A silo (from Ancient Greek σιρός ( sirós ) 'pit for holding grain') is a structure for storing bulk materials .
83-578: Silos is the plural of silo , a farm structure in which fodder or forage is kept. Silos may also refer to: Silo Silos are commonly used for bulk storage of grain, coal , cement , carbon black , woodchips , food products and sawdust . Three types of silos are in widespread use today: tower silos, bunker silos, and bag silos. Silos are used in agriculture to store fermented feed known as silage . Storage silos are cylindrical structures, typically 10 to 90 ft (3 to 27 m) in diameter and 30 to 275 ft (10 to 90 m) in height with
166-537: A phase converter having single-phase converter input and three-phase inverter output. Controller advances have exploited dramatic increases in the voltage and current ratings and switching frequency of solid-state power devices over the past six decades. Introduced in 1983, the insulated-gate bipolar transistor (IGBT) has in the past two decades come to dominate VFDs as an inverter switching device. In variable- torque applications suited for Volts-per-Hertz (V/Hz) drive control, AC motor characteristics require that
249-557: A VFD system is usually a three-phase induction motor . Some types of single-phase motors or synchronous motors can be advantageous in some situations, but generally three-phase induction motors are preferred as the most economical. Motors that are designed for fixed-speed operation are often used. Elevated-voltage stresses imposed on induction motors that are supplied by VFDs require that such motors be designed for definite-purpose inverter-fed duty in accordance with such requirements as Part 31 of NEMA Standard MG-1. The VFD controller
332-440: A VFD, the stopping sequence is just the opposite as the starting sequence. The frequency and voltage applied to the motor are ramped down at a controlled rate. When the frequency approaches zero, the motor is shut off. A small amount of braking torque is available to help decelerate the load a little faster than it would stop if the motor were simply switched off and allowed to coast. Additional braking torque can be obtained by adding
415-621: A braking circuit (resistor controlled by a transistor) to dissipate the braking energy. With a four-quadrant rectifier (active front-end), the VFD is able to brake the load by applying a reverse torque and injecting the energy back to the AC line. Many fixed-speed motor load applications that are supplied direct from AC line power can save energy when they are operated at variable speed by means of VFD. Such energy cost savings are especially pronounced in variable-torque centrifugal fan and pump applications, where
498-418: A chute into a wagon, wheelbarrow, or open pile. When closed, the forage continues past the opening and onward to other parts of the conveyor. Computer automation and a conveyor running the length of a feeding stall can permit the silage to be automatically dropped from above to each animal, with the amount dispensed customized for each location. Silos are hazardous, and people are killed or injured every year in
581-430: A considerable engineering analysis of the system. Flexible Silos are the most versatile and cost-effective solution for the storage of bulk powder and granules. Manufactured from trevira tissue, a tough non-toxic fabric, the silos can handle particle size down to 2 microns and can be pneumatically loaded without the need for a dust collector. The 45-degree fabric silo cone flexes freely when the product discharges, enabling
664-409: A conveyor application for smoother deceleration and acceleration control, which reduces the backlash that can occur when a conveyor is accelerating or decelerating. Performance factors tending to favor the use of DC drives over AC drives include such requirements as continuous operation at low speed, four-quadrant operation with regeneration, frequent acceleration and deceleration routines, and need for
747-526: A disadvantage for items like chopped wood. The tower silo was invented by Franklin Hiram King . In Canada , Australia and the United States, many country towns or the larger farmers in grain-growing areas have groups of wooden or concrete tower silos, known as grain elevators , to collect grain from the surrounding towns and store and protect the grain for transport by train, truck or barge to
830-402: A fabric bag suspended within a rigid, structural frame. Polyester based fabrics are often used for fabrication of the bag material, with specific attention given to fabric pore size. Upper areas of silo fabric are often manufactured with slightly larger pore size, with the design intent of acting as a vent filter during silo filling. Some designs include metal thread within the fabric, providing
913-418: A large comb -shaped tines to push forage into the bag. The forage is pushed in through a large opening, and as the teeth rotate back out, they pass between the comb tines. The cam-shaped auger teeth essentially wipe the forage off using the steel tines, keeping the forage in the bag. Before filling begins, the entire bag is placed onto the loader as a bunched-up tube folded back on itself in many layers to form
SECTION 10
#1732780768048996-407: A large brake shoe pressure regulator, holding back two large winch drums on either side of the loader. Cables from the drum extend to the rear of the bag where a large mesh basket holds the rear end of the bag shut. To prevent molding and to assure an airtight seal during fermentation, the ends of the silo bag tube are gathered, folded, and tied shut to prevent oxygen from entering the bag. Removal of
1079-420: A large heavy sheet of silo plastic which seals out oxygen and permits the entire pile to begin to ferment in the autumn. In the winter when animals must be kept indoors, the silo plastic is removed, the unloader is lowered down onto the top of the silage pile, and a hinged door is opened on the side of the silo to permit the silage to be blown out. There is an array of these access doors arranged vertically up
1162-497: A means for an operator to start and stop the motor and adjust the operating speed. The VFD may also be controlled by a programmable logic controller through Modbus or another similar interface. Additional operator control functions might include reversing, and switching between manual speed adjustment and automatic control from an external process control signal. The operator interface often includes an alphanumeric display or indication lights and meters to provide information about
1245-416: A plug, the forage needs to be forked out into an even layer around the unloader so that the unloader does not immediately dig into the pile and plug itself again. All during this process the farmer is standing on or near a machine that could easily kill them in seconds if it were to accidentally start up. This could happen if someone in the barn were to unknowingly switch on the unloading mechanism while someone
1328-418: A processor or to an export port. In bumper crop times, the excess grain is stored in piles without silos or bins, causing considerable losses. Concrete stave silos are constructed from small precast concrete blocks with ridged grooves along each edge that lock them together into a high strength shell. Concrete is much stronger in compression than tension , so the silo is reinforced with steel hoops encircling
1411-406: A pure electrical means of communication. Typical means of hardwired communication are: 4-20mA , 0-10VDC, or using the internal 24VDC power supply with a potentiometer . Speed can also be controlled remotely and locally. Remote control instructs the VFD to ignore speed commands from the keypad while local control instructs the VFD to ignore external control and only abide by the keypad. Depending on
1494-489: A relatively large stock of wheat was preserved in some hundreds of pits (silos) cut in the rock. A single silo stored from 60 to 80 tons of wheat, which, with proper precautions, kept in good condition for four years or more. The first modern silo, a wooden and upright one filled with grain , was invented and built in 1873 in Spring Grove, Illinois by Fred Hatch of McHenry County, Illinois , US. Forage silo filling
1577-471: A static conductive path from the surface of the fabric to ground. The frame of a fabric silo is typically constructed of steel . Fabric silos are an attractive option because of their relative low cost compared to conventional silos. However, when fabric silos are used to store granular or particulate combustible materials, conventional practices prescribed by established industry consensus standards addressing combustible dust hazards can not be applied without
1660-534: A step-up transformer is placed between a LV drive and a MV motor load. MV drives are typically rated for motor applications greater than between about 375 and 750 kW (503 and 1,006 hp). MV drives have historically required considerably more application design effort than required for LV drive applications. The power rating of MV drives can reach 100 MW (130,000 hp), a range of different drive topologies being involved for different rating, performance, power quality, and reliability requirements. It
1743-409: A thick pile of plastic. Because the plastic is minimally elastic, the loader mechanism filling chute is slightly smaller than the final size of the bag, to accommodate this stack of plastic around the mouth of the loader. The plastic slowly unfurls itself around the edges of the loader as the tube is filled. The contents of the silo bag are under pressure as it is filled, with the pressure controlled by
SECTION 20
#17327807680481826-534: A traveling sled driven from the PTO of a tractor left in neutral and which is gradually pushed forward as the bag is filled. The steering of the tractor controls the direction of bag placement as it fills, but bags are normally laid in a straight line. The bag is loaded using the same forage harvesting methods as the tower, but the forage wagon must be moved progressively forward with the bag loader. The loader uses an array of rotating cam-shaped spiraled teeth associated with
1909-436: A wide range of single-phase and multi-phase AC motors. Low-voltage (LV) drives are designed to operate at output voltages equal to or less than 690 V. While motor-application LV drives are available in ratings of up to the order of 5 or 6 MW, economic considerations typically favor medium-voltage (MV) drives with much lower power ratings. Different MV drive topologies (see Table 2) are configured in accordance with
1992-578: A wide variety of polyethylene plastics. The silos are light weight and make for great small scale storage for farmers with livestock and grain operations. The light weight design and cost effective materials make plastic silos a great alternative to traditional steel bins. Unlike fabric silos, which "tend to be prone to grain rot and pests which have left many farmers frustrated", plastic silos are more safe and secure, keeping grain fresh and unspoiled. They can be designed to be stationary hopper bottom bins or portable pallet bins. Fabric silos are constructed of
2075-546: Is a solid-state power electronics conversion system consisting of three distinct sub-systems: a rectifier bridge converter, a direct current (DC) link, and an inverter. Voltage-source inverter (VSI) drives (see 'Generic topologies' sub-section below) are by far the most common type of drives. Most drives are AC–AC drives in that they convert AC line input to AC inverter output. However, in some applications such as common DC bus or solar applications, drives are configured as DC–AC drives. The most basic rectifier converter for
2158-465: Is a type of AC motor drive (system incorporating a motor) that controls speed and torque by varying the frequency of the input electricity. Depending on its topology , it controls the associated voltage or current variation. VFDs are used in applications ranging from small appliances to large compressors. Systems using VFDs can be more efficient than hydraulic systems , such as in systems with pumps and damper control for fans. Since
2241-400: Is also often available to allow the VFD to be configured, adjusted, monitored, and controlled using a computer. There are two main ways to control the speed of a VFD; networked or hardwired. Networked involves transmitting the intended speed over a communication protocol such as Modbus , Modbus / TCP , EtherNet/IP , or via a keypad using Display Serial Interface while hardwired involves
2324-596: Is constructed from intersections of a saw-toothed carrier signal with a modulating sinusoidal signal which is variable in operating frequency as well as in voltage (or current). Operation of the motors above rated nameplate speed (base speed) is possible, but is limited to conditions that do not require more power than the nameplate rating of the motor. This is sometimes called "field weakening" and, for AC motors, means operating at less than rated V/Hz and above rated nameplate speed. Permanent magnet synchronous motors have quite limited field-weakening speed range due to
2407-414: Is drawing less than 50% of its rated current from the mains in the low-speed range. A VFD can be adjusted to produce a steady 150% starting torque from standstill right up to full speed. However, motor cooling deteriorates and can result in overheating as speed decreases such that prolonged low-speed operation with significant torque is not usually possible without separately motorized fan ventilation. With
2490-443: Is estimated that drive technology is adopted in as many as 30–40% of all newly installed motors. An energy consumption breakdown of the global population of AC motor installations is as shown in the following table: AC drives are used to bring about process and quality improvements in industrial and commercial applications' acceleration, flow, monitoring, pressure, speed, temperature, tension, and torque. Fixed-speed loads subject
2573-413: Is immune to atmospheric pressure changes over time. Instead, the silo structure is open to the atmosphere but outside air is separated from internal air by large impermeable bags sealed to the silo breather openings. In the warmth of the day when the silo is heated by the sun, the gas trapped inside the silo expands and the bags "breathe out" and collapse. At night the silo cools, the air inside contracts and
Silos - Misplaced Pages Continue
2656-401: Is in the silo working on the unloader. Often, when unloading grain from an auger or other opening at the bottom of the silo, another worker will be atop the grain "walking it down", to ensure an even flow of grain out of the silo. Sometimes unstable pockets in the grain will collapse beneath the worker doing the walking; this is called grain entrapment as the worker can be completely sunk into
2739-413: Is performed using a forage harvester which may either be self-propelled with an engine and driver's cab, or towed behind a tractor that supplies power through a PTO . The harvester contains a drum-shaped series of cutting knives which shear the fibrous plant material into small pieces no more than an inch long, to facilitate mechanized blowing and transport via augers. The finely chopped plant material
2822-412: Is regarded as the inventor of this technology. Strömberg managed to sell the idea of PWM drive to Helsinki Metro in 1973 and in 1982 the first PWM drive SAMI10 were operational. A variable-frequency drive is a device used in a drive system consisting of the following three main sub-systems: AC motor, main drive controller assembly, and drive/operator interface. The AC electric motor used in
2905-427: Is then blown by the harvester into a forage wagon which contains an automatic unloading system. Tower forage filling is typically performed with a silo blower which is a very large fan with paddle-shaped blades. Material is fed into a vibrating hopper and is pushed into the blower using a spinning spiral auger . There is commonly a water connection on the blower to add moisture to the plant matter being blown into
2988-422: Is typically lowered only a half-inch or so at a time by the operator, and the unloader picks up only a small amount of material until the winch cable has become taut and the unloader is not picking up any more material. The operator then lowers the unloader another half-inch or so and the process repeats. If lowered too far, the unloader can pull up much more material than it can handle, which can overflow and plug up
3071-410: Is typically much shorter than a silo, and is typically used for holding dry matter such as cement or grain. Grain is often dried in a grain dryer before being stored in the bin. Bins may be round or square, but round bins tend to empty more easily due to a lack of corners for the stored material to become wedged and encrusted. The stored material may be powdered, as seed kernels, or as cob corn. Due to
3154-594: The United States . The shaped is based on natural shape formed when piling solids. The dome is made of prefabricated wood panels with shingles installed on a circular reinforced concrete base. Open canopy entrance allows for front end loaders to fill and retrieve easily. These are usually found along major highway or key primary roads. Plastic silos, also known as hopper bottom tanks, are manufactured through various processes such as: injection molding , rotational molding, and blow molding . They are constructed using
3237-476: The slipform and Jumpform concrete silos being the larger diameter and taller silos. They can be made of many materials. Wood staves, concrete staves, cast concrete, and steel panels have all been used, and have varying cost, durability, and airtightness tradeoffs. Silos storing grain, cement and woodchips are typically unloaded with air slides or augers. Silos can be unloaded into rail cars, trucks or conveyors. Tower silos containing silage are usually unloaded from
3320-520: The 1980s, power electronics technology has reduced VFD cost and size and has improved performance through advances in semiconductor switching devices, drive topologies, simulation and control techniques, and control hardware and software. VFDs include low- and medium-voltage AC–AC and DC–AC topologies. Pulse-Width Modulating (PWM) variable-frequency drive projects started in the 1960s at Strömberg in Finland. Martti Harmoinen [ fi ]
3403-400: The United States, an estimated 60–65% of electrical energy is used to supply motors, 75% of which are variable-torque fan, pump, and compressor loads. Eighteen percent of the energy used in the 40 million motors in the U.S. could be saved by efficient energy improvement technologies such as VFDs. Only about 3% of the total installed base of AC motors are provided with AC drives. However, it
Silos - Misplaced Pages Continue
3486-426: The VFD controller. Basic programming of the microprocessor is provided as user-inaccessible firmware . User programming of display , variable, and function block parameters is provided to control, protect, and monitor the VFD, motor, and driven equipment. The basic drive controller can be configured to selectively include such optional power components and accessories as follows: The operator interface provides
3569-722: The VSI drive is configured as a three-phase, six-pulse, full-wave diode bridge . In a VSI drive, the DC link consists of a capacitor which smooths out the converter's DC output ripple and provides a stiff input to the inverter. This filtered DC voltage is converted to quasi- sinusoidal AC voltage output using the inverter's active switching elements. VSI drives provide higher power factor and lower harmonic distortion than phase-controlled current-source inverter (CSI) and load-commutated inverter (LCI) drives (see 'Generic topologies' sub-section below). The drive controller can also be configured as
3652-427: The amount of material to be stored. They are packed using a machine made for the purpose, and sealed on both ends. They are unloaded using a tractor and loader or skid-steer loader . The bag is discarded in sections as it is torn off. Bag silos require little capital investment. They can be used as a temporary measure when growth or harvest conditions require more space, though some farms use them every year. A bin
3735-412: The bag loader can be hazardous to bystanders since the pressure must be released and the rear end allowed to collapse onto the ground. A silo unloader specifically refers to a special cylindrical rotating forage pickup device used inside a single tower silo. The main operating component of the silo unloader is suspended in the silo from a steel cable on a pulley that is mounted in the top-center of
3818-482: The bags "breathe in" and expand again. While the iconic blue Harvestore low-oxygen silos were once very common, the speed of its unloader mechanism was not able to match the output rates of modern bunker silos, and this type of silo went into decline. Unloader repair expenses also severely hurt the Harvestore reputation, because the unloader feed mechanism is located in the bottom of the silo under tons of silage. In
3901-416: The blower, outlet spout, and the unloader tube, resulting in a time-wasting process of having to climb up the silo to clear the blockages. Once silage has entered the conveyor system, it can be handled by either manual or automatic distribution systems. The simplest manual distribution system uses a sliding metal platform under the pickup channel. When slid open, the forage drops through the open hole and down
3984-400: The blower. The farmer must continually move around in this highly hazardous environment of spinning shafts and high-speed conveyors to check material flows and adjust speeds, and to start and stop all the equipment between loads. Preparation for filling a silo requires winching the unloader to the top, and any remaining forage at the base that the unloader could not pick up must be removed from
4067-544: The chart's four quadrants are defined as follows: Most applications involve single-quadrant loads operating in quadrant I, such as in variable-torque (e.g. centrifugal pumps or fans) and certain constant-torque (e.g. extruders) loads. Certain applications involve two-quadrant loads operating in quadrant I and II where the speed is positive but the torque changes polarity as in case of a fan decelerating faster than natural mechanical losses. Some sources define two-quadrant drives as loads operating in quadrants I and III where
4150-430: The constant magnet flux linkage . Wound-rotor synchronous motors and induction motors have much wider speed range. For example, a 100 HP, 460 V, 60 Hz, 1775 RPM (4-pole) induction motor supplied with 460 V, 75 Hz (6.134 V/Hz), would be limited to 60/75 = 80% torque at 125% speed (2218.75 RPM) = 100% power. At higher speeds, the induction motor torque has to be limited further due to
4233-427: The contactor thus turns on the drive and has it output to a designated speed. Depending on the sophistication of the drive multiple auto-starting behavior can be developed e.g. the drive auto-starts on power up but does not auto-start from clearing an emergency stop until a reset has been cycled. Referring to the accompanying chart, drive applications can be categorized as single-quadrant, two-quadrant, or four-quadrant;
SECTION 50
#17327807680484316-418: The contents in a low-oxygen atmosphere at all times, to keep the fermented contents in a high quality state, and to prevent mold and decay, as may occur in the top layers of a stave silo or bunker. Low-oxygen silos are only opened directly to the atmosphere during the initial forage loading, and even the unloader chute is sealed against air infiltration. It would be expensive to design such a huge structure that
4399-833: The dry nature of the stored material, it tends to be lighter than silage and can be more easily handled by under-floor grain unloaders. To facilitate drying after harvesting, some grain bins contain a hollow perforated or screened central shaft to permit easier air infiltration into the stored grain. There are different types of cement silos such as the low-level mobile silo and the static upright cement silo, which are used to hold and discharge cement and other powder materials such as pulverised fuel ash (PFA). The low-level silos are fully mobile with capacities from 100 to 750 tons. They are simple to transport and are easy to set up on site. These mobile silos generally come equipped with an electronic weighing system with digital display and printer. This allows any quantity of cement or powder discharged from
4482-634: The efficient flow of hard to handle products such as sugar, flour, calcium carbonate etc., minimally assisted by a small vibrator fitted to the discharge transition. The trevira tissue is able to breathe, preventing condensation from forming on its internal walls. This eliminates lumping and caking of the product. With sizes ranging from 2m to over 1000m , Rigid Silos cover an extreme range of applications and they can be constructed from various materials. Rigid silos can be provided with more than one vertical partition to compartmentalize it for different grades of product. The 5th millennium BC site of Tel Tsaf in
4565-592: The event of cutter chain breakage, it can cost up to US$ 10,000 to perform repairs. The silo may need to be partially or completely emptied by alternate means, to unbury the broken unloader and retrieve broken components lost in the silage at the bottom of the structure. In 2005 the Harvestore company recognized these issues and worked to develop new unloaders with double the flow rate of previous models to stay competitive with bunkers, and with far greater unloader chain strength. They are now also using load sensing soft-start variable frequency drive motor controllers to reduce
4648-413: The floor of the silo. This job requires that the farmer work directly underneath a machine weighing several tons suspended fifty feet or more overhead from a small steel cable. Should the unloader fall, the farmer will likely be killed instantly. Unloading also poses its own special hazards, due to the requirement that the farmer regularly climb the silo to close an upper door and open a lower door, moving
4731-422: The grain within seconds. Entrapment can also occur in moving grain, or when workers clear large clumps of grain that have become stuck on the side of the silo. This often results in death by suffocation . Variable frequency drive A variable-frequency drive ( VFD , or adjustable-frequency drive , adjustable-speed drive , variable-speed drive , AC drive , micro drive , inverter drive , or drive )
4814-543: The likelihood of mechanism breakage, and to control the feeder sweep arm movement. Bunker silos are trenches, usually with concrete walls, that are filled and packed using tractors and loaders. The filled trench is covered with a plastic tarp to make it airtight. These silos are usually unloaded with a tractor and loader. They are inexpensive and especially well suited to very large operations. Bag silos are heavy plastic tubes, usually around 8 to 12 ft (2.4 to 3.6 m) in diameter, and of variable length as required for
4897-420: The load's torque and power vary with the square and cube , respectively, of the speed. This change gives a large power reduction compared to fixed-speed operation for a relatively small reduction in speed. For example, at 63% speed a motor load consumes only 25% of its full-speed power. This reduction is in accordance with affinity laws that define the relationship between various centrifugal load variables. In
4980-418: The lowering of the breakaway torque of the motor. Thus, rated power can be typically produced only up to 130–150% of the rated nameplate speed. Wound-rotor synchronous motors can be run at even higher speeds. In rolling mill drives, often 200–300% of the base speed is used. The mechanical strength of the rotor limits the maximum speed of the motor. An embedded microprocessor governs the overall operation of
5063-433: The model a VFD's operating parameters can be programmed via: dedicated programming software, internal keypad, external keypad, or SD card. VFDs will often block out most programming changes while running. Typical parameters that need to be set include: motor nameplate information, speed reference source, on/off control source and braking control. It is also common for VFDs to provide debugging information such as fault codes and
SECTION 60
#17327807680485146-492: The motor to a high starting torque and to current surges that are up to eight times the full-load current. AC drives instead gradually ramp the motor up to operating speed to lessen mechanical and electrical stress, reducing maintenance and repair costs, and extending the life of the motor and the driven equipment. Variable-speed drives can also run a motor in specialized patterns to further minimize mechanical and electrical stress. For example, an S-curve pattern can be applied to
5229-481: The motor to be protected for a hazardous area. The following table compares AC and DC drives according to certain key parameters: ^ High-frequency injection AC drives can be classified according to the following generic topologies: Most drives use one or more of the following control platforms: Variable-frequency drives are also categorized by the following load torque and power characteristics: VFDs are available with voltage and current ratings covering
5312-433: The motor voltage magnitude, angle from reference, and frequency so as to precisely control the motor's magnetic flux and mechanical torque. Although space vector pulse-width modulation (SVPWM) is becoming increasingly popular, sinusoidal PWM (SPWM) is the most straightforward method used to vary drives' motor voltage (or current) and frequency. With SPWM control (see Fig. 1), quasi-sinusoidal, variable-pulse-width output
5395-453: The operation of the drive. An operator interface keypad and display unit is often provided on the front of the VFD controller as shown in the photograph above. The keypad display can often be cable-connected and mounted a short distance from the VFD controller. Most are also provided with input and output (I/O) terminals for connecting push buttons, switches, and other operator interface devices or control signals. A serial communications port
5478-418: The process of filling and maintaining them. The machinery used is dangerous, and workers can fall from a tower silo's ladder or work platform. Several fires have occurred over the years. Filling a silo requires parking two tractors very close to each other, both running at full power and with live PTO shafts , one powering the silo blower and the other powering a forage wagon unloading fresh-cut forage into
5561-414: The roof of the silo. The vertical positioning of the unloader is controlled by an electric winch on the exterior of the silo. For the summer filling of a tower silo, the unloader is winched as high as possible to the top of the silo and put into a parking position. The silo is filled with a silo blower , which is literally a very large fan that blows a large volume of pressurized air up a 10-inch tube on
5644-402: The same polarity. In starting a motor, a VFD initially applies a low frequency and voltage, thus avoiding high inrush-current associated with direct-on-line starting . After the start of the VFD, the applied frequency and voltage are increased at a controlled rate or ramped up to accelerate the load. This starting method typically allows a motor to develop 150% of its rated torque while the VFD
5727-405: The side of the silo, with an unloading tube next to the doors that has a series of removable covers down the side of the tube. The unloader tube and access doors are normally covered with a large U-shaped shield mounted on the silo, to protect the farmer from wind, snow, and rain while working on the silo. The silo unloader mechanism consists of a pair of counter-rotating toothed augers which rip up
5810-403: The side of the silo. A small amount of water is introduced into the air stream during filling to help lubricate the filling tube. A small adjustable nozzle at the top, controlled by a handle at the base of the silo directs the silage to fall into the silo on the near, middle, or far side, to facilitate evenly layered loading. Once completely filled, the top of the exposed silage pile is covered with
5893-425: The silo blower attached to the silo at all times to use it when necessary to ventilate the silo with fresh air, or to have a dedicated electric fan system to blow fresh air into the silo, before anyone attempts to enter it. In the event that the unloader mechanism becomes plugged, the farmer must climb the silo and directly stand on the unloader, reaching into the blower spout to dig out the soft silage. After clearing
5976-607: The silo to be controlled and also provides an accurate indication of what remains inside the silo. The static upright silos have capacities from 200 to 800 tons. These are considered a low-maintenance option for the storage of cement or other powders. Cement silos can be used in conjunction with bin-fed batching plants . Sand and salt for winter road maintenance are stored in conical dome-shaped (clear truss roof) silos. These are more common in North America , namely in Canada and
6059-422: The silo. The blower may be driven by an electric motor but it is more common to use a spare tractor instead. A large slow-moving conveyor chain underneath the silage in the forage wagon moves the pile towards the front, where rows of rotating teeth break up the pile and drop it onto a high-speed transverse conveyor that pours the silage out the side of the wagon into the blower hopper. Silo bags are filled using
6142-652: The southern Levant contain the earliest known silos. Archaeological ruins and ancient texts show that silos were used in ancient Greece as far back as the late 8th century BC; the term silo is derived from the Greek σιρός ( siros ), "pit for holding grain". The silo pit, as it has been termed, has been a favorite way of storing grain from time immemorial in Asia. In Turkey and Persia, insurance agents bought stores of wheat or barley whilst comparatively cheap, and store it in hidden pits against seasons of dearth. In Malta
6225-435: The speed and torque is same (positive or negative) polarity in both directions. Certain high-performance applications involve four-quadrant loads (Quadrants I to IV) where the speed and torque can be in any direction such as in hoists, elevators, and hilly conveyors. Regeneration can occur only in the drive's DC link bus when inverter voltage is smaller in magnitude than the motor back- EMF and inverter voltage and back-EMF are
6308-404: The states of the input signals. Most VFDs allow auto-starting to be enabled. Which will drive the output to a designated frequency after a power cycle, or after a fault has been cleared, or after the emergency stop signal has been restored (generally emergency stops are active low logic). One popular way to control a VFD is to enable auto-start and place L1, L2, and L3 into a contactor. Powering on
6391-426: The surface of the silage and pull it towards the center of the unloader. The toothed augers rotate in a circle around the center hub, evenly chewing the silage off the surface of the pile. In the center, a large blower assembly picks up the silage and blows it out the silo door, where the silage falls by gravity down the unloader tube to the bottom of the silo, typically into an automated conveyor system. The unloader
6474-482: The top but become progressively more closely spaced towards the bottom to prevent seams from opening and the contents leaking out. Concrete stave silos are built from common components designed for high strength and long life. They have the flexibility to have their height increased according to the needs of the farm and purchasing power of the farmer, or to be completely disassembled and reinstalled somewhere else if no longer needed. Low-oxygen silos are designed to keep
6557-410: The top of the pile, originally by hand using a silage fork—which has many more tines than the common pitchfork; 12 vs 4—and in modern times using mechanical unloaders. Bottom silo unloaders are utilized at times, but have problems with difficulty of repair. An advantage of tower silos is that the silage tends to pack well due to its own weight, except in the top few feet. However, this may be
6640-426: The tower and compressing the staves into a tight ring. The vertical stacks are held together by intermeshing of the ends of the staves by a short distance around the perimeter of each layer, and hoops which are tightened directly across the stave edges. The static pressure of the material inside the silo pressing outward on the staves increases towards the bottom of the silo, so the hoops can be spaced wide apart near
6723-412: The unloader chute from door to door in the process. The fermentation of the silage produces methane gas which over time will outgas and displace the oxygen in the top of the silo. A farmer directly entering a silo without any other precautions can be asphyxiated by the methane, knocked unconscious, and silently suffocate to death before anyone else knows what has happened. It is either necessary to leave
6806-691: The voltage magnitude of the inverter's output to the motor be adjusted to match the required load torque in a linear V/Hz relationship. For example, for 460 V, 60 Hz motors, this linear V/Hz relationship is 460/60 = 7.67 V/Hz. While suitable in wide-ranging applications, V/Hz control is sub-optimal in high-performance applications involving low speed or demanding, dynamic speed regulation, positioning, and reversing load requirements. Some V/Hz control drives can also operate in quadratic V/Hz mode or can even be programmed to suit special multi-point V/Hz paths. The two other drive control platforms, vector control and direct torque control (DTC), adjust
6889-421: The voltage/current-combination ratings used in different drive controllers' switching devices such that any given voltage rating is greater than or equal to one to the following standard nominal motor voltage ratings: generally either 2 + 3 ⁄ 4 .16 kV (60 Hz) or 3 + 3 ⁄ 6 .6 kV (50 Hz), with one thyristor manufacturer rated for up to 12 kV switching. In some applications
#47952