Misplaced Pages

Paradox

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictory or a logically unacceptable conclusion. A paradox usually involves contradictory-yet-interrelated elements that exist simultaneously and persist over time. They result in "persistent contradiction between interdependent elements" leading to a lasting "unity of opposites".

#568431

198-483: In logic , many paradoxes exist that are known to be invalid arguments, yet are nevertheless valuable in promoting critical thinking , while other paradoxes have revealed errors in definitions that were assumed to be rigorous, and have caused axioms of mathematics and logic to be re-examined. One example is Russell's paradox , which questions whether a "list of all lists that do not contain themselves" would include itself and showed that attempts to found set theory on

396-501: A r y ) ∧ Q ( J o h n ) ) {\displaystyle \exists Q(Q(Mary)\land Q(John))} " . In this case, the existential quantifier is applied to the predicate variable " Q {\displaystyle Q} " . The added expressive power is especially useful for mathematics since it allows for more succinct formulations of mathematical theories. But it has drawbacks in regard to its meta-logical properties and ontological implications, which

594-501: A r y ) ∧ Q ( J o h n ) ) {\displaystyle \exists Q(Q(Mary)\land Q(John))} " . In this case, the existential quantifier is applied to the predicate variable " Q {\displaystyle Q} " . The added expressive power is especially useful for mathematics since it allows for more succinct formulations of mathematical theories. But it has drawbacks in regard to its meta-logical properties and ontological implications, which

792-444: A countable noun , the term "a logic" refers to a specific logical formal system that articulates a proof system . Logic plays a central role in many fields, such as philosophy , mathematics , computer science , and linguistics . Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to

990-505: A proof system . Logic plays a central role in many fields, such as philosophy , mathematics , computer science , and linguistics . Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to work". Premises and conclusions express propositions or claims that can be true or false. An important feature of propositions

1188-483: A sentence , idea or formula refers to itself. Although statements can be self referential without being paradoxical ("This statement is written in English" is a true and non-paradoxical self-referential statement), self-reference is a common element of paradoxes. One example occurs in the liar paradox , which is commonly formulated as the self-referential statement "This statement is false". Another example occurs in

1386-445: A central role in many arguments found in everyday discourse and the sciences. Ampliative arguments are not automatically incorrect. Instead, they just follow different standards of correctness. The support they provide for their conclusion usually comes in degrees. This means that strong ampliative arguments make their conclusion very likely while weak ones are less certain. As a consequence, the line between correct and incorrect arguments

1584-445: A central role in many arguments found in everyday discourse and the sciences. Ampliative arguments are not automatically incorrect. Instead, they just follow different standards of correctness. The support they provide for their conclusion usually comes in degrees. This means that strong ampliative arguments make their conclusion very likely while weak ones are less certain. As a consequence, the line between correct and incorrect arguments

1782-480: A certain cost: the premises support the conclusion in the sense that they make its truth more likely but they do not ensure its truth. This means that the conclusion of an ampliative argument may be false even though all its premises are true. This characteristic is closely related to non-monotonicity and defeasibility : it may be necessary to retract an earlier conclusion upon receiving new information or in light of new inferences drawn. Ampliative reasoning plays

1980-480: A certain cost: the premises support the conclusion in the sense that they make its truth more likely but they do not ensure its truth. This means that the conclusion of an ampliative argument may be false even though all its premises are true. This characteristic is closely related to non-monotonicity and defeasibility : it may be necessary to retract an earlier conclusion upon receiving new information or in light of new inferences drawn. Ampliative reasoning plays

2178-573: A complex argument to be successful, each link of the chain has to be successful. Arguments and inferences are either correct or incorrect. If they are correct then their premises support their conclusion. In the incorrect case, this support is missing. It can take different forms corresponding to the different types of reasoning . The strongest form of support corresponds to deductive reasoning . But even arguments that are not deductively valid may still be good arguments because their premises offer non-deductive support to their conclusions. For such cases,

SECTION 10

#1732773130569

2376-573: A complex argument to be successful, each link of the chain has to be successful. Arguments and inferences are either correct or incorrect. If they are correct then their premises support their conclusion. In the incorrect case, this support is missing. It can take different forms corresponding to the different types of reasoning . The strongest form of support corresponds to deductive reasoning . But even arguments that are not deductively valid may still be good arguments because their premises offer non-deductive support to their conclusions. For such cases,

2574-425: A conclusion. Logic is interested in whether arguments are correct, i.e. whether their premises support the conclusion. These general characterizations apply to logic in the widest sense, i.e., to both formal and informal logic since they are both concerned with assessing the correctness of arguments. Formal logic is the traditionally dominant field, and some logicians restrict logic to formal logic. Formal logic

2772-425: A conclusion. Logic is interested in whether arguments are correct, i.e. whether their premises support the conclusion. These general characterizations apply to logic in the widest sense, i.e., to both formal and informal logic since they are both concerned with assessing the correctness of arguments. Formal logic is the traditionally dominant field, and some logicians restrict logic to formal logic. Formal logic

2970-428: A contradiction, was instrumental in the development of modern logic and set theory. Thought-experiments can also yield interesting paradoxes. The grandfather paradox , for example, would arise if a time-traveler were to kill his own grandfather before his mother or father had been conceived, thereby preventing his own birth. This is a specific example of the more general observation of the butterfly effect , or that

3168-416: A distinction between logical paradoxes and semantic paradoxes, with Russell's paradox belonging to the former category, and the liar paradox and Grelling's paradoxes to the latter. Ramsey introduced the by-now standard distinction between logical and semantical contradictions. Logical contradictions involve mathematical or logical terms like class and number , and hence show that our logic or mathematics

3366-510: A formal language together with a set of axioms and a proof system used to draw inferences from these axioms. In logic, axioms are statements that are accepted without proof. They are used to justify other statements. Some theorists also include a semantics that specifies how the expressions of the formal language relate to real objects. Starting in the late 19th century, many new formal systems have been proposed. A formal language consists of an alphabet and syntactic rules. The alphabet

3564-510: A formal language together with a set of axioms and a proof system used to draw inferences from these axioms. In logic, axioms are statements that are accepted without proof. They are used to justify other statements. Some theorists also include a semantics that specifies how the expressions of the formal language relate to real objects. Starting in the late 19th century, many new formal systems have been proposed. A formal language consists of an alphabet and syntactic rules. The alphabet

3762-686: A formal language while informal logic investigates them in their original form. On this view, the argument "Birds fly. Tweety is a bird. Therefore, Tweety flies." belongs to natural language and is examined by informal logic. But the formal translation "(1) ∀ x ( B i r d ( x ) → F l i e s ( x ) ) {\displaystyle \forall x(Bird(x)\to Flies(x))} ; (2) B i r d ( T w e e t y ) {\displaystyle Bird(Tweety)} ; (3) F l i e s ( T w e e t y ) {\displaystyle Flies(Tweety)} "

3960-686: A formal language while informal logic investigates them in their original form. On this view, the argument "Birds fly. Tweety is a bird. Therefore, Tweety flies." belongs to natural language and is examined by informal logic. But the formal translation "(1) ∀ x ( B i r d ( x ) → F l i e s ( x ) ) {\displaystyle \forall x(Bird(x)\to Flies(x))} ; (2) B i r d ( T w e e t y ) {\displaystyle Bird(Tweety)} ; (3) F l i e s ( T w e e t y ) {\displaystyle Flies(Tweety)} "

4158-415: A given argument is valid. Because of the reliance on formal language, natural language arguments cannot be studied directly. Instead, they need to be translated into formal language before their validity can be assessed. The term "logic" can also be used in a slightly different sense as a countable noun. In this sense, a logic is a logical formal system. Distinct logics differ from each other concerning

SECTION 20

#1732773130569

4356-415: A given argument is valid. Because of the reliance on formal language, natural language arguments cannot be studied directly. Instead, they need to be translated into formal language before their validity can be assessed. The term "logic" can also be used in a slightly different sense as a countable noun. In this sense, a logic is a logical formal system. Distinct logics differ from each other concerning

4554-551: A given conclusion based on a set of premises. This distinction does not just apply to logic but also to games. In chess , for example, the definitory rules dictate that bishops may only move diagonally. The strategic rules, on the other hand, describe how the allowed moves may be used to win a game, for instance, by controlling the center and by defending one's king . It has been argued that logicians should give more emphasis to strategic rules since they are highly relevant for effective reasoning. A formal system of logic consists of

4752-551: A given conclusion based on a set of premises. This distinction does not just apply to logic but also to games. In chess , for example, the definitory rules dictate that bishops may only move diagonally. The strategic rules, on the other hand, describe how the allowed moves may be used to win a game, for instance, by controlling the center and by defending one's king . It has been argued that logicians should give more emphasis to strategic rules since they are highly relevant for effective reasoning. A formal system of logic consists of

4950-402: A great variety of topics. They include metaphysical theses about ontological categories and problems of scientific explanation. But in a more narrow sense, it is identical to term logic or syllogistics. A syllogism is a form of argument involving three propositions: two premises and a conclusion. Each proposition has three essential parts: a subject , a predicate, and a copula connecting

5148-402: A great variety of topics. They include metaphysical theses about ontological categories and problems of scientific explanation. But in a more narrow sense, it is identical to term logic or syllogistics. A syllogism is a form of argument involving three propositions: two premises and a conclusion. Each proposition has three essential parts: a subject , a predicate, and a copula connecting

5346-614: A logical connective like "and" to form a new complex proposition. In Aristotelian logic, the subject can be universal , particular , indefinite , or singular . For example, the term "all humans" is a universal subject in the proposition "all humans are mortal". A similar proposition could be formed by replacing it with the particular term "some humans", the indefinite term "a human", or the singular term "Socrates". Aristotelian logic only includes predicates for simple properties of entities. But it lacks predicates corresponding to relations between entities. The predicate can be linked to

5544-614: A logical connective like "and" to form a new complex proposition. In Aristotelian logic, the subject can be universal , particular , indefinite , or singular . For example, the term "all humans" is a universal subject in the proposition "all humans are mortal". A similar proposition could be formed by replacing it with the particular term "some humans", the indefinite term "a human", or the singular term "Socrates". Aristotelian logic only includes predicates for simple properties of entities. But it lacks predicates corresponding to relations between entities. The predicate can be linked to

5742-431: A result that appears counter to intuition , but is demonstrated to be true nonetheless: A falsidical paradox establishes a result that appears false and actually is false, due to a fallacy in the demonstration. Therefore, falsidical paradoxes can be classified as fallacious arguments : An antinomy is a paradox which reaches a self-contradictory result by properly applying accepted ways of reasoning. For example,

5940-664: A sentence like "yesterday was Sunday and the weather was good". It is only true if both of its input variables, p {\displaystyle p} ("yesterday was Sunday") and q {\displaystyle q} ("the weather was good"), are true. In all other cases, the expression as a whole is false. Other important logical connectives are ¬ {\displaystyle \lnot } ( not ), ∨ {\displaystyle \lor } ( or ), → {\displaystyle \to } ( if...then ), and ↑ {\displaystyle \uparrow } ( Sheffer stroke ). Given

6138-664: A sentence like "yesterday was Sunday and the weather was good". It is only true if both of its input variables, p {\displaystyle p} ("yesterday was Sunday") and q {\displaystyle q} ("the weather was good"), are true. In all other cases, the expression as a whole is false. Other important logical connectives are ¬ {\displaystyle \lnot } ( not ), ∨ {\displaystyle \lor } ( or ), → {\displaystyle \to } ( if...then ), and ↑ {\displaystyle \uparrow } ( Sheffer stroke ). Given

Paradox - Misplaced Pages Continue

6336-428: A time-traveler killing his own grandfather, it is the inconsistency of defining the past to which he returns as being somehow different from the one that leads up to the future from which he begins his trip, but also insisting that he must have come to that past from the same future as the one that it leads up to. W. V. O. Quine (1962) distinguished between three classes of paradoxes: A veridical paradox produces

6534-410: A time-traveller's interaction with the past—however slight—would entail making changes that would, in turn, change the future in which the time-travel was yet to occur, and would thus change the circumstances of the time-travel itself. Often a seemingly paradoxical conclusion arises from an inconsistent or inherently contradictory definition of the initial premise. In the case of that apparent paradox of

6732-420: Is sound when its proof system cannot derive a conclusion from a set of premises unless it is semantically entailed by them. In other words, its proof system cannot lead to false conclusions, as defined by the semantics. A system is complete when its proof system can derive every conclusion that is semantically entailed by its premises. In other words, its proof system can lead to any true conclusion, as defined by

6930-420: Is sound when its proof system cannot derive a conclusion from a set of premises unless it is semantically entailed by them. In other words, its proof system cannot lead to false conclusions, as defined by the semantics. A system is complete when its proof system can derive every conclusion that is semantically entailed by its premises. In other words, its proof system can lead to any true conclusion, as defined by

7128-421: Is a red planet". For most types of logic, it is accepted that premises and conclusions have to be truth-bearers . This means that they have a truth value : they are either true or false. Contemporary philosophy generally sees them either as propositions or as sentences . Propositions are the denotations of sentences and are usually seen as abstract objects . For example, the English sentence "the tree

7326-421: Is a red planet". For most types of logic, it is accepted that premises and conclusions have to be truth-bearers . This means that they have a truth value : they are either true or false. Contemporary philosophy generally sees them either as propositions or as sentences . Propositions are the denotations of sentences and are usually seen as abstract objects . For example, the English sentence "the tree

7524-441: Is a restricted version of classical logic. It uses the same symbols but excludes some rules of inference. For example, according to the law of double negation elimination, if a sentence is not not true, then it is true. This means that A {\displaystyle A} follows from ¬ ¬ A {\displaystyle \lnot \lnot A} . This is a valid rule of inference in classical logic but it

7722-441: Is a restricted version of classical logic. It uses the same symbols but excludes some rules of inference. For example, according to the law of double negation elimination, if a sentence is not not true, then it is true. This means that A {\displaystyle A} follows from ¬ ¬ A {\displaystyle \lnot \lnot A} . This is a valid rule of inference in classical logic but it

7920-416: Is also known as symbolic logic and is widely used in mathematical logic . It uses a formal approach to study reasoning: it replaces concrete expressions with abstract symbols to examine the logical form of arguments independent of their concrete content. In this sense, it is topic-neutral since it is only concerned with the abstract structure of arguments and not with their concrete content. Formal logic

8118-416: Is also known as symbolic logic and is widely used in mathematical logic . It uses a formal approach to study reasoning: it replaces concrete expressions with abstract symbols to examine the logical form of arguments independent of their concrete content. In this sense, it is topic-neutral since it is only concerned with the abstract structure of arguments and not with their concrete content. Formal logic

Paradox - Misplaced Pages Continue

8316-453: Is an example of the existential quantifier " ∃ {\displaystyle \exists } " applied to the individual variable " x {\displaystyle x} " . In higher-order logics, quantification is also allowed over predicates. This increases its expressive power. For example, to express the idea that Mary and John share some qualities, one could use the formula " ∃ Q ( Q ( M

8514-453: Is an example of the existential quantifier " ∃ {\displaystyle \exists } " applied to the individual variable " x {\displaystyle x} " . In higher-order logics, quantification is also allowed over predicates. This increases its expressive power. For example, to express the idea that Mary and John share some qualities, one could use the formula " ∃ Q ( Q ( M

8712-411: Is an example of the well-known liar paradox : it is a sentence that cannot be consistently interpreted as either true or false, because if it is known to be false, then it can be inferred that it must be true, and if it is known to be true, then it can be inferred that it must be false. Russell's paradox , which shows that the notion of the set of all those sets that do not contain themselves leads to

8910-415: Is blurry in some cases, such as when the premises offer weak but non-negligible support. This contrasts with deductive arguments, which are either valid or invalid with nothing in-between. The terminology used to categorize ampliative arguments is inconsistent. Some authors, like James Hawthorne, use the term " induction " to cover all forms of non-deductive arguments. But in a more narrow sense, induction

9108-415: Is blurry in some cases, such as when the premises offer weak but non-negligible support. This contrasts with deductive arguments, which are either valid or invalid with nothing in-between. The terminology used to categorize ampliative arguments is inconsistent. Some authors, like James Hawthorne, use the term " induction " to cover all forms of non-deductive arguments. But in a more narrow sense, induction

9306-421: Is commonly defined in terms of arguments or inferences as the study of their correctness. An argument is a set of premises together with a conclusion. An inference is the process of reasoning from these premises to the conclusion. But these terms are often used interchangeably in logic. Arguments are correct or incorrect depending on whether their premises support their conclusion. Premises and conclusions, on

9504-421: Is commonly defined in terms of arguments or inferences as the study of their correctness. An argument is a set of premises together with a conclusion. An inference is the process of reasoning from these premises to the conclusion. But these terms are often used interchangeably in logic. Arguments are correct or incorrect depending on whether their premises support their conclusion. Premises and conclusions, on

9702-407: Is controversial because it belongs to the field of psychology , not logic, and because appearances may be different for different people. Fallacies are usually divided into formal and informal fallacies. For formal fallacies, the source of the error is found in the form of the argument. For example, denying the antecedent is one type of formal fallacy, as in "if Othello is a bachelor, then he

9900-407: Is controversial because it belongs to the field of psychology , not logic, and because appearances may be different for different people. Fallacies are usually divided into formal and informal fallacies. For formal fallacies, the source of the error is found in the form of the argument. For example, denying the antecedent is one type of formal fallacy, as in "if Othello is a bachelor, then he

10098-453: Is deductively valid. For deductive validity, it does not matter whether the premises or the conclusion are actually true. So the argument "(1) all frogs are mammals; (2) no cats are mammals; (3) therefore no cats are frogs" is also valid because the conclusion follows necessarily from the premises. According to an influential view by Alfred Tarski , deductive arguments have three essential features: (1) they are formal, i.e. they depend only on

SECTION 50

#1732773130569

10296-453: Is deductively valid. For deductive validity, it does not matter whether the premises or the conclusion are actually true. So the argument "(1) all frogs are mammals; (2) no cats are mammals; (3) therefore no cats are frogs" is also valid because the conclusion follows necessarily from the premises. According to an influential view by Alfred Tarski , deductive arguments have three essential features: (1) they are formal, i.e. they depend only on

10494-479: Is established by verification using a proof. Intuitionistic logic is especially prominent in the field of constructive mathematics , which emphasizes the need to find or construct a specific example to prove its existence. Logic Logic is the study of correct reasoning . It includes both formal and informal logic . Formal logic is the study of deductively valid inferences or logical truths . It examines how conclusions follow from premises based on

10692-610: Is green" is different from the German sentence "der Baum ist grün" but both express the same proposition. Propositional theories of premises and conclusions are often criticized because they rely on abstract objects. For instance, philosophical naturalists usually reject the existence of abstract objects. Other arguments concern the challenges involved in specifying the identity criteria of propositions. These objections are avoided by seeing premises and conclusions not as propositions but as sentences, i.e. as concrete linguistic objects like

10890-557: Is green" is different from the German sentence "der Baum ist grün" but both express the same proposition. Propositional theories of premises and conclusions are often criticized because they rely on abstract objects. For instance, philosophical naturalists usually reject the existence of abstract objects. Other arguments concern the challenges involved in specifying the identity criteria of propositions. These objections are avoided by seeing premises and conclusions not as propositions but as sentences, i.e. as concrete linguistic objects like

11088-432: Is interested in deductively valid arguments, for which the truth of their premises ensures the truth of their conclusion. This means that it is impossible for the premises to be true and the conclusion to be false. For valid arguments, the logical structure of the premises and the conclusion follows a pattern called a rule of inference . For example, modus ponens is a rule of inference according to which all arguments of

11286-432: Is interested in deductively valid arguments, for which the truth of their premises ensures the truth of their conclusion. This means that it is impossible for the premises to be true and the conclusion to be false. For valid arguments, the logical structure of the premises and the conclusion follows a pattern called a rule of inference . For example, modus ponens is a rule of inference according to which all arguments of

11484-415: Is invalid in intuitionistic logic. Another classical principle not part of intuitionistic logic is the law of excluded middle . It states that for every sentence, either it or its negation is true. This means that every proposition of the form A ∨ ¬ A {\displaystyle A\lor \lnot A} is true. These deviations from classical logic are based on the idea that truth

11682-415: Is invalid in intuitionistic logic. Another classical principle not part of intuitionistic logic is the law of excluded middle . It states that for every sentence, either it or its negation is true. This means that every proposition of the form A ∨ ¬ A {\displaystyle A\lor \lnot A} is true. These deviations from classical logic are based on the idea that truth

11880-447: Is male; Othello is not a bachelor; therefore Othello is not male". But most fallacies fall into the category of informal fallacies, of which a great variety is discussed in the academic literature. The source of their error is usually found in the content or the context of the argument. Informal fallacies are sometimes categorized as fallacies of ambiguity, fallacies of presumption, or fallacies of relevance. For fallacies of ambiguity,

12078-447: Is male; Othello is not a bachelor; therefore Othello is not male". But most fallacies fall into the category of informal fallacies, of which a great variety is discussed in the academic literature. The source of their error is usually found in the content or the context of the argument. Informal fallacies are sometimes categorized as fallacies of ambiguity, fallacies of presumption, or fallacies of relevance. For fallacies of ambiguity,

SECTION 60

#1732773130569

12276-688: Is necessary, then it is also possible. This means that ◊ A {\displaystyle \Diamond A} follows from ◻ A {\displaystyle \Box A} . Another principle states that if a proposition is necessary then its negation is impossible and vice versa. This means that ◻ A {\displaystyle \Box A} is equivalent to ¬ ◊ ¬ A {\displaystyle \lnot \Diamond \lnot A} . Other forms of modal logic introduce similar symbols but associate different meanings with them to apply modal logic to other fields. For example, deontic logic concerns

12474-688: Is necessary, then it is also possible. This means that ◊ A {\displaystyle \Diamond A} follows from ◻ A {\displaystyle \Box A} . Another principle states that if a proposition is necessary then its negation is impossible and vice versa. This means that ◻ A {\displaystyle \Box A} is equivalent to ¬ ◊ ¬ A {\displaystyle \lnot \Diamond \lnot A} . Other forms of modal logic introduce similar symbols but associate different meanings with them to apply modal logic to other fields. For example, deontic logic concerns

12672-518: Is necessary. For example, if the formula B ( s ) {\displaystyle B(s)} stands for the sentence "Socrates is a banker" then the formula ◊ B ( s ) {\displaystyle \Diamond B(s)} articulates the sentence "It is possible that Socrates is a banker". To include these symbols in the logical formalism, modal logic introduces new rules of inference that govern what role they play in inferences. One rule of inference states that, if something

12870-518: Is necessary. For example, if the formula B ( s ) {\displaystyle B(s)} stands for the sentence "Socrates is a banker" then the formula ◊ B ( s ) {\displaystyle \Diamond B(s)} articulates the sentence "It is possible that Socrates is a banker". To include these symbols in the logical formalism, modal logic introduces new rules of inference that govern what role they play in inferences. One rule of inference states that, if something

13068-399: Is no contradiction, the doctor is the boy's mother.). Paradoxes that are not based on a hidden error generally occur at the fringes of context or language , and require extending the context or language in order to lose their paradoxical quality. Paradoxes that arise from apparently intelligible uses of language are often of interest to logicians and philosophers . "This sentence is false"

13266-545: Is non-terminating recursion , in the form of circular reasoning or infinite regress . When this recursion creates a metaphysical impossibility through contradiction, the regress or circularity is vicious . Again, the liar paradox is an instructive example: "This statement is false"—if the statement is true, then the statement is false, thereby making the statement true, thereby making the statement false, and so on. The barber paradox also exemplifies vicious circularity: The barber shaves those who do not shave themselves, so if

13464-407: Is not the best or most likely explanation. Not all arguments live up to the standards of correct reasoning. When they do not, they are usually referred to as fallacies . Their central aspect is not that their conclusion is false but that there is some flaw with the reasoning leading to this conclusion. So the argument "it is sunny today; therefore spiders have eight legs" is fallacious even though

13662-407: Is not the best or most likely explanation. Not all arguments live up to the standards of correct reasoning. When they do not, they are usually referred to as fallacies . Their central aspect is not that their conclusion is false but that there is some flaw with the reasoning leading to this conclusion. So the argument "it is sunny today; therefore spiders have eight legs" is fallacious even though

13860-446: Is not the case for ampliative arguments, which arrive at genuinely new information not found in the premises. Many arguments in everyday discourse and the sciences are ampliative arguments. They are divided into inductive and abductive arguments. Inductive arguments are statistical generalizations, such as inferring that all ravens are black based on many individual observations of black ravens. Abductive arguments are inferences to

14058-541: Is only one type of ampliative argument alongside abductive arguments . Some philosophers, like Leo Groarke, also allow conductive arguments as another type. In this narrow sense, induction is often defined as a form of statistical generalization. In this case, the premises of an inductive argument are many individual observations that all show a certain pattern. The conclusion then is a general law that this pattern always obtains. In this sense, one may infer that "all elephants are gray" based on one's past observations of

14256-541: Is only one type of ampliative argument alongside abductive arguments . Some philosophers, like Leo Groarke, also allow conductive arguments as another type. In this narrow sense, induction is often defined as a form of statistical generalization. In this case, the premises of an inductive argument are many individual observations that all show a certain pattern. The conclusion then is a general law that this pattern always obtains. In this sense, one may infer that "all elephants are gray" based on one's past observations of

14454-578: Is problematic. Semantical contradictions involve, besides purely logical terms, notions like thought , language , and symbolism , which, according to Ramsey, are empirical (not formal) terms. Hence these contradictions are due to faulty ideas about thought or language, and they properly belong to epistemology . A taste for paradox is central to the philosophies of Laozi , Zeno of Elea , Zhuangzi , Heraclitus , Bhartrhari , Meister Eckhart , Hegel , Kierkegaard , Nietzsche , and G.K. Chesterton , among many others. Søren Kierkegaard, for example, writes in

14652-430: Is studied by formal logic. The study of natural language arguments comes with various difficulties. For example, natural language expressions are often ambiguous, vague, and context-dependent. Another approach defines informal logic in a wide sense as the normative study of the standards, criteria, and procedures of argumentation. In this sense, it includes questions about the role of rationality , critical thinking , and

14850-430: Is studied by formal logic. The study of natural language arguments comes with various difficulties. For example, natural language expressions are often ambiguous, vague, and context-dependent. Another approach defines informal logic in a wide sense as the normative study of the standards, criteria, and procedures of argumentation. In this sense, it includes questions about the role of rationality , critical thinking , and

15048-410: Is the set of basic symbols used in expressions . The syntactic rules determine how these symbols may be arranged to result in well-formed formulas. For instance, the syntactic rules of propositional logic determine that " P ∧ Q {\displaystyle P\land Q} " is a well-formed formula but " ∧ Q {\displaystyle \land Q} " is not since

15246-410: Is the set of basic symbols used in expressions . The syntactic rules determine how these symbols may be arranged to result in well-formed formulas. For instance, the syntactic rules of propositional logic determine that " P ∧ Q {\displaystyle P\land Q} " is a well-formed formula but " ∧ Q {\displaystyle \land Q} " is not since

15444-528: Is the study of correct reasoning . It includes both formal and informal logic . Formal logic is the study of deductively valid inferences or logical truths . It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies , critical thinking , and argumentation theory . Informal logic examines arguments expressed in natural language whereas formal logic uses formal language . When used as

15642-399: Is their internal structure. For example, complex propositions are made up of simpler propositions linked by logical vocabulary like ∧ {\displaystyle \land } ( and ) or → {\displaystyle \to } ( if...then ). Simple propositions also have parts, like "Sunday" or "work" in the example. The truth of a proposition usually depends on

15840-432: Is to study the criteria according to which an argument is correct or incorrect. A fallacy is committed if these criteria are violated. In the case of formal logic, they are known as rules of inference . They are definitory rules, which determine whether an inference is correct or which inferences are allowed. Definitory rules contrast with strategic rules. Strategic rules specify which inferential moves are necessary to reach

16038-432: Is to study the criteria according to which an argument is correct or incorrect. A fallacy is committed if these criteria are violated. In the case of formal logic, they are known as rules of inference . They are definitory rules, which determine whether an inference is correct or which inferences are allowed. Definitory rules contrast with strategic rules. Strategic rules specify which inferential moves are necessary to reach

16236-540: Is unable to address. Both provide criteria for assessing the correctness of arguments and distinguishing them from fallacies. Many characterizations of informal logic have been suggested but there is no general agreement on its precise definition. The most literal approach sees the terms "formal" and "informal" as applying to the language used to express arguments. On this view, informal logic studies arguments that are in informal or natural language. Formal logic can only examine them indirectly by translating them first into

16434-540: Is unable to address. Both provide criteria for assessing the correctness of arguments and distinguishing them from fallacies. Many characterizations of informal logic have been suggested but there is no general agreement on its precise definition. The most literal approach sees the terms "formal" and "informal" as applying to the language used to express arguments. On this view, informal logic studies arguments that are in informal or natural language. Formal logic can only examine them indirectly by translating them first into

16632-599: Is used to represent the ideas of knowing something in contrast to merely believing it to be the case. Higher-order logics extend classical logic not by using modal operators but by introducing new forms of quantification. Quantifiers correspond to terms like "all" or "some". In classical first-order logic, quantifiers are only applied to individuals. The formula " ∃ x ( A p p l e ( x ) ∧ S w e e t ( x ) ) {\displaystyle \exists x(Apple(x)\land Sweet(x))} " ( some apples are sweet)

16830-599: Is used to represent the ideas of knowing something in contrast to merely believing it to be the case. Higher-order logics extend classical logic not by using modal operators but by introducing new forms of quantification. Quantifiers correspond to terms like "all" or "some". In classical first-order logic, quantifiers are only applied to individuals. The formula " ∃ x ( A p p l e ( x ) ∧ S w e e t ( x ) ) {\displaystyle \exists x(Apple(x)\land Sweet(x))} " ( some apples are sweet)

17028-431: Is why first-order logic is still more commonly used. Deviant logics are logical systems that reject some of the basic intuitions of classical logic. Because of this, they are usually seen not as its supplements but as its rivals. Deviant logical systems differ from each other either because they reject different classical intuitions or because they propose different alternatives to the same issue. Intuitionistic logic

17226-431: Is why first-order logic is still more commonly used. Deviant logics are logical systems that reject some of the basic intuitions of classical logic. Because of this, they are usually seen not as its supplements but as its rivals. Deviant logical systems differ from each other either because they reject different classical intuitions or because they propose different alternatives to the same issue. Intuitionistic logic

17424-486: The Philosophical Fragments that: But one must not think ill of the paradox, for the paradox is the passion of thought, and the thinker without the paradox is like the lover without passion: a mediocre fellow. But the ultimate potentiation of every passion is always to will its own downfall, and so it is also the ultimate passion of the understanding to will the collision, although in one way or another

17622-535: The Grelling–Nelson paradox points out genuine problems in our understanding of the ideas of truth and description. Sometimes described since Quine's work, a dialetheia is a paradox that is both true and false at the same time. It may be regarded as a fourth kind, or alternatively as a special case of antinomy. In logic, it is often assumed, following Aristotle , that no dialetheia exist, but they are allowed in some paraconsistent logics . Frank Ramsey drew

17820-408: The barber paradox , which poses the question of whether a barber who shaves all and only those who do not shave themselves will shave himself. In this paradox, the barber is a self-referential concept. Contradiction , along with self-reference, is a core feature of many paradoxes. The liar paradox, "This statement is false," exhibits contradiction because the statement cannot be false and true at

18018-420: The hook effect (prozone effect), of which there are several types. However, neither of these problems is common, and overall, antibodies are crucial to health, as most of the time they do their protective job quite well. In the smoker's paradox , cigarette smoking, despite its proven harms , has a surprising inverse correlation with the epidemiological incidence of certain diseases. Logic Logic

18216-469: The Greek word "logos", which has a variety of translations, such as reason , discourse , or language . Logic is traditionally defined as the study of the laws of thought or correct reasoning , and is usually understood in terms of inferences or arguments . Reasoning is the activity of drawing inferences. Arguments are the outward expression of inferences. An argument is a set of premises together with

18414-417: The Greek word "logos", which has a variety of translations, such as reason , discourse , or language . Logic is traditionally defined as the study of the laws of thought or correct reasoning , and is usually understood in terms of inferences or arguments . Reasoning is the activity of drawing inferences. Arguments are the outward expression of inferences. An argument is a set of premises together with

18612-418: The ambiguity and vagueness of natural language are responsible for their flaw, as in "feathers are light; what is light cannot be dark; therefore feathers cannot be dark". Fallacies of presumption have a wrong or unjustified premise but may be valid otherwise. In the case of fallacies of relevance, the premises do not support the conclusion because they are not relevant to it. The main focus of most logicians

18810-418: The ambiguity and vagueness of natural language are responsible for their flaw, as in "feathers are light; what is light cannot be dark; therefore feathers cannot be dark". Fallacies of presumption have a wrong or unjustified premise but may be valid otherwise. In the case of fallacies of relevance, the premises do not support the conclusion because they are not relevant to it. The main focus of most logicians

19008-399: The assessment of arguments. Premises and conclusions are the basic parts of inferences or arguments and therefore play a central role in logic. In the case of a valid inference or a correct argument, the conclusion follows from the premises, or in other words, the premises support the conclusion. For instance, the premises "Mars is red" and "Mars is a planet" support the conclusion "Mars

19206-399: The assessment of arguments. Premises and conclusions are the basic parts of inferences or arguments and therefore play a central role in logic. In the case of a valid inference or a correct argument, the conclusion follows from the premises, or in other words, the premises support the conclusion. For instance, the premises "Mars is red" and "Mars is a planet" support the conclusion "Mars

19404-401: The barber does not shave himself, then he shaves himself, then he does not shave himself, and so on. Other paradoxes involve false statements and half-truths ("'impossible' is not in my vocabulary") or rely on hasty assumptions (A father and his son are in a car crash; the father is killed and the boy is rushed to the hospital. The doctor says, "I can't operate on this boy. He's my son." There

19602-495: The basic principles of classical logic. They introduce additional symbols and principles to apply it to fields like metaphysics , ethics , and epistemology . Modal logic is an extension of classical logic. In its original form, sometimes called "alethic modal logic", it introduces two new symbols: ◊ {\displaystyle \Diamond } expresses that something is possible while ◻ {\displaystyle \Box } expresses that something

19800-495: The basic principles of classical logic. They introduce additional symbols and principles to apply it to fields like metaphysics , ethics , and epistemology . Modal logic is an extension of classical logic. In its original form, sometimes called "alethic modal logic", it introduces two new symbols: ◊ {\displaystyle \Diamond } expresses that something is possible while ◻ {\displaystyle \Box } expresses that something

19998-487: The best explanation, for example, when a doctor concludes that a patient has a certain disease which explains the symptoms they suffer. Arguments that fall short of the standards of correct reasoning often embody fallacies . Systems of logic are theoretical frameworks for assessing the correctness of arguments. Logic has been studied since antiquity . Early approaches include Aristotelian logic , Stoic logic , Nyaya , and Mohism . Aristotelian logic focuses on reasoning in

20196-487: The best explanation, for example, when a doctor concludes that a patient has a certain disease which explains the symptoms they suffer. Arguments that fall short of the standards of correct reasoning often embody fallacies . Systems of logic are theoretical frameworks for assessing the correctness of arguments. Logic has been studied since antiquity . Early approaches include Aristotelian logic , Stoic logic , Nyaya , and Mohism . Aristotelian logic focuses on reasoning in

20394-645: The claim "either it is raining, or it is not". These two definitions of formal logic are not identical, but they are closely related. For example, if the inference from p to q is deductively valid then the claim "if p then q " is a logical truth. Formal logic uses formal languages to express and analyze arguments. They normally have a very limited vocabulary and exact syntactic rules . These rules specify how their symbols can be combined to construct sentences, so-called well-formed formulas . This simplicity and exactness of formal logic make it capable of formulating precise rules of inference. They determine whether

20592-645: The claim "either it is raining, or it is not". These two definitions of formal logic are not identical, but they are closely related. For example, if the inference from p to q is deductively valid then the claim "if p then q " is a logical truth. Formal logic uses formal languages to express and analyze arguments. They normally have a very limited vocabulary and exact syntactic rules . These rules specify how their symbols can be combined to construct sentences, so-called well-formed formulas . This simplicity and exactness of formal logic make it capable of formulating precise rules of inference. They determine whether

20790-420: The collision must become its downfall. This, then, is the ultimate paradox of thought: to want to discover something that thought itself cannot think. A paradoxical reaction to a drug is the opposite of what one would expect, such as becoming agitated by a sedative or sedated by a stimulant . Some are common and are used regularly in medicine, such as the use of stimulants such as Adderall and Ritalin in

20988-495: The color of elephants. A closely related form of inductive inference has as its conclusion not a general law but one more specific instance, as when it is inferred that an elephant one has not seen yet is also gray. Some theorists, like Igor Douven, stipulate that inductive inferences rest only on statistical considerations. This way, they can be distinguished from abductive inference. Abductive inference may or may not take statistical observations into consideration. In either case,

21186-495: The color of elephants. A closely related form of inductive inference has as its conclusion not a general law but one more specific instance, as when it is inferred that an elephant one has not seen yet is also gray. Some theorists, like Igor Douven, stipulate that inductive inferences rest only on statistical considerations. This way, they can be distinguished from abductive inference. Abductive inference may or may not take statistical observations into consideration. In either case,

21384-502: The conclusion "I don't have to work". Premises and conclusions express propositions or claims that can be true or false. An important feature of propositions is their internal structure. For example, complex propositions are made up of simpler propositions linked by logical vocabulary like ∧ {\displaystyle \land } ( and ) or → {\displaystyle \to } ( if...then ). Simple propositions also have parts, like "Sunday" or "work" in

21582-511: The conclusion "all ravens are black". A further approach is to define informal logic as the study of informal fallacies . Informal fallacies are incorrect arguments in which errors are present in the content and the context of the argument. A false dilemma , for example, involves an error of content by excluding viable options. This is the case in the fallacy "you are either with us or against us; you are not with us; therefore, you are against us". Some theorists state that formal logic studies

21780-511: The conclusion "all ravens are black". A further approach is to define informal logic as the study of informal fallacies . Informal fallacies are incorrect arguments in which errors are present in the content and the context of the argument. A false dilemma , for example, involves an error of content by excluding viable options. This is the case in the fallacy "you are either with us or against us; you are not with us; therefore, you are against us". Some theorists state that formal logic studies

21978-458: The conclusion is true. Some theorists, like John Stuart Mill , give a more restrictive definition of fallacies by additionally requiring that they appear to be correct. This way, genuine fallacies can be distinguished from mere mistakes of reasoning due to carelessness. This explains why people tend to commit fallacies: because they have an alluring element that seduces people into committing and accepting them. However, this reference to appearances

22176-458: The conclusion is true. Some theorists, like John Stuart Mill , give a more restrictive definition of fallacies by additionally requiring that they appear to be correct. This way, genuine fallacies can be distinguished from mere mistakes of reasoning due to carelessness. This explains why people tend to commit fallacies: because they have an alluring element that seduces people into committing and accepting them. However, this reference to appearances

22374-591: The conditional proposition p → q {\displaystyle p\to q} , one can form truth tables of its converse q → p {\displaystyle q\to p} , its inverse ( ¬ p → ¬ q {\displaystyle \lnot p\to \lnot q} ) , and its contrapositive ( ¬ q → ¬ p {\displaystyle \lnot q\to \lnot p} ) . Truth tables can also be defined for more complex expressions that use several propositional connectives. Logic

22572-591: The conditional proposition p → q {\displaystyle p\to q} , one can form truth tables of its converse q → p {\displaystyle q\to p} , its inverse ( ¬ p → ¬ q {\displaystyle \lnot p\to \lnot q} ) , and its contrapositive ( ¬ q → ¬ p {\displaystyle \lnot q\to \lnot p} ) . Truth tables can also be defined for more complex expressions that use several propositional connectives. Logic

22770-438: The contrast between necessity and possibility and the problem of ethical obligation and permission. Similarly, it does not address the relations between past, present, and future. Such issues are addressed by extended logics. They build on the basic intuitions of classical logic and expand it by introducing new logical vocabulary. This way, the exact logical approach is applied to fields like ethics or epistemology that lie beyond

22968-438: The contrast between necessity and possibility and the problem of ethical obligation and permission. Similarly, it does not address the relations between past, present, and future. Such issues are addressed by extended logics. They build on the basic intuitions of classical logic and expand it by introducing new logical vocabulary. This way, the exact logical approach is applied to fields like ethics or epistemology that lie beyond

23166-451: The depth level. But they can be highly informative on the surface level by making implicit information explicit. This happens, for example, in mathematical proofs. Ampliative arguments are arguments whose conclusions contain additional information not found in their premises. In this regard, they are more interesting since they contain information on the depth level and the thinker may learn something genuinely new. But this feature comes with

23364-451: The depth level. But they can be highly informative on the surface level by making implicit information explicit. This happens, for example, in mathematical proofs. Ampliative arguments are arguments whose conclusions contain additional information not found in their premises. In this regard, they are more interesting since they contain information on the depth level and the thinker may learn something genuinely new. But this feature comes with

23562-409: The example. The truth of a proposition usually depends on the meanings of all of its parts. However, this is not the case for logically true propositions. They are true only because of their logical structure independent of the specific meanings of the individual parts. Arguments can be either correct or incorrect. An argument is correct if its premises support its conclusion. Deductive arguments have

23760-434: The field of ethics and introduces symbols to express the ideas of obligation and permission , i.e. to describe whether an agent has to perform a certain action or is allowed to perform it. The modal operators in temporal modal logic articulate temporal relations. They can be used to express, for example, that something happened at one time or that something is happening all the time. In epistemology, epistemic modal logic

23958-434: The field of ethics and introduces symbols to express the ideas of obligation and permission , i.e. to describe whether an agent has to perform a certain action or is allowed to perform it. The modal operators in temporal modal logic articulate temporal relations. They can be used to express, for example, that something happened at one time or that something is happening all the time. In epistemology, epistemic modal logic

24156-485: The form "(1) p , (2) if p then q , (3) therefore q " are valid, independent of what the terms p and q stand for. In this sense, formal logic can be defined as the science of valid inferences. An alternative definition sees logic as the study of logical truths . A proposition is logically true if its truth depends only on the logical vocabulary used in it. This means that it is true in all possible worlds and under all interpretations of its non-logical terms, like

24354-485: The form "(1) p , (2) if p then q , (3) therefore q " are valid, independent of what the terms p and q stand for. In this sense, formal logic can be defined as the science of valid inferences. An alternative definition sees logic as the study of logical truths . A proposition is logically true if its truth depends only on the logical vocabulary used in it. This means that it is true in all possible worlds and under all interpretations of its non-logical terms, like

24552-513: The form of syllogisms . It was considered the main system of logic in the Western world until it was replaced by modern formal logic, which has its roots in the work of late 19th-century mathematicians such as Gottlob Frege . Today, the most commonly used system is classical logic . It consists of propositional logic and first-order logic . Propositional logic only considers logical relations between full propositions. First-order logic also takes

24750-458: The form of syllogisms . It was considered the main system of logic in the Western world until it was replaced by modern formal logic, which has its roots in the work of late 19th-century mathematicians such as Gottlob Frege . Today, the most commonly used system is classical logic . It consists of propositional logic and first-order logic . Propositional logic only considers logical relations between full propositions. First-order logic also takes

24948-578: The form of images or other media. For example, M.C. Escher featured perspective-based paradoxes in many of his drawings, with walls that are regarded as floors from other points of view, and staircases that appear to climb endlessly. Informally, the term paradox is often used to describe a counterintuitive result. Self-reference , contradiction and infinite regress are core elements of many paradoxes. Other common elements include circular definitions , and confusion or equivocation between different levels of abstraction . Self-reference occurs when

25146-523: The form of the premises and the conclusion: how they have to be structured for the inference to be valid. Arguments that do not follow any rule of inference are deductively invalid. The modus ponens is a prominent rule of inference. It has the form " p ; if p , then q ; therefore q ". Knowing that it has just rained ( p {\displaystyle p} ) and that after rain the streets are wet ( p → q {\displaystyle p\to q} ), one can use modus ponens to deduce that

25344-523: The form of the premises and the conclusion: how they have to be structured for the inference to be valid. Arguments that do not follow any rule of inference are deductively invalid. The modus ponens is a prominent rule of inference. It has the form " p ; if p , then q ; therefore q ". Knowing that it has just rained ( p {\displaystyle p} ) and that after rain the streets are wet ( p → q {\displaystyle p\to q} ), one can use modus ponens to deduce that

25542-419: The form of the premises and the conclusion; (2) they are a priori, i.e. no sense experience is needed to determine whether they obtain; (3) they are modal, i.e. that they hold by logical necessity for the given propositions, independent of any other circumstances. Because of the first feature, the focus on formality, deductive inference is usually identified with rules of inference. Rules of inference specify

25740-419: The form of the premises and the conclusion; (2) they are a priori, i.e. no sense experience is needed to determine whether they obtain; (3) they are modal, i.e. that they hold by logical necessity for the given propositions, independent of any other circumstances. Because of the first feature, the focus on formality, deductive inference is usually identified with rules of inference. Rules of inference specify

25938-421: The general form of arguments while informal logic studies particular instances of arguments. Another approach is to hold that formal logic only considers the role of logical constants for correct inferences while informal logic also takes the meaning of substantive concepts into account. Further approaches focus on the discussion of logical topics with or without formal devices and on the role of epistemology for

26136-421: The general form of arguments while informal logic studies particular instances of arguments. Another approach is to hold that formal logic only considers the role of logical constants for correct inferences while informal logic also takes the meaning of substantive concepts into account. Further approaches focus on the discussion of logical topics with or without formal devices and on the role of epistemology for

26334-429: The identification of sets with properties or predicates were flawed. Others, such as Curry's paradox , cannot be easily resolved by making foundational changes in a logical system. Examples outside logic include the ship of Theseus from philosophy, a paradox that questions whether a ship repaired over time by replacing each and all of its wooden parts one at a time would remain the same ship. Paradoxes can also take

26532-406: The internal parts of propositions into account, like predicates and quantifiers . Extended logics accept the basic intuitions behind classical logic and apply it to other fields, such as metaphysics , ethics , and epistemology . Deviant logics, on the other hand, reject certain classical intuitions and provide alternative explanations of the basic laws of logic. The word "logic" originates from

26730-406: The internal parts of propositions into account, like predicates and quantifiers . Extended logics accept the basic intuitions behind classical logic and apply it to other fields, such as metaphysics , ethics , and epistemology . Deviant logics, on the other hand, reject certain classical intuitions and provide alternative explanations of the basic laws of logic. The word "logic" originates from

26928-407: The internal structure of propositions. This happens through devices such as singular terms, which refer to particular objects, predicates , which refer to properties and relations, and quantifiers, which treat notions like "some" and "all". For example, to express the proposition "this raven is black", one may use the predicate B {\displaystyle B} for the property "black" and

27126-407: The internal structure of propositions. This happens through devices such as singular terms, which refer to particular objects, predicates , which refer to properties and relations, and quantifiers, which treat notions like "some" and "all". For example, to express the proposition "this raven is black", one may use the predicate B {\displaystyle B} for the property "black" and

27324-522: The logical conjunction ∧ {\displaystyle \land } requires terms on both sides. A proof system is a collection of rules to construct formal proofs. It is a tool to arrive at conclusions from a set of axioms. Rules in a proof system are defined in terms of the syntactic form of formulas independent of their specific content. For instance, the classical rule of conjunction introduction states that P ∧ Q {\displaystyle P\land Q} follows from

27522-522: The logical conjunction ∧ {\displaystyle \land } requires terms on both sides. A proof system is a collection of rules to construct formal proofs. It is a tool to arrive at conclusions from a set of axioms. Rules in a proof system are defined in terms of the syntactic form of formulas independent of their specific content. For instance, the classical rule of conjunction introduction states that P ∧ Q {\displaystyle P\land Q} follows from

27720-454: The meanings of all of its parts. However, this is not the case for logically true propositions. They are true only because of their logical structure independent of the specific meanings of the individual parts. Arguments can be either correct or incorrect. An argument is correct if its premises support its conclusion. Deductive arguments have the strongest form of support: if their premises are true then their conclusion must also be true. This

27918-409: The other hand, are true or false depending on whether they are in accord with reality. In formal logic, a sound argument is an argument that is both correct and has only true premises. Sometimes a distinction is made between simple and complex arguments. A complex argument is made up of a chain of simple arguments. This means that the conclusion of one argument acts as a premise of later arguments. For

28116-409: The other hand, are true or false depending on whether they are in accord with reality. In formal logic, a sound argument is an argument that is both correct and has only true premises. Sometimes a distinction is made between simple and complex arguments. A complex argument is made up of a chain of simple arguments. This means that the conclusion of one argument acts as a premise of later arguments. For

28314-444: The other hand, do not have propositional parts. But they can also be conceived as having an internal structure: they are made up of subpropositional parts, like singular terms and predicates . For example, the simple proposition "Mars is red" can be formed by applying the predicate "red" to the singular term "Mars". In contrast, the complex proposition "Mars is red and Venus is white" is made up of two simple propositions connected by

28512-444: The other hand, do not have propositional parts. But they can also be conceived as having an internal structure: they are made up of subpropositional parts, like singular terms and predicates . For example, the simple proposition "Mars is red" can be formed by applying the predicate "red" to the singular term "Mars". In contrast, the complex proposition "Mars is red and Venus is white" is made up of two simple propositions connected by

28710-485: The premises P {\displaystyle P} and Q {\displaystyle Q} . Such rules can be applied sequentially, giving a mechanical procedure for generating conclusions from premises. There are different types of proof systems including natural deduction and sequent calculi . A semantics is a system for mapping expressions of a formal language to their denotations. In many systems of logic, denotations are truth values. For instance,

28908-485: The premises P {\displaystyle P} and Q {\displaystyle Q} . Such rules can be applied sequentially, giving a mechanical procedure for generating conclusions from premises. There are different types of proof systems including natural deduction and sequent calculi . A semantics is a system for mapping expressions of a formal language to their denotations. In many systems of logic, denotations are truth values. For instance,

29106-413: The premises offer support for the conclusion because the conclusion is the best explanation of why the premises are true. In this sense, abduction is also called the inference to the best explanation . For example, given the premise that there is a plate with breadcrumbs in the kitchen in the early morning, one may infer the conclusion that one's house-mate had a midnight snack and was too tired to clean

29304-413: The premises offer support for the conclusion because the conclusion is the best explanation of why the premises are true. In this sense, abduction is also called the inference to the best explanation . For example, given the premise that there is a plate with breadcrumbs in the kitchen in the early morning, one may infer the conclusion that one's house-mate had a midnight snack and was too tired to clean

29502-470: The premises. But this point is not always accepted since it would mean, for example, that most of mathematics is uninformative. A different characterization distinguishes between surface and depth information. The surface information of a sentence is the information it presents explicitly. Depth information is the totality of the information contained in the sentence, both explicitly and implicitly. According to this view, deductive inferences are uninformative on

29700-470: The premises. But this point is not always accepted since it would mean, for example, that most of mathematics is uninformative. A different characterization distinguishes between surface and depth information. The surface information of a sentence is the information it presents explicitly. Depth information is the totality of the information contained in the sentence, both explicitly and implicitly. According to this view, deductive inferences are uninformative on

29898-485: The propositional connective "and". Whether a proposition is true depends, at least in part, on its constituents. For complex propositions formed using truth-functional propositional connectives, their truth only depends on the truth values of their parts. But this relation is more complicated in the case of simple propositions and their subpropositional parts. These subpropositional parts have meanings of their own, like referring to objects or classes of objects. Whether

30096-485: The propositional connective "and". Whether a proposition is true depends, at least in part, on its constituents. For complex propositions formed using truth-functional propositional connectives, their truth only depends on the truth values of their parts. But this relation is more complicated in the case of simple propositions and their subpropositional parts. These subpropositional parts have meanings of their own, like referring to objects or classes of objects. Whether

30294-406: The propositions are formed. For example, the syllogism "all men are mortal; Socrates is a man; therefore Socrates is mortal" is valid. The syllogism "all cats are mortal; Socrates is mortal; therefore Socrates is a cat", on the other hand, is invalid. Classical logic is distinct from traditional or Aristotelian logic. It encompasses propositional logic and first-order logic. It is "classical" in

30492-406: The propositions are formed. For example, the syllogism "all men are mortal; Socrates is a man; therefore Socrates is mortal" is valid. The syllogism "all cats are mortal; Socrates is mortal; therefore Socrates is a cat", on the other hand, is invalid. Classical logic is distinct from traditional or Aristotelian logic. It encompasses propositional logic and first-order logic. It is "classical" in

30690-417: The psychology of argumentation. Another characterization identifies informal logic with the study of non-deductive arguments. In this way, it contrasts with deductive reasoning examined by formal logic. Non-deductive arguments make their conclusion probable but do not ensure that it is true. An example is the inductive argument from the empirical observation that "all ravens I have seen so far are black" to

30888-417: The psychology of argumentation. Another characterization identifies informal logic with the study of non-deductive arguments. In this way, it contrasts with deductive reasoning examined by formal logic. Non-deductive arguments make their conclusion probable but do not ensure that it is true. An example is the inductive argument from the empirical observation that "all ravens I have seen so far are black" to

31086-436: The rules of inference they accept as valid and the formal languages used to express them. Starting in the late 19th century, many new formal systems have been proposed. There are disagreements about what makes a formal system a logic. For example, it has been suggested that only logically complete systems, like first-order logic , qualify as logics. For such reasons, some theorists deny that higher-order logics are logics in

31284-436: The rules of inference they accept as valid and the formal languages used to express them. Starting in the late 19th century, many new formal systems have been proposed. There are disagreements about what makes a formal system a logic. For example, it has been suggested that only logically complete systems, like first-order logic , qualify as logics. For such reasons, some theorists deny that higher-order logics are logics in

31482-473: The same time. The barber paradox is contradictory because it implies that the barber shaves himself if and only if the barber does not shave himself. As with self-reference, a statement can contain a contradiction without being a paradox. "This statement is written in French" is an example of a contradictory self-referential statement that is not a paradox and is instead false. Another core aspect of paradoxes

31680-492: The scope of mathematics. Propositional logic comprises formal systems in which formulae are built from atomic propositions using logical connectives . For instance, propositional logic represents the conjunction of two atomic propositions P {\displaystyle P} and Q {\displaystyle Q} as the complex formula P ∧ Q {\displaystyle P\land Q} . Unlike predicate logic where terms and predicates are

31878-492: The scope of mathematics. Propositional logic comprises formal systems in which formulae are built from atomic propositions using logical connectives . For instance, propositional logic represents the conjunction of two atomic propositions P {\displaystyle P} and Q {\displaystyle Q} as the complex formula P ∧ Q {\displaystyle P\land Q} . Unlike predicate logic where terms and predicates are

32076-418: The semantics for classical propositional logic assigns the formula P ∧ Q {\displaystyle P\land Q} the denotation "true" whenever P {\displaystyle P} and Q {\displaystyle Q} are true. From the semantic point of view, a premise entails a conclusion if the conclusion is true whenever the premise is true. A system of logic

32274-418: The semantics for classical propositional logic assigns the formula P ∧ Q {\displaystyle P\land Q} the denotation "true" whenever P {\displaystyle P} and Q {\displaystyle Q} are true. From the semantic point of view, a premise entails a conclusion if the conclusion is true whenever the premise is true. A system of logic

32472-604: The semantics. Thus, soundness and completeness together describe a system whose notions of validity and entailment line up perfectly. Systems of logic are theoretical frameworks for assessing the correctness of reasoning and arguments. For over two thousand years, Aristotelian logic was treated as the canon of logic in the Western world, but modern developments in this field have led to a vast proliferation of logical systems. One prominent categorization divides modern formal logical systems into classical logic , extended logics, and deviant logics . Aristotelian logic encompasses

32670-604: The semantics. Thus, soundness and completeness together describe a system whose notions of validity and entailment line up perfectly. Systems of logic are theoretical frameworks for assessing the correctness of reasoning and arguments. For over two thousand years, Aristotelian logic was treated as the canon of logic in the Western world, but modern developments in this field have led to a vast proliferation of logical systems. One prominent categorization divides modern formal logical systems into classical logic , extended logics, and deviant logics . Aristotelian logic encompasses

32868-518: The sense that it is based on basic logical intuitions shared by most logicians. These intuitions include the law of excluded middle , the double negation elimination , the principle of explosion , and the bivalence of truth. It was originally developed to analyze mathematical arguments and was only later applied to other fields as well. Because of this focus on mathematics, it does not include logical vocabulary relevant to many other topics of philosophical importance. Examples of concepts it overlooks are

33066-518: The sense that it is based on basic logical intuitions shared by most logicians. These intuitions include the law of excluded middle , the double negation elimination , the principle of explosion , and the bivalence of truth. It was originally developed to analyze mathematical arguments and was only later applied to other fields as well. Because of this focus on mathematics, it does not include logical vocabulary relevant to many other topics of philosophical importance. Examples of concepts it overlooks are

33264-404: The simple proposition "Mars is red", are true or false. In such cases, the truth is called a logical truth: a proposition is logically true if its truth depends only on the logical vocabulary used in it. This means that it is true under all interpretations of its non-logical terms. In some modal logics , this means that the proposition is true in all possible worlds. Some theorists define logic as

33462-404: The simple proposition "Mars is red", are true or false. In such cases, the truth is called a logical truth: a proposition is logically true if its truth depends only on the logical vocabulary used in it. This means that it is true under all interpretations of its non-logical terms. In some modal logics , this means that the proposition is true in all possible worlds. Some theorists define logic as

33660-415: The simple proposition they form is true depends on their relation to reality, i.e. what the objects they refer to are like. This topic is studied by theories of reference . Some complex propositions are true independently of the substantive meanings of their parts. In classical logic, for example, the complex proposition "either Mars is red or Mars is not red" is true independent of whether its parts, like

33858-415: The simple proposition they form is true depends on their relation to reality, i.e. what the objects they refer to are like. This topic is studied by theories of reference . Some complex propositions are true independently of the substantive meanings of their parts. In classical logic, for example, the complex proposition "either Mars is red or Mars is not red" is true independent of whether its parts, like

34056-870: The singular term r {\displaystyle r} referring to the raven to form the expression B ( r ) {\displaystyle B(r)} . To express that some objects are black, the existential quantifier ∃ {\displaystyle \exists } is combined with the variable x {\displaystyle x} to form the proposition ∃ x B ( x ) {\displaystyle \exists xB(x)} . First-order logic contains various rules of inference that determine how expressions articulated this way can form valid arguments, for example, that one may infer ∃ x B ( x ) {\displaystyle \exists xB(x)} from B ( r ) {\displaystyle B(r)} . Extended logics are logical systems that accept

34254-870: The singular term r {\displaystyle r} referring to the raven to form the expression B ( r ) {\displaystyle B(r)} . To express that some objects are black, the existential quantifier ∃ {\displaystyle \exists } is combined with the variable x {\displaystyle x} to form the proposition ∃ x B ( x ) {\displaystyle \exists xB(x)} . First-order logic contains various rules of inference that determine how expressions articulated this way can form valid arguments, for example, that one may infer ∃ x B ( x ) {\displaystyle \exists xB(x)} from B ( r ) {\displaystyle B(r)} . Extended logics are logical systems that accept

34452-474: The smallest units, propositional logic takes full propositions with truth values as its most basic component. Thus, propositional logics can only represent logical relationships that arise from the way complex propositions are built from simpler ones. But it cannot represent inferences that result from the inner structure of a proposition. First-order logic includes the same propositional connectives as propositional logic but differs from it because it articulates

34650-474: The smallest units, propositional logic takes full propositions with truth values as its most basic component. Thus, propositional logics can only represent logical relationships that arise from the way complex propositions are built from simpler ones. But it cannot represent inferences that result from the inner structure of a proposition. First-order logic includes the same propositional connectives as propositional logic but differs from it because it articulates

34848-418: The streets are wet ( q {\displaystyle q} ). The third feature can be expressed by stating that deductively valid inferences are truth-preserving: it is impossible for the premises to be true and the conclusion to be false. Because of this feature, it is often asserted that deductive inferences are uninformative since the conclusion cannot arrive at new information not already present in

35046-418: The streets are wet ( q {\displaystyle q} ). The third feature can be expressed by stating that deductively valid inferences are truth-preserving: it is impossible for the premises to be true and the conclusion to be false. Because of this feature, it is often asserted that deductive inferences are uninformative since the conclusion cannot arrive at new information not already present in

35244-437: The strict sense. When understood in a wide sense, logic encompasses both formal and informal logic. Informal logic uses non-formal criteria and standards to analyze and assess the correctness of arguments. Its main focus is on everyday discourse. Its development was prompted by difficulties in applying the insights of formal logic to natural language arguments. In this regard, it considers problems that formal logic on its own

35442-437: The strict sense. When understood in a wide sense, logic encompasses both formal and informal logic. Informal logic uses non-formal criteria and standards to analyze and assess the correctness of arguments. Its main focus is on everyday discourse. Its development was prompted by difficulties in applying the insights of formal logic to natural language arguments. In this regard, it considers problems that formal logic on its own

35640-550: The strongest form of support: if their premises are true then their conclusion must also be true. This is not the case for ampliative arguments, which arrive at genuinely new information not found in the premises. Many arguments in everyday discourse and the sciences are ampliative arguments. They are divided into inductive and abductive arguments. Inductive arguments are statistical generalizations, such as inferring that all ravens are black based on many individual observations of black ravens. Abductive arguments are inferences to

35838-403: The structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies , critical thinking , and argumentation theory . Informal logic examines arguments expressed in natural language whereas formal logic uses formal language . When used as a countable noun , the term "a logic" refers to a specific logical formal system that articulates

36036-438: The study of logical truths. Truth tables can be used to show how logical connectives work or how the truth values of complex propositions depends on their parts. They have a column for each input variable. Each row corresponds to one possible combination of the truth values these variables can take; for truth tables presented in the English literature, the symbols "T" and "F" or "1" and "0" are commonly used as abbreviations for

36234-438: The study of logical truths. Truth tables can be used to show how logical connectives work or how the truth values of complex propositions depends on their parts. They have a column for each input variable. Each row corresponds to one possible combination of the truth values these variables can take; for truth tables presented in the English literature, the symbols "T" and "F" or "1" and "0" are commonly used as abbreviations for

36432-700: The subject in two ways: either by affirming it or by denying it. For example, the proposition "Socrates is not a cat" involves the denial of the predicate "cat" to the subject "Socrates". Using combinations of subjects and predicates, a great variety of propositions and syllogisms can be formed. Syllogisms are characterized by the fact that the premises are linked to each other and to the conclusion by sharing one predicate in each case. Thus, these three propositions contain three predicates, referred to as major term , minor term , and middle term . The central aspect of Aristotelian logic involves classifying all possible syllogisms into valid and invalid arguments according to how

36630-700: The subject in two ways: either by affirming it or by denying it. For example, the proposition "Socrates is not a cat" involves the denial of the predicate "cat" to the subject "Socrates". Using combinations of subjects and predicates, a great variety of propositions and syllogisms can be formed. Syllogisms are characterized by the fact that the premises are linked to each other and to the conclusion by sharing one predicate in each case. Thus, these three propositions contain three predicates, referred to as major term , minor term , and middle term . The central aspect of Aristotelian logic involves classifying all possible syllogisms into valid and invalid arguments according to how

36828-417: The subject to the predicate. For example, the proposition "Socrates is wise" is made up of the subject "Socrates", the predicate "wise", and the copula "is". The subject and the predicate are the terms of the proposition. Aristotelian logic does not contain complex propositions made up of simple propositions. It differs in this aspect from propositional logic, in which any two propositions can be linked using

37026-417: The subject to the predicate. For example, the proposition "Socrates is wise" is made up of the subject "Socrates", the predicate "wise", and the copula "is". The subject and the predicate are the terms of the proposition. Aristotelian logic does not contain complex propositions made up of simple propositions. It differs in this aspect from propositional logic, in which any two propositions can be linked using

37224-423: The symbols displayed on a page of a book. But this approach comes with new problems of its own: sentences are often context-dependent and ambiguous, meaning an argument's validity would not only depend on its parts but also on its context and on how it is interpreted. Another approach is to understand premises and conclusions in psychological terms as thoughts or judgments. This position is known as psychologism . It

37422-423: The symbols displayed on a page of a book. But this approach comes with new problems of its own: sentences are often context-dependent and ambiguous, meaning an argument's validity would not only depend on its parts but also on its context and on how it is interpreted. Another approach is to understand premises and conclusions in psychological terms as thoughts or judgments. This position is known as psychologism . It

37620-409: The table. This conclusion is justified because it is the best explanation of the current state of the kitchen. For abduction, it is not sufficient that the conclusion explains the premises. For example, the conclusion that a burglar broke into the house last night, got hungry on the job, and had a midnight snack, would also explain the state of the kitchen. But this conclusion is not justified because it

37818-409: The table. This conclusion is justified because it is the best explanation of the current state of the kitchen. For abduction, it is not sufficient that the conclusion explains the premises. For example, the conclusion that a burglar broke into the house last night, got hungry on the job, and had a midnight snack, would also explain the state of the kitchen. But this conclusion is not justified because it

38016-399: The term ampliative or inductive reasoning is used. Deductive arguments are associated with formal logic in contrast to the relation between ampliative arguments and informal logic. A deductively valid argument is one whose premises guarantee the truth of its conclusion. For instance, the argument "(1) all frogs are amphibians; (2) no cats are amphibians; (3) therefore no cats are frogs"

38214-399: The term ampliative or inductive reasoning is used. Deductive arguments are associated with formal logic in contrast to the relation between ampliative arguments and informal logic. A deductively valid argument is one whose premises guarantee the truth of its conclusion. For instance, the argument "(1) all frogs are amphibians; (2) no cats are amphibians; (3) therefore no cats are frogs"

38412-401: The treatment of attention deficit hyperactivity disorder (also known as ADHD), while others are rare and can be dangerous as they are not expected, such as severe agitation from a benzodiazepine . The actions of antibodies on antigens can rarely take paradoxical turns in certain ways. One example is antibody-dependent enhancement (immune enhancement) of a disease's virulence; another is

38610-479: The truth values "true" and "false". The first columns present all the possible truth-value combinations for the input variables. Entries in the other columns present the truth values of the corresponding expressions as determined by the input values. For example, the expression " p ∧ q {\displaystyle p\land q} " uses the logical connective ∧ {\displaystyle \land } ( and ). It could be used to express

38808-479: The truth values "true" and "false". The first columns present all the possible truth-value combinations for the input variables. Entries in the other columns present the truth values of the corresponding expressions as determined by the input values. For example, the expression " p ∧ q {\displaystyle p\land q} " uses the logical connective ∧ {\displaystyle \land } ( and ). It could be used to express

39006-405: Was discussed at length around the turn of the 20th century but it is not widely accepted today. Premises and conclusions have an internal structure. As propositions or sentences, they can be either simple or complex. A complex proposition has other propositions as its constituents, which are linked to each other through propositional connectives like "and" or "if...then". Simple propositions, on

39204-405: Was discussed at length around the turn of the 20th century but it is not widely accepted today. Premises and conclusions have an internal structure. As propositions or sentences, they can be either simple or complex. A complex proposition has other propositions as its constituents, which are linked to each other through propositional connectives like "and" or "if...then". Simple propositions, on

#568431