Misplaced Pages

Stability

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Stable nuclides are isotopes of a chemical element whose nucleons are in a configuration that does not permit them the surplus energy required to produce a radioactive emission. The nuclei of such isotopes are not radioactive and unlike radionuclides do not spontaneously undergo radioactive decay . When these nuclides are referred to in relation to specific elements they are usually called that element's stable isotopes .

#24975

42-645: [REDACTED] The present page holds the title of a primary topic , and an article needs to be written about it. It is believed to qualify as a broad-concept article . It may be written directly at this page or drafted elsewhere and then moved to this title. Related titles should be described in Stability , while unrelated titles should be moved to Stability (disambiguation) . [REDACTED] [REDACTED] Look up stability in Wiktionary,

84-401: A 2002 three song EP by Death Cab for Cutie "Stability", a song by Debbie Harry from the album Debravation " Stability " (short story) , by Philip K. Dick Other uses [ edit ] Stability (wine) See also [ edit ] Balance (disambiguation) Bicycle and motorcycle dynamics Equilibrium (disambiguation) Fault-tolerant system Homeostasis ,

126-401: A 2002 three song EP by Death Cab for Cutie "Stability", a song by Debbie Harry from the album Debravation " Stability " (short story) , by Philip K. Dick Other uses [ edit ] Stability (wine) See also [ edit ] Balance (disambiguation) Bicycle and motorcycle dynamics Equilibrium (disambiguation) Fault-tolerant system Homeostasis ,

168-406: A dynamic chemical equilibrium with its environment Thermal stability of a chemical compound Kinetic stability of a chemical compound Stability constants of complexes , in solution Convective instability , a fluid dynamics condition Ecological stability , measure of the probability of a population returning quickly to a previous state, or not going extinct Plasma stability ,

210-406: A dynamic chemical equilibrium with its environment Thermal stability of a chemical compound Kinetic stability of a chemical compound Stability constants of complexes , in solution Convective instability , a fluid dynamics condition Ecological stability , measure of the probability of a population returning quickly to a previous state, or not going extinct Plasma stability ,

252-443: A half-life >10 years: potassium-40 , vanadium-50 , lanthanum-138 , and lutetium-176 . Odd–odd primordial nuclides are rare because most odd–odd nuclei beta-decay , because the decay products are even–even, and are therefore more strongly bound, due to nuclear pairing effects . Yet another effect of the instability of an odd number of either type of nucleon is that odd-numbered elements tend to have fewer stable isotopes. Of

294-566: A measure of how likely a perturbation in a plasma is to be damped out Exercise and sports medicine [ edit ] Core stability of the abdominal muscles Joint stability in the musculoskeletal system Social sciences [ edit ] Economic stability , the absence of excessive fluctuations in the macroeconomy Hegemonic stability theory , a theory of international relations Mertens-stable equilibrium , called "stability" in game theory Political stability Entertainment [ edit ] The Stability EP ,

336-566: A measure of how likely a perturbation in a plasma is to be damped out Exercise and sports medicine [ edit ] Core stability of the abdominal muscles Joint stability in the musculoskeletal system Social sciences [ edit ] Economic stability , the absence of excessive fluctuations in the macroeconomy Hegemonic stability theory , a theory of international relations Mertens-stable equilibrium , called "stability" in game theory Political stability Entertainment [ edit ] The Stability EP ,

378-410: A property of a system in which variables are regulated so that internal conditions remain stable Instability Stabilizer (disambiguation) Stable (disambiguation) List of types of equilibrium Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title Stability . If an internal link led you here, you may wish to change

420-410: A property of a system in which variables are regulated so that internal conditions remain stable Instability Stabilizer (disambiguation) Stable (disambiguation) List of types of equilibrium Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title Stability . If an internal link led you here, you may wish to change

462-457: A property of machine learning algorithms Stability, a property of sorting algorithms Numerical stability , a property of numerical algorithms which describes how errors in the input data propagate through the algorithm Stability radius , a property of continuous polynomial functions Stable theory , concerned with the notion of stability in model theory Stability, a property of points in geometric invariant theory K-Stability ,

SECTION 10

#1732764858025

504-457: A property of machine learning algorithms Stability, a property of sorting algorithms Numerical stability , a property of numerical algorithms which describes how errors in the input data propagate through the algorithm Stability radius , a property of continuous polynomial functions Stable theory , concerned with the notion of stability in model theory Stability, a property of points in geometric invariant theory K-Stability ,

546-474: A stability condition for algebraic varieties. Bridgeland stability conditions , a class of stability conditions on elements of a triangulated category . Stability (algebraic geometry) Engineering [ edit ] In atmospheric fluid dynamics, atmospheric stability , a measure of the turbulence in the ambient atmosphere BIBO stability (Bounded Input, Bounded Output stability), in signal processing and control theory Directional stability ,

588-474: A stability condition for algebraic varieties. Bridgeland stability conditions , a class of stability conditions on elements of a triangulated category . Stability (algebraic geometry) Engineering [ edit ] In atmospheric fluid dynamics, atmospheric stability , a measure of the turbulence in the ambient atmosphere BIBO stability (Bounded Input, Bounded Output stability), in signal processing and control theory Directional stability ,

630-508: A total of 251 nuclides that have not been shown to decay using current equipment. Of these 80 elements, 26 have only one stable isotope and are called monoisotopic . The other 56 have more than one stable isotope. Tin has ten stable isotopes, the largest number of any element. Most naturally occurring nuclides are stable (about 251; see list at the end of this article), and about 35 more (total of 286) are known to be radioactive with long enough half-lives (also known) to occur primordially. If

672-404: Is 251/80 = 3.1375. Stability of isotopes is affected by the ratio of protons to neutrons, and also by presence of certain magic numbers of neutrons or protons which represent closed and filled quantum shells. These quantum shells correspond to a set of energy levels within the shell model of the nucleus; filled shells, such as the filled shell of 50 protons for tin, confers unusual stability on

714-583: Is a summary table from List of nuclides . Numbers are not exact and may change slightly in the future, as nuclides are observed to be radioactive, or new half-lives are determined to some precision. The primordial radionuclides are included for comparison; they are italicized and offset from the list of stable nuclides proper. Abbreviations for predicted unobserved decay: α for alpha decay, B for beta decay, 2B for double beta decay, E for electron capture, 2E for double electron capture, IT for isomeric transition, SF for spontaneous fission, * for

756-696: Is expected that improvement of experimental sensitivity will allow discovery of very mild radioactivity of some isotopes now considered stable. For example, in 2003 it was reported that bismuth-209 (the only primordial isotope of bismuth) is very mildly radioactive, with half-life (1.9 ± 0.2) × 10  yr, confirming earlier theoretical predictions from nuclear physics that bismuth-209 would very slowly alpha decay . Isotopes that are theoretically believed to be unstable but have not been observed to decay are termed observationally stable . Currently there are 105 "stable" isotopes which are theoretically unstable, 40 of which have been observed in detail with no sign of decay,

798-800: Is the present limit of detection, as shorter-lived nuclides have not yet been detected undisputedly in nature except when recently produced, such as decay products or cosmic ray spallation. Many naturally occurring radioisotopes (another 53 or so, for a total of about 339) exhibit still shorter half-lives than 700 million years, but they are made freshly, as daughter products of decay processes of primordial nuclides (for example, radium from uranium), or from ongoing energetic reactions, such as cosmogenic nuclides produced by present bombardment of Earth by cosmic rays (for example, C made from nitrogen). Some isotopes that are classed as stable (i.e. no radioactivity has been observed for them) are predicted to have extremely long half-lives (sometimes 10 years or more). If

840-448: Is theoretically unstable. The positivity of energy release in these processes means they are allowed kinematically (they do not violate conservation of energy) and, thus, in principle, can occur. They are not observed due to strong but not absolute suppression, by spin-parity selection rules (for beta decays and isomeric transitions) or by the thickness of the potential barrier (for alpha and cluster decays and spontaneous fission). This

882-578: The Big Bang , or in generations of stars that preceded the formation of the Solar System . However, some stable isotopes also show abundance variations in the earth as a result of decay from long-lived radioactive nuclides. These decay-products are termed radiogenic isotopes, in order to distinguish them from the much larger group of 'non-radiogenic' isotopes. Of the known chemical elements, 80 elements have at least one stable nuclide. These comprise

SECTION 20

#1732764858025

924-428: The 251 total. Stable even–even nuclides number as many as three isobars for some mass numbers, and up to seven isotopes for some atomic numbers. Conversely, of the 251 known stable nuclides, only five have both an odd number of protons and odd number of neutrons: hydrogen-2 ( deuterium ), lithium-6 , boron-10 , nitrogen-14 , and tantalum-180m . Also, only four naturally occurring, radioactive odd–odd nuclides have

966-429: The 26 monoisotopic elements (those with only one stable isotope), all but one have an odd atomic number, and all but one has an even number of neutrons: the single exception to both rules is beryllium . The end of the stable elements occurs after lead , largely because nuclei with 128 neutrons—two neutrons above the magic number 126—are extraordinarily unstable and almost immediately alpha-decay. This contributes to

1008-402: The angle at which a boat will no longer stay upright Stability conditions (watercraft) of waterborne vessels Slope stability , a property of soil-covered slopes Stability Model of software design Natural sciences [ edit ] Band of stability , in physics, the scatter distribution of isotopes that do not decay Chemical stability , occurring when a substance is in

1050-402: The angle at which a boat will no longer stay upright Stability conditions (watercraft) of waterborne vessels Slope stability , a property of soil-covered slopes Stability Model of software design Natural sciences [ edit ] Band of stability , in physics, the scatter distribution of isotopes that do not decay Chemical stability , occurring when a substance is in

1092-604: The first 82 elements from hydrogen to lead , with the two exceptions, technetium (element 43) and promethium (element 61), that do not have any stable nuclides. As of 2024, there are total of 251 known "stable" nuclides. In this definition, "stable" means a nuclide that has never been observed to decay against the natural background. Thus, these elements have half-lives too long to be measured by any means, direct or indirect. Stable isotopes: These last 26 are thus called monoisotopic elements . The mean number of stable isotopes for elements which have at least one stable isotope

1134-426: The free dictionary. Stability may refer to: Mathematics [ edit ] Stability theory , the study of the stability of solutions to differential equations and dynamical systems Asymptotic stability Linear stability Lyapunov stability Orbital stability Structural stability Stability (probability) , a property of probability distributions Stability (learning theory) ,

1176-426: The free dictionary. Stability may refer to: Mathematics [ edit ] Stability theory , the study of the stability of solutions to differential equations and dynamical systems Asymptotic stability Linear stability Lyapunov stability Orbital stability Structural stability Stability (probability) , a property of probability distributions Stability (learning theory) ,

1218-564: The 💕 (Redirected from Stability (disambiguation) ) [REDACTED] The present page holds the title of a primary topic , and an article needs to be written about it. It is believed to qualify as a broad-concept article . It may be written directly at this page or drafted elsewhere and then moved to this title. Related titles should be described in Stability , while unrelated titles should be moved to Stability (disambiguation) . [REDACTED] [REDACTED] Look up stability in Wiktionary,

1260-505: The ground states of nuclei, except for tantalum-180m, which is a nuclear isomer or excited state. The ground state, tantalum-180, is radioactive with half-life 8 hours; in contrast, the decay of the nuclear isomer is extremely strongly forbidden by spin-parity selection rules. It has been reported by direct observation that the half-life of Ta to gamma decay must be >10 years. Other possible modes of Ta decay (beta decay, electron capture, and alpha decay) have also never been observed. It

1302-477: The half-life of a nuclide is comparable to, or greater than, the Earth's age (4.5 billion years), a significant amount will have survived since the formation of the Solar System , and then is said to be primordial . It will then contribute in that way to the natural isotopic composition of a chemical element. Primordial radioisotopes are easily detected with half-lives as short as 700 million years (e.g., U ). This

Stability - Misplaced Pages Continue

1344-483: The lightest in any case being Ar. Many "stable" nuclides are " metastable " in that they would release energy if they were to decay, and are expected to undergo very rare kinds of radioactive decay , including double beta decay . 146 nuclides from 62 elements with atomic numbers from 1 ( hydrogen ) through 66 ( dysprosium ) except 43 ( technetium ), 61 ( promethium ), 62 ( samarium ), and 63 ( europium ) are theoretically stable to any kind of nuclear decay — except for

1386-460: The link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Stability&oldid=1193344571 " Category : Disambiguation pages Hidden categories: Disambiguation pages to be converted to broad concept articles Short description is different from Wikidata All article disambiguation pages All disambiguation pages Stability (disambiguation) From Misplaced Pages,

1428-492: The link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Stability&oldid=1193344571 " Category : Disambiguation pages Hidden categories: Disambiguation pages to be converted to broad concept articles Short description is different from Wikidata All article disambiguation pages All disambiguation pages Band of stability The 80 elements with one or more stable isotopes comprise

1470-488: The nuclide. As in the case of tin, a magic number for Z , the atomic number, tends to increase the number of stable isotopes for the element. Just as in the case of electrons, which have the lowest energy state when they occur in pairs in a given orbital, nucleons (both protons and neutrons) exhibit a lower energy state when their number is even, rather than odd. This stability tends to prevent beta decay (in two steps) of many even–even nuclides into another even–even nuclide of

1512-422: The nuclides whose half-lives have lower bound. Double beta decay has only been listed when beta decay is not also possible. ^ Tantalum-180m is a "metastable isotope", meaning it is an excited nuclear isomer of tantalum-180. See isotopes of tantalum . However, the half-life of this nuclear isomer is so long that it has never been observed to decay, and it thus is an "observationally stable" primordial nuclide ,

1554-516: The predicted half-life falls into an experimentally accessible range, such isotopes have a chance to move from the list of stable nuclides to the radioactive category, once their activity is observed. For example, Bi and W were formerly classed as stable, but were found to be alpha -active in 2003. However, such nuclides do not change their status as primordial when they are found to be radioactive. Most stable isotopes on Earth are believed to have been formed in processes of nucleosynthesis , either in

1596-457: The same mass number but lower energy (and of course with two more protons and two fewer neutrons), because decay proceeding one step at a time would have to pass through an odd–odd nuclide of higher energy. Such nuclei thus instead undergo double beta decay (or are theorized to do so) with half-lives several orders of magnitude larger than the age of the universe . This makes for a larger number of stable even–even nuclides, which account for 150 of

1638-486: The tendency for a body moving with respect to a medium to point in the direction of motion Elastic stability, the resistance of a structural member to buckling Flight dynamics , including longitudinal stability Nyquist stability criterion , defining the limits of stability for pole-zero analysis in control systems Relaxed stability , the property of inherently unstable aircraft Ship stability in naval architecture includes Limit of positive stability ,

1680-486: The tendency for a body moving with respect to a medium to point in the direction of motion Elastic stability, the resistance of a structural member to buckling Flight dynamics , including longitudinal stability Nyquist stability criterion , defining the limits of stability for pole-zero analysis in control systems Relaxed stability , the property of inherently unstable aircraft Ship stability in naval architecture includes Limit of positive stability ,

1722-412: The theoretical possibility of proton decay , which has never been observed despite extensive searches for it; and spontaneous fission (SF), which is theoretically possible for the nuclides with atomic mass numbers ≥ 93. Besides SF, other theoretical decay routes for heavier elements include: These include all nuclides of mass 165 and greater. Argon-36 is the lightest known "stable" nuclide which

Stability - Misplaced Pages Continue

1764-459: The very short half-lives of astatine , radon , and francium . A similar phenomenon occurs to a much lesser extent with 84 neutrons—two neutrons above the magic number 82—where various isotopes of lanthanide elements alpha-decay. The 251 known stable nuclides include tantalum-180m, since even though its decay is automatically implied by its being "metastable", this has not been observed. All "stable" isotopes (stable by observation, not theory) are

#24975