The "classical" complement system. This results in the killing of bacteria in two ways. First, the binding of the antibody and complement molecules marks the microbe for ingestion by phagocytes in a process called opsonization ; these phagocytes are attracted by certain complement molecules generated in the complement cascade. Second, some complement system components form a membrane attack complex to assist antibodies to kill

6669-614: The BCRs from most other cell signaling receptors. These patches may improve the efficiency of the cellular immune response . In humans, the cell surface is bare around the B cell receptors for several hundred nanometers, which further isolates the BCRs from competing influences. Antibodies can come in different varieties known as isotypes or classes . In humans there are five antibody classes known as IgA, IgD, IgE, IgG, and IgM, which are further subdivided into subclasses such as IgA1, IgA2. The prefix "Ig" stands for immunoglobulin , while

6786-513: The F V region. It is the subregion of Fab that binds to an antigen. More specifically, each variable domain contains three hypervariable regions – the amino acids seen there vary the most from antibody to antibody. When the protein folds, these regions give rise to three loops of β-strands , localized near one another on the surface of the antibody. These loops are referred to as the complementarity-determining regions (CDRs), since their shape complements that of an antigen. Three CDRs from each of

6903-458: The Fc region and influence interactions with effector molecules. The N-terminus of each chain is situated at the tip. Each immunoglobulin domain has a similar structure, characteristic of all the members of the immunoglobulin superfamily : it is composed of between 7 (for constant domains) and 9 (for variable domains) β-strands , forming two beta sheets in a Greek key motif . The sheets create

7020-489: The Fc region of an antibody, while the complement system is activated by binding the C1q protein complex. IgG or IgM can bind to C1q, but IgA cannot, therefore IgA does not activate the classical complement pathway . Another role of the Fc region is to selectively distribute different antibody classes across the body. In particular, the neonatal Fc receptor (FcRn) binds to the Fc region of IgG antibodies to transport it across

7137-491: The V, D and J gene segments exist, and are tandemly arranged in the genomes of mammals . In the bone marrow, each developing B cell will assemble an immunoglobulin variable region by randomly selecting and combining one V, one D and one J gene segment (or one V and one J segment in the light chain). As there are multiple copies of each type of gene segment, and different combinations of gene segments can be used to generate each immunoglobulin variable region, this process generates

SECTION 60

#1732790091665

7254-450: The adaptive immune system is regulated by interactions between idiotypes. The Fc region (the trunk of the Y shape) is composed of constant domains from the heavy chains. Its role is in modulating immune cell activity: it is where effector molecules bind to, triggering various effects after the antibody Fab region binds to an antigen. Effector cells (such as macrophages or natural killer cells ) bind via their Fc receptors (FcR) to

7371-410: The antibody (also known as effector functions), in addition to some other structural features. Antibodies from different classes also differ in where they are released in the body and at what stage of an immune response. Between species, while classes and subclasses of antibodies may be shared (at least in name), their functions and distribution throughout the body may be different. For example, mouse IgG1

7488-686: The antibody generates a large cavalry of antibodies with a high degree of variability. This combination is called V(D)J recombination discussed below. Somatic recombination of immunoglobulins, also known as V(D)J recombination , involves the generation of a unique immunoglobulin variable region. The variable region of each immunoglobulin heavy or light chain is encoded in several pieces—known as gene segments (subgenes). These segments are called variable (V), diversity (D) and joining (J) segments. V, D and J segments are found in Ig heavy chains , but only V and J segments are found in Ig light chains . Multiple copies of

7605-562: The antigen's epitope. An antigen usually contains different epitopes along its surface arranged discontinuously, and dominant epitopes on a given antigen are called determinants. Antibody and antigen interact by spatial complementarity (lock and key). The molecular forces involved in the Fab-epitope interaction are weak and non-specific – for example electrostatic forces , hydrogen bonds , hydrophobic interactions , and van der Waals forces . This means binding between antibody and antigen

7722-421: The antigen-binding sites at both tips of the antibody come in an equally wide variety. The rest of the antibody structure is much less variable; in humans, antibodies occur in five classes , sometimes called isotypes : IgA , IgD , IgE , IgG , and IgM . Human IgG and IgA antibodies are also divided into discrete subclasses (IgG1, IgG2, IgG3, IgG4; IgA1 and IgA2). The class refers to the functions triggered by

7839-401: The bacterium directly (bacteriolysis). To combat pathogens that replicate outside cells, antibodies bind to pathogens to link them together, causing them to agglutinate . Since an antibody has at least two paratopes, it can bind more than one antigen by binding identical epitopes carried on the surfaces of these antigens. By coating the pathogen, antibodies stimulate effector functions against

7956-434: The bloodstream, they are said to be part of the humoral immune system . Circulating antibodies are produced by clonal B cells that specifically respond to only one antigen (an example is a virus capsid protein fragment). Antibodies contribute to immunity in three ways: They prevent pathogens from entering or damaging cells by binding to them; they stimulate removal of pathogens by macrophages and other cells by coating

8073-424: The body for years afterward in order to allow the immune system to remember an antigen and respond faster upon future exposures. At the prenatal and neonatal stages of life, the presence of antibodies is provided by passive immunization from the mother. Early endogenous antibody production varies for different kinds of antibodies, and usually appear within the first years of life. Since antibodies exist freely in

8190-477: The bone marrow, though it cannot be assumed that any given plasma cell in the bone marrow will be long-lived. However, other work indicates that survival niches can readily be established within the mucosal tissues- though the classes of antibodies involved show a different hierarchy from those in the bone marrow. B cells can also differentiate into memory B cells which can persist for decades similarly to long-lived plasma cells. These cells can be rapidly recalled in

8307-500: The calcium-binding EF hand domain of calmodulin . Because they are independently stable, domains can be "swapped" by genetic engineering between one protein and another to make chimeric proteins . The concept of the domain was first proposed in 1973 by Wetlaufer after X-ray crystallographic studies of hen lysozyme and papain and by limited proteolysis studies of immunoglobulins . Wetlaufer defined domains as stable units of protein structure that could fold autonomously. In

8424-430: The cell-bound antibody molecule with an antigen, causing the cell to divide and differentiate into an antibody-producing cell called a plasma cell . In this activated form, the B cell starts to produce antibody in a secreted form rather than a membrane -bound form. Some daughter cells of the activated B cells undergo isotype switching , a mechanism that causes the production of antibodies to change from IgM or IgD to

8541-423: The classical complement pathway leading to lysis of enveloped virus particles long before the adaptive immune response is activated. Antibodies are produced exclusively by B cells in response to antigens where initially, antibodies are formed as membrane-bound receptors, but upon activation by antigens and helper T cells, B cells differentiate to produce soluble antibodies. Many natural antibodies are directed against

8658-495: The cleaved segments with that of the native structure. Potential domain boundaries can be identified at a site where the interface area was at a minimum. Other methods have used measures of solvent accessibility to calculate compactness. The PUU algorithm incorporates a harmonic model used to approximate inter-domain dynamics. The underlying physical concept is that many rigid interactions will occur within each domain and loose interactions will occur between domains. This algorithm

8775-458: The collective modes of fluctuation of the system. By default the latter are calculated through an elastic network model; alternatively pre-calculated essential dynamical spaces can be uploaded by the user. A large fraction of domains are of unknown function. A  domain of unknown function  (DUF) is a protein domain that has no characterized function. These families have been collected together in the  Pfam database using

8892-416: The common material used by nature to generate new sequences; they can be thought of as genetically mobile units, referred to as 'modules'. Often, the C and N termini of domains are close together in space, allowing them to easily be "slotted into" parent structures during the process of evolution. Many domain families are found in all three forms of life, Archaea , Bacteria and Eukarya . Protein modules are

9009-403: The constant (C) regions of the immunoglobulin heavy chain. Initially, naive B cells express only cell-surface IgM and IgD with identical antigen binding regions. Each isotype is adapted for a distinct function; therefore, after activation, an antibody with an IgG, IgA, or IgE effector function might be required to effectively eliminate an antigen. Class switching allows different daughter cells from

9126-945: The course of evolution. There are currently about 110,000 experimentally determined protein 3D structures deposited within the Protein Data Bank (PDB). However, this set contains many identical or very similar structures. All proteins should be classified to structural families to understand their evolutionary relationships. Structural comparisons are best achieved at the domain level. For this reason many algorithms have been developed to automatically assign domains in proteins with known 3D structure (see § Domain definition from structural co-ordinates ). The CATH domain database classifies domains into approximately 800 fold families; ten of these folds are highly populated and are referred to as 'super-folds'. Super-folds are defined as folds for which there are at least three structures without significant sequence similarity. The most populated

9243-410: The disaccharide galactose α(1,3)-galactose (α-Gal), which is found as a terminal sugar on glycosylated cell surface proteins, and generated in response to production of this sugar by bacteria contained in the human gut. These antibodies undergo quality checks in the endoplasmic reticulum (ER), which contains proteins that assist in proper folding and assembly. Rejection of xenotransplantated organs

9360-414: The diversity of the antibody pool and impacts the antibody's antigen-binding affinity . Some point mutations will result in the production of antibodies that have a weaker interaction (low affinity) with their antigen than the original antibody, and some mutations will generate antibodies with a stronger interaction (high affinity). B cells that express high affinity antibodies on their surface will receive

9477-431: The domain interface. Protein folding - the unsolved problem  : Since the seminal work of Anfinsen in the early 1960s, the goal to completely understand the mechanism by which a polypeptide rapidly folds into its stable native conformation remains elusive. Many experimental folding studies have contributed much to our understanding, but the principles that govern protein folding are still based on those discovered in

9594-536: The domain. Domains have limits on size. The size of individual structural domains varies from 36 residues in E-selectin to 692 residues in lipoxygenase-1, but the majority, 90%, have fewer than 200 residues with an average of approximately 100 residues. Very short domains, less than 40 residues, are often stabilised by metal ions or disulfide bonds. Larger domains, greater than 300 residues, are likely to consist of multiple hydrophobic cores. Many proteins have

9711-543: The duplication event enhanced the enzyme's activity. Modules frequently display different connectivity relationships, as illustrated by the kinesins and ABC transporters . The kinesin motor domain can be at either end of a polypeptide chain that includes a coiled-coil region and a cargo domain. ABC transporters are built with up to four domains consisting of two unrelated modules, ATP-binding cassette and an integral membrane module, arranged in various combinations. Not only do domains recombine, but there are many examples of

9828-583: The earliest phases of an immune response to help facilitate clearance of the offending antigen and delivery of the resulting immune complexes to the lymph nodes or spleen for initiation of an immune response. Hence in this capacity, the function of antibodies is more akin to that of innate immunity than adaptive. Nonetheless, in general antibodies are regarded as part of the adaptive immune system because they demonstrate exceptional specificity (with some exception), are produced through genetic rearrangements (rather than being encoded directly in germline ), and are

9945-501: The early methods of domain assignment and in several of the more recent methods. One of the first algorithms used a Cα-Cα distance map together with a hierarchical clustering routine that considered proteins as several small segments, 10 residues in length. The initial segments were clustered one after another based on inter-segment distances; segments with the shortest distances were clustered and considered as single segments thereafter. The stepwise clustering finally included

10062-602: The early phases of the immune response (classically described as arising extrafollicularly rather than from the germinal center ) which have the potential to differentiate further into plasma cells. The literature is sloppy at times and often describes plasmablasts as just short-lived plasma cells- formally this is incorrect. Plasma cells, in contrast, do not divide (they are terminally differentiated ), and rely on survival niches comprising specific cell types and cytokines to persist. Plasma cells will secrete huge quantities of antibody regardless of whether or not their cognate antigen

10179-682: The entire protein or individual domains. They can however be inferred by comparing different structures of a protein (as in Database of Molecular Motions ). They can also be suggested by sampling in extensive molecular dynamics trajectories and principal component analysis, or they can be directly observed using spectra measured by neutron spin echo spectroscopy. The importance of domains as structural building blocks and elements of evolution has brought about many automated methods for their identification and classification in proteins of known structure. Automatic procedures for reliable domain assignment

10296-442: The first and last strand hydrogen bonding together, forming an eight stranded barrel. There is debate about the evolutionary origin of this domain. One study has suggested that a single ancestral enzyme could have diverged into several families, while another suggests that a stable TIM-barrel structure has evolved through convergent evolution. The TIM-barrel in pyruvate kinase is 'discontinuous', meaning that more than one segment of

10413-419: The folding of an isolated domain can take place at the same rate or sometimes faster than that of the integrated domain, suggesting that unfavourable interactions with the rest of the protein can occur during folding. Several arguments suggest that the slowest step in the folding of large proteins is the pairing of the folded domains. This is either because the domains are not folded entirely correctly or because

10530-447: The folding process and reducing a potentially large combination of residue interactions. Furthermore, given the observed random distribution of hydrophobic residues in proteins, domain formation appears to be the optimal solution for a large protein to bury its hydrophobic residues while keeping the hydrophilic residues at the surface. However, the role of inter-domain interactions in protein folding and in energetics of stabilisation of

10647-441: The full protein. Go also exploited the fact that inter-domain distances are normally larger than intra-domain distances; all possible Cα-Cα distances were represented as diagonal plots in which there were distinct patterns for helices, extended strands and combinations of secondary structures. The method by Sowdhamini and Blundell clusters secondary structures in a protein based on their Cα-Cα distances and identifies domains from

10764-414: The genes encoding the variable domains of the heavy and light chains undergo a high rate of point mutation , by a process called somatic hypermutation (SHM). SHM results in approximately one nucleotide change per variable gene, per cell division. As a consequence, any daughter B cells will acquire slight amino acid differences in the variable domains of their antibody chains. This serves to increase

10881-846: The heavy and light chains together form an antibody-binding site whose shape can be anything from a pocket to which a smaller antigen binds, to a larger surface, to a protrusion that sticks out into a groove in an antigen. Typically though, only a few residues contribute to most of the binding energy. The existence of two identical antibody-binding sites allows antibody molecules to bind strongly to multivalent antigen (repeating sites such as polysaccharides in bacterial cell walls , or other sites at some distance apart), as well as to form antibody complexes and larger antigen-antibody complexes . The structures of CDRs have been clustered and classified by Chothia et al. and more recently by North et al. and Nikoloudis et al. However, describing an antibody's binding site using only one single static structure limits

10998-769: The invading microbe. The activation of natural killer cells by antibodies initiates a cytotoxic mechanism known as antibody-dependent cell-mediated cytotoxicity (ADCC) – this process may explain the efficacy of monoclonal antibodies used in biological therapies against cancer . The Fc receptors are isotype-specific, which gives greater flexibility to the immune system, invoking only the appropriate immune mechanisms for distinct pathogens. Humans and higher primates also produce "natural antibodies" that are present in serum before viral infection. Natural antibodies have been defined as antibodies that are produced without any previous infection, vaccination , other foreign antigen exposure or passive immunization . These antibodies can activate

11115-462: The last, gamma globulin fraction. Conversely, most gamma-globulins are antibodies, which is why the two terms were historically used as synonyms, as were the symbols Ig and γ . This variant terminology fell out of use due to the correspondence being inexact and due to confusion with γ (gamma) heavy chains which characterize the IgG class of antibodies. The variable domains can also be referred to as

11232-506: The native structure, probably differs for each protein. In T4 lysozyme, the influence of one domain on the other is so strong that the entire molecule is resistant to proteolytic cleavage. In this case, folding is a sequential process where the C-terminal domain is required to fold independently in an early step, and the other domain requires the presence of the folded C-terminal domain for folding and stabilisation. It has been found that

11349-535: The one with the lowest energy, the whole process would take billions of years. Proteins typically fold within 0.1 and 1000 seconds. Therefore, the protein folding process must be directed some way through a specific folding pathway. The forces that direct this search are likely to be a combination of local and global influences whose effects are felt at various stages of the reaction. Advances in experimental and theoretical studies have shown that folding can be viewed in terms of energy landscapes, where folding kinetics

11466-557: The other antibody isotypes, IgE, IgA, or IgG, that have defined roles in the immune system. In mammals there are two types of immunoglobulin light chain , which are called lambda (λ) and kappa (κ). However, there is no known functional difference between them, and both can occur with any of the five major types of heavy chains. Each antibody contains two identical light chains: both κ or both λ. Proportions of κ and λ types vary by species and can be used to detect abnormal proliferation of B cell clones. Other types of light chains, such as

11583-459: The past domains have been described as units of: Each definition is valid and will often overlap, i.e. a compact structural domain that is found amongst diverse proteins is likely to fold independently within its structural environment. Nature often brings several domains together to form multidomain and multifunctional proteins with a vast number of possibilities. In a multidomain protein, each domain may fulfill its own function independently, or in

11700-587: The pathogen in cells that recognize their Fc region. Those cells that recognize coated pathogens have Fc receptors, which, as the name suggests, interact with the Fc region of IgA, IgG, and IgE antibodies. The engagement of a particular antibody with the Fc receptor on a particular cell triggers an effector function of that cell; phagocytes will phagocytose , mast cells and neutrophils will degranulate , natural killer cells will release cytokines and cytotoxic molecules; that will ultimately result in destruction of

11817-455: The pathogen; and they trigger destruction of pathogens by stimulating other immune responses such as the complement pathway . Antibodies will also trigger vasoactive amine degranulation to contribute to immunity against certain types of antigens (helminths, allergens). Antibodies that bind to surface antigens (for example, on bacteria) will attract the first component of the complement cascade with their Fc region and initiate activation of

11934-414: The pattern in their dendrograms . As the procedure does not consider the protein as a continuous chain of amino acids there are no problems in treating discontinuous domains. Specific nodes in these dendrograms are identified as tertiary structural clusters of the protein, these include both super-secondary structures and domains. The DOMAK algorithm is used to create the 3Dee domain database. It calculates

12051-514: The phosphodiester bonds results in a conformational change which is transferred to other domains (especially the HWD and the PPXD domains) which consequently mechanically move the preprotein across the membrane. However, these conformational changes are partly regulated by other protomer domains described below. The capability to bind to the SecB chaperone during post-translational translocation,

12168-603: The placenta, from the mother to the fetus. In addition to this, binding to FcRn endows IgG with an exceptionally long half-life relative to other plasma proteins of 3-4 weeks. IgG3 in most cases (depending on allotype) has mutations at the FcRn binding site which lower affinity for FcRn, which are thought to have evolved to limit the highly inflammatory effects of this subclass. Antibodies are glycoproteins , that is, they have carbohydrates (glycans) added to conserved amino acid residues. These conserved glycosylation sites occur in

12285-414: The polypeptide is required to form the domain. This is likely to be the result of the insertion of one domain into another during the protein's evolution. It has been shown from known structures that about a quarter of structural domains are discontinuous. The inserted β-barrel regulatory domain is 'continuous', made up of a single stretch of polypeptide. The primary structure (string of amino acids) of

12402-413: The polypeptide is usually much tighter in the interior than the exterior of the domain producing a solid-like core and a fluid-like surface. Core residues are often conserved in a protein family , whereas the residues in loops are less conserved, unless they are involved in the protein's function. Protein tertiary structure can be divided into four main classes based on the secondary structural content of

12519-536: The prefix DUF followed by a number, with examples being DUF2992 and DUF1220. There are now over 3,000 DUF families within the Pfam database representing over 20% of known families. Surprisingly, the number of DUFs in Pfam has increased from 20% (in 2010) to 22% (in 2019), mostly due to an increasing number of new genome sequences . Pfam release 32.0 (2019) contained 3,961 DUFs. Immunoglobulins An antibody ( Ab ) or immunoglobulin ( Ig )

12636-437: The presence of these proteins, V(D)J recombination would not occur. After a B cell produces a functional immunoglobulin gene during V(D)J recombination, it cannot express any other variable region (a process known as allelic exclusion ) thus each B cell can produce antibodies containing only one kind of variable chain. Following activation with antigen, B cells begin to proliferate rapidly. In these rapidly dividing cells,

12753-513: The ribosome (during both post-translational translocation and co-translational translocation ) and the phospholipid bilayer is important for SecA functioning and is achieved by the C-terminal linker domain. Located at the C-terminal portion of the molecule, this domain is in contact with the HSD and PPXD domains. Likely it plays a role in transferring molecular conformational motion, which it receives from HSD and which originates from ATP hydrolysis in

12870-437: The same activated B cell to produce antibodies of different isotypes. Only the constant region of the antibody heavy chain changes during class switching; the variable regions, and therefore antigen specificity, remain unchanged. Thus the progeny of a single B cell can produce antibodies, all specific for the same antigen, but with the ability to produce the effector function appropriate for each antigenic challenge. Class switching

12987-492: The second strand, packing its side chains against the β-sheet and therefore shielding the hydrophobic residues of the β-strands from the surface. Covalent association of two domains represents a functional and structural advantage since there is an increase in stability when compared with the same structures non-covalently associated. Other, advantages are the protection of intermediates within inter-domain enzymatic clefts that may otherwise be unstable in aqueous environments, and

13104-482: The small adjustments required for their interaction are energetically unfavourable, such as the removal of water from the domain interface. Protein domain dynamics play a key role in a multitude of molecular recognition and signaling processes. Protein domains, connected by intrinsically disordered flexible linker domains, induce long-range allostery via protein domain dynamics . The resultant dynamic modes cannot be generally predicted from static structures of either

13221-444: The suffix denotes the type of heavy chain the antibody contains: the heavy chain types α (alpha), γ (gamma), δ (delta), ε (epsilon), μ (mu) give rise to IgA, IgG, IgD, IgE, IgM, respectively. The distinctive features of each class are determined by the part of the heavy chain within the hinge and Fc region. The classes differ in their biological properties, functional locations and ability to deal with different antigens, as depicted in

13338-440: The table. For example, IgE antibodies are responsible for an allergic response consisting of histamine release from mast cells , often a sole contributor to asthma (though other pathways exist as do exist symptoms very similar to yet not technically asthma). The antibody's variable region binds to allergic antigen, for example house dust mite particles, while its Fc region (in the ε heavy chains) binds to Fc receptor ε on

13455-430: The understanding and characterization of the antibody's function and properties. To improve antibody structure prediction and to take the strongly correlated CDR loop and interface movements into account, antibody paratopes should be described as interconverting states in solution with varying probabilities. In the framework of the immune network theory , CDRs are also called idiotypes. According to immune network theory,

13572-412: The variable domains are located on three loops known as hypervariable regions (HV-1, HV-2 and HV-3) or complementarity-determining regions (CDR1, CDR2 and CDR3). CDRs are supported within the variable domains by conserved framework regions. The heavy chain locus contains about 65 different variable domain genes that all differ in their CDRs. Combining these genes with an array of genes for other domains of

13689-421: The very first studies of folding. Anfinsen showed that the native state of a protein is thermodynamically stable, the conformation being at a global minimum of its free energy. Folding is a directed search of conformational space allowing the protein to fold on a biologically feasible time scale. The Levinthal paradox states that if an averaged sized protein would sample all possible conformations before finding

#664335