Misplaced Pages

Structural engineering

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Structural engineering is a sub-discipline of civil engineering in which structural engineers are trained to design the 'bones and joints' that create the form and shape of human-made structures . Structural engineers also must understand and calculate the stability , strength, rigidity and earthquake-susceptibility of built structures for buildings and nonbuilding structures . The structural designs are integrated with those of other designers such as architects and building services engineer and often supervise the construction of projects by contractors on site. They can also be involved in the design of machinery, medical equipment, and vehicles where structural integrity affects functioning and safety. See glossary of structural engineering .

#813186

93-483: Structural engineering theory is based upon applied physical laws and empirical knowledge of the structural performance of different materials and geometries. Structural engineering design uses a number of relatively simple structural concepts to build complex structural systems . Structural engineers are responsible for making creative and efficient use of funds, structural elements and materials to achieve these goals. Structural engineering dates back to 2700 B.C. when

186-499: A Platonist by Stephen Hawking , a view Penrose discusses in his book, The Road to Reality . Hawking referred to himself as an "unashamed reductionist" and took issue with Penrose's views. Mathematics provides a compact and exact language used to describe the order in nature. This was noted and advocated by Pythagoras , Plato , Galileo, and Newton. Some theorists, like Hilary Putnam and Penelope Maddy , hold that logical truths, and therefore mathematical reasoning, depend on

279-443: A chartered engineer ). Civil engineering structures are often subjected to very extreme forces, such as large variations in temperature, dynamic loads such as waves or traffic, or high pressures from water or compressed gases. They are also often constructed in corrosive environments, such as at sea, in industrial facilities, or below ground. The forces which parts of a machine are subjected to can vary significantly and can do so at

372-488: A frame of reference that is in motion with respect to an observer; the special theory of relativity is concerned with motion in the absence of gravitational fields and the general theory of relativity with motion and its connection with gravitation . Both quantum theory and the theory of relativity find applications in many areas of modern physics. While physics itself aims to discover universal laws, its theories lie in explicit domains of applicability. Loosely speaking,

465-455: A basic awareness of the motions of the Sun, Moon, and stars. The stars and planets, believed to represent gods, were often worshipped. While the explanations for the observed positions of the stars were often unscientific and lacking in evidence, these early observations laid the foundation for later astronomy, as the stars were found to traverse great circles across the sky, which could not explain

558-741: A beam (divided along its length) to go into compression and the other part into tension. The compression part must be designed to resist buckling and crushing, while the tension part must be able to adequately resist the tension. A truss is a structure comprising members and connection points or nodes. When members are connected at nodes and forces are applied at nodes members can act in tension or compression. Members acting in compression are referred to as compression members or struts while members acting in tension are referred to as tension members or ties . Most trusses use gusset plates to connect intersecting elements. Gusset plates are relatively flexible and unable to transfer bending moments . The connection

651-504: A catenary in two directions. Structural engineering depends on the knowledge of materials and their properties, in order to understand how different materials support and resist loads. It also involves a knowledge of Corrosion engineering to avoid for example galvanic coupling of dissimilar materials. Common structural materials are: Physics Physics is the scientific study of matter , its fundamental constituents , its motion and behavior through space and time , and

744-708: A four or five-year undergraduate degree, followed by a minimum of three years of professional practice before being considered fully qualified. Structural engineers are licensed or accredited by different learned societies and regulatory bodies around the world (for example, the Institution of Structural Engineers in the UK). Depending on the degree course they have studied and/or the jurisdiction they are seeking licensure in, they may be accredited (or licensed) as just structural engineers, or as civil engineers, or as both civil and structural engineers. Another international organisation

837-634: A great rate. The forces which a boat or aircraft are subjected to vary enormously and will do so thousands of times over the structure's lifetime. The structural design must ensure that such structures can endure such loading for their entire design life without failing. These works can require mechanical structural engineering: Aerospace structure types include launch vehicles, ( Atlas , Delta , Titan), missiles (ALCM, Harpoon), Hypersonic vehicles (Space Shuttle), military aircraft (F-16, F-18) and commercial aircraft ( Boeing 777, MD-11). Aerospace structures typically consist of thin plates with stiffeners for

930-420: A hard-to-find physical meaning. The final mathematical solution has an easier-to-find meaning, because it is what the solver is looking for. Physics is a branch of fundamental science (also called basic science). Physics is also called " the fundamental science" because all branches of natural science including chemistry, astronomy, geology, and biology are constrained by laws of physics. Similarly, chemistry

1023-421: A more defined and formalized profession with the emergence of architecture as a distinct profession from engineering during the industrial revolution in the late 19th century. Until then, the architect and the structural engineer were usually one and the same thing – the master builder. Only with the development of specialized knowledge of structural theories that emerged during the 19th and early 20th centuries, did

SECTION 10

#1732782707814

1116-416: A partial collapse of the three-story schoolhouse that sent neighbors fleeing. The final collapse killed 94 people, mostly children. In other cases structural failures require careful study, and the results of these inquiries have resulted in improved practices and a greater understanding of the science of structural engineering. Some such studies are the result of forensic engineering investigations where

1209-427: A patient's medical state. Monitors may measure patient vital signs and other parameters including ECG , EEG , blood pressure, and dissolved gases in the blood; diagnostic medical equipment may also be used in the home for certain purposes, e.g. for the control of diabetes mellitus. A biomedical equipment technician (BMET) is a vital component of the healthcare delivery system. Employed primarily by hospitals, BMETs are

1302-465: A specific practical application as a goal, other than the deeper insight into the phenomema themselves. Applied physics is a general term for physics research and development that is intended for a particular use. An applied physics curriculum usually contains a few classes in an applied discipline, like geology or electrical engineering. It usually differs from engineering in that an applied physicist may not be designing something in particular, but rather

1395-426: A speed much less than the speed of light. These theories continue to be areas of active research today. Chaos theory , an aspect of classical mechanics, was discovered in the 20th century, three centuries after the original formulation of classical mechanics by Newton (1642–1727). These central theories are important tools for research into more specialized topics, and any physicist, regardless of their specialization,

1488-479: A structure to move freely with the ground. Civil structural engineering includes all structural engineering related to the built environment. It includes: The structural engineer is the lead designer on these structures, and often the sole designer. In the design of structures such as these, structural safety is of paramount importance (in the UK, designs for dams, nuclear power stations and bridges must be signed off by

1581-399: A subfield of mechanics , is used in the building of bridges and other static structures. The understanding and use of acoustics results in sound control and better concert halls; similarly, the use of optics creates better optical devices. An understanding of physics makes for more realistic flight simulators , video games, and movies, and is often critical in forensic investigations. With

1674-466: A substantial treatise on " Physics " – in the 4th century BC. Aristotelian physics was influential for about two millennia. His approach mixed some limited observation with logical deductive arguments, but did not rely on experimental verification of deduced statements. Aristotle's foundational work in Physics, though very imperfect, formed a framework against which later thinkers further developed

1767-460: Is IABSE(International Association for Bridge and Structural Engineering). The aim of that association is to exchange knowledge and to advance the practice of structural engineering worldwide in the service of the profession and society. Structural building engineering is primarily driven by the creative manipulation of materials and forms and the underlying mathematical and scientific ideas to achieve an end that fulfills its functional requirements and

1860-601: Is a structural and earthquake engineering software company founded in 1975 and based in Walnut Creek, California , with additional office location in New York . The structural analysis and design software CSI produce include SAP2000, CSiBridge, ETABS, SAFE, PERFORM-3D, and CSiCOL. One of Computer and Structure, Inc.'s software, ETABS, was used to create the mathematical model of the Burj Khalifa , currently

1953-409: Is a complex non-linear relationship. A beam may be defined as an element in which one dimension is much greater than the other two and the applied loads are usually normal to the main axis of the element. Beams and columns are called line elements and are often represented by simple lines in structural modeling. Beams are elements that carry pure bending only. Bending causes one part of the section of

SECTION 20

#1732782707814

2046-413: Is clear-cut, but not always obvious. For example, mathematical physics is the application of mathematics in physics. Its methods are mathematical, but its subject is physical. The problems in this field start with a " mathematical model of a physical situation " (system) and a "mathematical description of a physical law" that will be applied to that system. Every mathematical statement used for solving has

2139-419: Is concerned with bodies acted on by forces and bodies in motion and may be divided into statics (study of the forces on a body or bodies not subject to an acceleration), kinematics (study of motion without regard to its causes), and dynamics (study of motion and the forces that affect it); mechanics may also be divided into solid mechanics and fluid mechanics (known together as continuum mechanics ),

2232-400: Is concerned with the most basic units of matter; this branch of physics is also known as high-energy physics because of the extremely high energies necessary to produce many types of particles in particle accelerators . On this scale, ordinary, commonsensical notions of space, time, matter, and energy are no longer valid. The two chief theories of modern physics present a different picture of

2325-425: Is expected to be literate in them. These include classical mechanics, quantum mechanics, thermodynamics and statistical mechanics , electromagnetism , and special relativity. Classical physics includes the traditional branches and topics that were recognized and well-developed before the beginning of the 20th century—classical mechanics, acoustics , optics , thermodynamics, and electromagnetism. Classical mechanics

2418-429: Is generally concerned with matter and energy on the normal scale of observation, while much of modern physics is concerned with the behavior of matter and energy under extreme conditions or on a very large or very small scale. For example, atomic and nuclear physics study matter on the smallest scale at which chemical elements can be identified. The physics of elementary particles is on an even smaller scale since it

2511-417: Is needed to ensure that the assumed collapse mechanism is realistic. Shells derive their strength from their form and carry forces in compression in two directions. A dome is an example of a shell. They can be designed by making a hanging-chain model, which will act as a catenary in pure tension and inverting the form to achieve pure compression. Arches carry forces in compression in one direction only, which

2604-593: Is often called the central science because of its role in linking the physical sciences. For example, chemistry studies properties, structures, and reactions of matter (chemistry's focus on the molecular and atomic scale distinguishes it from physics ). Structures are formed because particles exert electrical forces on each other, properties include physical characteristics of given substances, and reactions are bound by laws of physics, like conservation of energy , mass , and charge . Fundamental physics seeks to better explain and understand phenomena in all spheres, without

2697-506: Is possible only in discrete steps proportional to their frequency. This, along with the photoelectric effect and a complete theory predicting discrete energy levels of electron orbitals , led to the theory of quantum mechanics improving on classical physics at very small scales. Quantum mechanics would come to be pioneered by Werner Heisenberg , Erwin Schrödinger and Paul Dirac . From this early work, and work in related fields,

2790-738: Is structurally safe when subjected to all the loads it could reasonably be expected to experience. This is subtly different from architectural design, which is driven by the creative manipulation of materials and forms, mass, space, volume, texture, and light to achieve an end which is aesthetic, functional, and often artistic. The structural design for a building must ensure that the building can stand up safely, able to function without excessive deflections or movements which may cause fatigue of structural elements, cracking or failure of fixtures, fittings or partitions, or discomfort for occupants. It must account for movements and forces due to temperature, creep , cracking, and imposed loads. It must also ensure that

2883-416: Is technically called a beam-column but practically, just a column). The design of a column must check the axial capacity of the element and the buckling capacity. The buckling capacity is the capacity of the element to withstand the propensity to buckle. Its capacity depends upon its geometry, material, and the effective length of the column, which depends upon the restraint conditions at the top and bottom of

Structural engineering - Misplaced Pages Continue

2976-431: Is using physics or conducting physics research with the aim of developing new technologies or solving a problem. The approach is similar to that of applied mathematics . Applied physicists use physics in scientific research. For instance, people working on accelerator physics might seek to build better particle detectors for research in theoretical physics. Physics is used heavily in engineering. For example, statics,

3069-418: Is usually arranged so that the lines of force in the members are coincident at the joint thus allowing the truss members to act in pure tension or compression. Trusses are usually used in large-span structures, where it would be uneconomical to use solid beams. Plates carry bending in two directions. A concrete flat slab is an example of a plate. Plates are understood by using continuum mechanics , but due to

3162-473: Is why it is appropriate to build arches out of masonry. They are designed by ensuring that the line of thrust of the force remains within the depth of the arch. It is mainly used to increase the bountifulness of any structure. Catenaries derive their strength from their form and carry transverse forces in pure tension by deflecting (just as a tightrope will sag when someone walks on it). They are almost always cable or fabric structures. A fabric structure acts as

3255-536: The Industrial Revolution as energy needs increased. The laws comprising classical physics remain widely used for objects on everyday scales travelling at non-relativistic speeds, since they provide a close approximation in such situations, and theories such as quantum mechanics and the theory of relativity simplify to their classical equivalents at such scales. Inaccuracies in classical mechanics for very small objects and very high velocities led to

3348-660: The Latin physica ('study of nature'), which itself is a borrowing of the Greek φυσική ( phusikḗ 'natural science'), a term derived from φύσις ( phúsis 'origin, nature, property'). Astronomy is one of the oldest natural sciences . Early civilizations dating before 3000 BCE, such as the Sumerians , ancient Egyptians , and the Indus Valley Civilisation , had a predictive knowledge and

3441-608: The Northern Hemisphere . Natural philosophy has its origins in Greece during the Archaic period (650 BCE – 480 BCE), when pre-Socratic philosophers like Thales rejected non-naturalistic explanations for natural phenomena and proclaimed that every event had a natural cause. They proposed ideas verified by reason and observation, and many of their hypotheses proved successful in experiment; for example, atomism

3534-637: The Scientific Revolution in the 17th century, these natural sciences branched into separate research endeavors. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry , and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms studied by other sciences and suggest new avenues of research in these and other academic disciplines such as mathematics and philosophy. Advances in physics often enable new technologies . For example, advances in

3627-619: The Standard Model of particle physics was derived. Following the discovery of a particle with properties consistent with the Higgs boson at CERN in 2012, all fundamental particles predicted by the standard model, and no others, appear to exist; however, physics beyond the Standard Model , with theories such as supersymmetry , is an active area of research. Areas of mathematics in general are important to this field, such as

3720-439: The camera obscura (his thousand-year-old version of the pinhole camera ) and delved further into the way the eye itself works. Using the knowledge of previous scholars, he began to explain how light enters the eye. He asserted that the light ray is focused, but the actual explanation of how light projected to the back of the eye had to wait until 1604. His Treatise on Light explained the camera obscura , hundreds of years before

3813-579: The empirical world. This is usually combined with the claim that the laws of logic express universal regularities found in the structural features of the world, which may explain the peculiar relation between these fields. Physics uses mathematics to organise and formulate experimental results. From those results, precise or estimated solutions are obtained, or quantitative results, from which new predictions can be made and experimentally confirmed or negated. The results from physics experiments are numerical data, with their units of measure and estimates of

Structural engineering - Misplaced Pages Continue

3906-543: The standard consensus that the laws of physics are universal and do not change with time, physics can be used to study things that would ordinarily be mired in uncertainty . For example, in the study of the origin of the Earth, a physicist can reasonably model Earth's mass, temperature, and rate of rotation, as a function of time allowing the extrapolation forward or backward in time and so predict future or prior events. It also allows for simulations in engineering that speed up

3999-435: The 16th and 17th centuries, and Isaac Newton 's discovery and unification of the laws of motion and universal gravitation (that would come to bear his name). Newton also developed calculus , the mathematical study of continuous change, which provided new mathematical methods for solving physical problems. The discovery of laws in thermodynamics , chemistry , and electromagnetics resulted from research efforts during

4092-612: The Renaissance and have since developed into computer-based applications pioneered in the 1970s. The history of structural engineering contains many collapses and failures. Sometimes this is due to obvious negligence, as in the case of the Pétion-Ville school collapse , in which Rev. Fortin Augustin " constructed the building all by himself, saying he didn't need an engineer as he had good knowledge of construction" following

4185-511: The attacks from invaders and continued to advance various fields of learning, including physics. In the sixth century, Isidore of Miletus created an important compilation of Archimedes ' works that are copied in the Archimedes Palimpsest . In sixth-century Europe John Philoponus , a Byzantine scholar, questioned Aristotle 's teaching of physics and noted its flaws. He introduced the theory of impetus . Aristotle's physics

4278-409: The column. The effective length is K ∗ l {\displaystyle K*l} where l {\displaystyle l} is the real length of the column and K is the factor dependent on the restraint conditions. The capacity of a column to carry axial load depends on the degree of bending it is subjected to, and vice versa. This is represented on an interaction chart and

4371-440: The complexity involved they are most often designed using a codified empirical approach, or computer analysis. They can also be designed with yield line theory, where an assumed collapse mechanism is analyzed to give an upper bound on the collapse load. This technique is used in practice but because the method provides an upper-bound (i.e. an unsafe prediction of the collapse load) for poorly conceived collapse mechanisms, great care

4464-434: The concepts of space, time, and matter from that presented by classical physics. Classical mechanics approximates nature as continuous, while quantum theory is concerned with the discrete nature of many phenomena at the atomic and subatomic level and with the complementary aspects of particles and waves in the description of such phenomena. The theory of relativity is concerned with the description of phenomena that take place in

4557-409: The constant speed predicted by Maxwell's equations of electromagnetism. This discrepancy was corrected by Einstein's theory of special relativity , which replaced classical mechanics for fast-moving bodies and allowed for a constant speed of light. Black-body radiation provided another problem for classical physics, which was corrected when Planck proposed that the excitation of material oscillators

4650-602: The design is practically buildable within acceptable manufacturing tolerances of the materials. It must allow the architecture to work, and the building services to fit within the building and function (air conditioning, ventilation, smoke extract, electrics, lighting, etc.). The structural design of a modern building can be extremely complex and often requires a large team to complete. Structural engineering specialties for buildings include: Earthquake engineering structures are those engineered to withstand earthquakes . The main objectives of earthquake engineering are to understand

4743-456: The design of structures, with the functionality to assist in the drawing, analyzing and designing of structures with maximum precision; examples include AutoCAD , StaadPro, ETABS , Prokon, Revit Structure, Inducta RCB, etc. Such software may also take into consideration environmental loads, such as earthquakes and winds. Structural engineers are responsible for engineering design and structural analysis. Entry-level structural engineers may design

SECTION 50

#1732782707814

4836-466: The development of a new technology. There is also considerable interdisciplinarity , so many other important fields are influenced by physics (e.g., the fields of econophysics and sociophysics ). Physicists use the scientific method to test the validity of a physical theory . By using a methodical approach to compare the implications of a theory with the conclusions drawn from its related experiments and observations, physicists are better able to test

4929-429: The development of modern physics in the 20th century. Modern physics began in the early 20th century with the work of Max Planck in quantum theory and Albert Einstein 's theory of relativity. Both of these theories came about due to inaccuracies in classical mechanics in certain situations. Classical mechanics predicted that the speed of light depends on the motion of the observer, which could not be resolved with

5022-407: The development of new experiments (and often related equipment). Physicists who work at the interplay of theory and experiment are called phenomenologists , who study complex phenomena observed in experiment and work to relate them to a fundamental theory . Theoretical physics has historically taken inspiration from philosophy; electromagnetism was unified this way. Beyond the known universe,

5115-682: The errors in the measurements. Technologies based on mathematics, like computation have made computational physics an active area of research. Ontology is a prerequisite for physics, but not for mathematics. It means physics is ultimately concerned with descriptions of the real world, while mathematics is concerned with abstract patterns, even beyond the real world. Thus physics statements are synthetic, while mathematical statements are analytic. Mathematics contains hypotheses, while physics contains theories. Mathematics statements have to be only logically true, while predictions of physics statements must match observed and experimental data. The distinction

5208-429: The external surfaces, bulkheads, and frames to support the shape and fasteners such as welds, rivets, screws, and bolts to hold the components together. A nanostructure is an object of intermediate size between molecular and microscopic (micrometer-sized) structures. In describing nanostructures it is necessary to differentiate between the number of dimensions on the nanoscale. Nanotextured surfaces have one dimension on

5301-895: The field of theoretical physics also deals with hypothetical issues, such as parallel universes , a multiverse , and higher dimensions . Theorists invoke these ideas in hopes of solving particular problems with existing theories; they then explore the consequences of these ideas and work toward making testable predictions. Experimental physics expands, and is expanded by, engineering and technology. Experimental physicists who are involved in basic research design and perform experiments with equipment such as particle accelerators and lasers , whereas those involved in applied research often work in industry, developing technologies such as magnetic resonance imaging (MRI) and transistors . Feynman has noted that experimentalists may seek areas that have not been explored well by theorists. Computers and Structures Computers and Structures, Inc. (CSI)

5394-415: The field. His approach is entirely superseded today. He explained ideas such as motion (and gravity ) with the theory of four elements . Aristotle believed that each of the four classical elements (air, fire, water, earth) had its own natural place. Because of their differing densities, each element will revert to its own specific place in the atmosphere. So, because of their weights, fire would be at

5487-670: The individual structural elements of a structure, such as the beams and columns of a building. More experienced engineers may be responsible for the structural design and integrity of an entire system, such as a building. Structural engineers often specialize in particular types of structures, such as buildings, bridges, pipelines, industrial, tunnels, vehicles, ships, aircraft, and spacecraft. Structural engineers who specialize in buildings may specialize in particular construction materials such as concrete, steel, wood, masonry, alloys and composites. Structural engineering has existed since humans first started to construct their structures. It became

5580-461: The interaction of structures with the shaking ground, foresee the consequences of possible earthquakes, and design and construct the structures to perform during an earthquake. Earthquake-proof structures are not necessarily extremely strong like the El Castillo pyramid at Chichen Itza shown above. One important tool of earthquake engineering is base isolation , which allows the base of

5673-412: The knowledge successfully a structural engineer generally requires detailed knowledge of relevant empirical and theoretical design codes , the techniques of structural analysis , as well as some knowledge of the corrosion resistance of the materials and structures, especially when those structures are exposed to the external environment. Since the 1990s, specialist software has become available to aid in

SECTION 60

#1732782707814

5766-400: The latter include such branches as hydrostatics , hydrodynamics and pneumatics . Acoustics is the study of how sound is produced, controlled, transmitted and received. Important modern branches of acoustics include ultrasonics , the study of sound waves of very high frequency beyond the range of human hearing; bioacoustics , the physics of animal calls and hearing, and electroacoustics ,

5859-490: The laws of classical physics accurately describe systems whose important length scales are greater than the atomic scale and whose motions are much slower than the speed of light. Outside of this domain, observations do not match predictions provided by classical mechanics. Einstein contributed the framework of special relativity, which replaced notions of absolute time and space with spacetime and allowed an accurate description of systems whose components have speeds approaching

5952-412: The manipulation of audible sound waves using electronics. Optics, the study of light, is concerned not only with visible light but also with infrared and ultraviolet radiation , which exhibit all of the phenomena of visible light except visibility, e.g., reflection, refraction, interference, diffraction, dispersion, and polarization of light. Heat is a form of energy, the internal energy possessed by

6045-478: The micrometer range. The term 'nanostructure' is often used when referring to magnetic technology. Medical equipment (also known as armamentarium) is designed to aid in the diagnosis, monitoring or treatment of medical conditions. There are several basic types: diagnostic equipment includes medical imaging machines, used to aid in diagnosis; equipment includes infusion pumps, medical lasers, and LASIK surgical machines ; medical monitors allow medical staff to measure

6138-704: The modern development of photography. The seven-volume Book of Optics ( Kitab al-Manathir ) influenced thinking across disciplines from the theory of visual perception to the nature of perspective in medieval art, in both the East and the West, for more than 600 years. This included later European scholars and fellow polymaths, from Robert Grosseteste and Leonardo da Vinci to Johannes Kepler . The translation of The Book of Optics had an impact on Europe. From it, later European scholars were able to build devices that replicated those Ibn al-Haytham had built and understand

6231-508: The nanoscale, i.e., only the thickness of the surface of an object is between 0.1 and 100 nm. Nanotubes have two dimensions on the nanoscale, i.e., the diameter of the tube is between 0.1 and 100 nm; its length could be much greater. Finally, spherical nanoparticles have three dimensions on the nanoscale, i.e., the particle is between 0.1 and 100 nm in each spatial dimension. The terms nanoparticles and ultrafine particles (UFP) often are used synonymously although UFP can reach into

6324-631: The original engineer seems to have done everything in accordance with the state of the profession and acceptable practice yet a failure still eventuated. A famous case of structural knowledge and practice being advanced in this manner can be found in a series of failures involving box girders which collapsed in Australia during the 1970s. Structural engineering depends upon a detailed knowledge of applied mechanics , materials science , and applied mathematics to understand and predict how structures support and resist self-weight and imposed loads. To apply

6417-468: The other Philoponus' criticism of Aristotelian principles of physics served as an inspiration for Galileo Galilei ten centuries later, during the Scientific Revolution . Galileo cited Philoponus substantially in his works when arguing that Aristotelian physics was flawed. In the 1300s Jean Buridan , a teacher in the faculty of arts at the University of Paris , developed the concept of impetus. It

6510-459: The other, you will see that the ratio of the times required for the motion does not depend on the ratio of the weights, but that the difference in time is a very small one. And so, if the difference in the weights is not considerable, that is, of one is, let us say, double the other, there will be no difference, or else an imperceptible difference, in time, though the difference in weight is by no means negligible, with one body weighing twice as much as

6603-572: The particles of which a substance is composed; thermodynamics deals with the relationships between heat and other forms of energy. Electricity and magnetism have been studied as a single branch of physics since the intimate connection between them was discovered in the early 19th century; an electric current gives rise to a magnetic field , and a changing magnetic field induces an electric current. Electrostatics deals with electric charges at rest, electrodynamics with moving charges, and magnetostatics with magnetic poles at rest. Classical physics

6696-411: The people responsible for maintaining a facility's medical equipment. Any structure is essentially made up of only a small number of different types of elements: Many of these elements can be classified according to form (straight, plane / curve) and dimensionality (one-dimensional / two-dimensional): Columns are elements that carry only axial force (compression) or both axial force and bending (which

6789-602: The positions of the planets . According to Asger Aaboe , the origins of Western astronomy can be found in Mesopotamia , and all Western efforts in the exact sciences are descended from late Babylonian astronomy . Egyptian astronomers left monuments showing knowledge of the constellations and the motions of the celestial bodies, while Greek poet Homer wrote of various celestial objects in his Iliad and Odyssey ; later Greek astronomers provided names, which are still used today, for most constellations visible from

6882-450: The professional structural engineers come into existence. The role of a structural engineer today involves a significant understanding of both static and dynamic loading and the structures that are available to resist them. The complexity of modern structures often requires a great deal of creativity from the engineer in order to ensure the structures support and resist the loads they are subjected to. A structural engineer will typically have

6975-415: The pyramid, whilst primarily gained from its shape, relies also on the strength of the stone from which it is constructed, and its ability to support the weight of the stone above it. The limestone blocks were often taken from a quarry near the building site and have a compressive strength from 30 to 250 MPa (MPa = Pa × 10). Therefore, the structural strength of the pyramid stems from the material properties of

7068-399: The related entities of energy and force . Physics is one of the most fundamental scientific disciplines. A scientist who specializes in the field of physics is called a physicist . Physics is one of the oldest academic disciplines . Over much of the past two millennia, physics, chemistry , biology , and certain branches of mathematics were a part of natural philosophy , but during

7161-440: The speed being proportional to the weight and the speed of the object that is falling depends inversely on the density object it is falling through (e.g. density of air). He also stated that, when it comes to violent motion (motion of an object when a force is applied to it by a second object) that the speed that object moves, will only be as fast or strong as the measure of force applied to it. The problem of motion and its causes

7254-412: The speed of light. Planck, Schrödinger, and others introduced quantum mechanics, a probabilistic notion of particles and interactions that allowed an accurate description of atomic and subatomic scales. Later, quantum field theory unified quantum mechanics and special relativity. General relativity allowed for a dynamical, curved spacetime, with which highly massive systems and the large-scale structure of

7347-434: The step pyramid for Pharaoh Djoser was built by Imhotep , the first engineer in history known by name. Pyramids were the most common major structures built by ancient civilizations because the structural form of a pyramid is inherently stable and can be almost infinitely scaled (as opposed to most other structural forms, which cannot be linearly increased in size in proportion to increased loads). The structural stability of

7440-463: The stones from which it was built rather than the pyramid's geometry. Throughout ancient and medieval history most architectural design and construction were carried out by artisans, such as stonemasons and carpenters, rising to the role of master builder. No theory of structures existed, and understanding of how structures stood up was extremely limited, and based almost entirely on empirical evidence of 'what had worked before' and intuition . Knowledge

7533-412: The study of probabilities and groups . Physics deals with a wide variety of systems, although certain theories are used by all physicists. Each of these theories was experimentally tested numerous times and found to be an adequate approximation of nature. For instance, the theory of classical mechanics accurately describes the motion of objects, provided they are much larger than atoms and moving at

7626-444: The top, air underneath fire, then water, then lastly earth. He also stated that when a small amount of one element enters the natural place of another, the less abundant element will automatically go towards its own natural place. For example, if there is a fire on the ground, the flames go up into the air in an attempt to go back into its natural place where it belongs. His laws of motion included: that heavier objects will fall faster,

7719-423: The understanding of electromagnetism , solid-state physics , and nuclear physics led directly to the development of technologies that have transformed modern society, such as television, computers, domestic appliances , and nuclear weapons ; advances in thermodynamics led to the development of industrialization; and advances in mechanics inspired the development of calculus . The word physics comes from

7812-423: The universe can be well-described. General relativity has not yet been unified with the other fundamental descriptions; several candidate theories of quantum gravity are being developed. Physics, as with the rest of science, relies on the philosophy of science and its " scientific method " to advance knowledge of the physical world. The scientific method employs a priori and a posteriori reasoning as well as

7905-573: The use of Bayesian inference to measure the validity of a given theory. Study of the philosophical issues surrounding physics, the philosophy of physics , involves issues such as the nature of space and time , determinism , and metaphysical outlooks such as empiricism , naturalism , and realism . Many physicists have written about the philosophical implications of their work, for instance Laplace , who championed causal determinism , and Erwin Schrödinger , who wrote on quantum mechanics. The mathematical physicist Roger Penrose has been called

7998-988: The validity of a theory in a logical, unbiased, and repeatable way. To that end, experiments are performed and observations are made in order to determine the validity or invalidity of a theory. A scientific law is a concise verbal or mathematical statement of a relation that expresses a fundamental principle of some theory, such as Newton's law of universal gravitation. Theorists seek to develop mathematical models that both agree with existing experiments and successfully predict future experimental results, while experimentalists devise and perform experiments to test theoretical predictions and explore new phenomena. Although theory and experiment are developed separately, they strongly affect and depend upon each other. Progress in physics frequently comes about when experimental results defy explanation by existing theories, prompting intense focus on applicable modelling, and when new theories generate experimentally testable predictions , which inspire

8091-579: The way vision works. Physics became a separate science when early modern Europeans used experimental and quantitative methods to discover what are now considered to be the laws of physics . Major developments in this period include the replacement of the geocentric model of the Solar System with the heliocentric Copernican model , the laws governing the motion of planetary bodies (determined by Kepler between 1609 and 1619), Galileo's pioneering work on telescopes and observational astronomy in

8184-399: The works of many scientists like Ibn Sahl , Al-Kindi , Ibn al-Haytham , Al-Farisi and Avicenna . The most notable work was The Book of Optics (also known as Kitāb al-Manāẓir), written by Ibn al-Haytham, in which he presented the alternative to the ancient Greek idea about vision. In his Treatise on Light as well as in his Kitāb al-Manāẓir , he presented a study of the phenomenon of

8277-550: Was a step toward the modern ideas of inertia and momentum. Islamic scholarship inherited Aristotelian physics from the Greeks and during the Islamic Golden Age developed it further, especially placing emphasis on observation and a priori reasoning, developing early forms of the scientific method . The most notable innovations under Islamic scholarship were in the field of optics and vision, which came from

8370-513: Was found to be correct approximately 2000 years after it was proposed by Leucippus and his pupil Democritus . During the classical period in Greece (6th, 5th and 4th centuries BCE) and in Hellenistic times , natural philosophy developed along many lines of inquiry. Aristotle ( Greek : Ἀριστοτέλης , Aristotélēs ) (384–322 BCE), a student of Plato , wrote on many subjects, including

8463-417: Was not scrutinized until Philoponus appeared; unlike Aristotle, who based his physics on verbal argument, Philoponus relied on observation. On Aristotle's physics Philoponus wrote: But this is completely erroneous, and our view may be corroborated by actual observation more effectively than by any sort of verbal argument. For if you let fall from the same height two weights of which one is many times as heavy as

8556-564: Was retained by guilds and seldom supplanted by advances. Structures were repetitive, and increases in scale were incremental. No record exists of the first calculations of the strength of structural members or the behavior of structural material, but the profession of a structural engineer only really took shape with the Industrial Revolution and the re-invention of concrete (see History of Concrete ). The physical sciences underlying structural engineering began to be understood in

8649-548: Was studied carefully, leading to the philosophical notion of a " prime mover " as the ultimate source of all motion in the world (Book 8 of his treatise Physics ). The Western Roman Empire fell to invaders and internal decay in the fifth century, resulting in a decline in intellectual pursuits in western Europe. By contrast, the Eastern Roman Empire (usually known as the Byzantine Empire ) resisted

#813186