Misplaced Pages

Peneplain

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In geomorphology and geology , a peneplain is a low-relief plain formed by protracted erosion . This is the definition in the broadest of terms, albeit with frequency the usage of peneplain is meant to imply the representation of a near-final (or penultimate) stage of fluvial erosion during times of extended tectonic stability. Peneplains are sometimes associated with the cycle of erosion theory of William Morris Davis , but Davis and other workers have also used the term in a purely descriptive manner without any theory or particular genesis attached.

#189810

42-397: The existence of some peneplains, and peneplanation as a process in nature, is not without controversy, due to a lack of contemporary examples and uncertainty in identifying relic examples. By some definitions, peneplains grade down to a base level represented by sea level , yet in other definitions such a condition is ignored. Geomorphologist Karna Lidmar-Bergström and co-workers consider

84-440: A base level is the lower limit for an erosion process . The modern term was introduced by John Wesley Powell in 1875. The term was subsequently appropriated by William Morris Davis who used it in his cycle of erosion theory. The "ultimate base level" is the surface that results from projection of the sea level under landmasses. It is to this base level that topography tends to approach due to erosion, eventually forming

126-476: A peneplain close to the end of a cycle of erosion. There are also lesser structural base levels where erosion is delayed by resistant rocks. Examples of this include karst regions underlain by insoluble rock. Base levels may be local when large landmasses are far from the sea or disconnected from it, as in the case of endorheic basins . An example of this is the Messinian salinity crisis , in which

168-409: A defined barometric pressure . Generally, the pressure used to set the altimeter is the barometric pressure that would exist at MSL in the region being flown over. This pressure is referred to as either QNH or "altimeter" and is transmitted to the pilot by radio from air traffic control (ATC) or an automatic terminal information service (ATIS). Since the terrain elevation is also referenced to MSL,

210-432: A few metres, in timeframes ranging from minutes to months: Between 1901 and 2018, the average sea level rose by 15–25 cm (6–10 in), with an increase of 2.3 mm (0.091 in) per year since the 1970s. This was faster than the sea level had ever risen over at least the past 3,000 years. The rate accelerated to 4.62 mm (0.182 in)/yr for the decade 2013–2022. Climate change due to human activities

252-438: A reference datum for mean sea level (MSL). It is also used in aviation, where some heights are recorded and reported with respect to mean sea level (contrast with flight level ), and in the atmospheric sciences , and in land surveying . An alternative is to base height measurements on a reference ellipsoid approximating the entire Earth, which is what systems such as GPS do. In aviation, the reference ellipsoid known as WGS84

294-491: A region is known as a primary peneplain. An example of a primary peneplain is the Sub-Cambrian peneplain in southern Sweden. The peneplain concept is often juxtaposed to that of pediplain . However authors like Karna Lidmar-Bergström classify pediplains as a type of peneplain. On the contrary Lester Charles King held them as incompatible landforms arguing that peneplains do not exist. King wrote: According to King

336-470: A sharp reduction in greenhouse gas emissions, this may increase to hundreds of millions in the latter decades of the century. Local factors like tidal range or land subsidence will greatly affect the severity of impacts. For instance, sea level rise in the United States is likely to be two to three times greater than the global average by the end of the century. Yet, of the 20 countries with

378-1066: A sub-set of peneplains or partially overlap with the term. The last is the case of planation surfaces that may be peneplains or not, while some peneplains are not planation surfaces. In their 2013 work Green, Lidmar-Bergström and co-workers provide the following classification scheme for peneplains: Rhodes Fairbridge and Charles Finkl argue that peneplains are often of mixed origin (polygenetic), as they may have been shaped by etchplanation during periods of humid climate and pediplanation during periods of arid and semi-arid climate. The long time spans under which some peneplains evolve ensures varied climatic influences . The same authors do also list marine abrasion and glacial erosion among processes that can contribute in shaping peneplains. In addition, epigene peneplains can be distinguished from exhumed peneplains. Epigene peneplains are those that have never been buried or covered by sedimentary rock. Exhumed peneplains are those that are re-exposed after having been buried in sediments. The oldest identifiable peneplain in

420-405: Is a type of vertical datum  – a standardised geodetic datum  – that is used, for example, as a chart datum in cartography and marine navigation , or, in aviation, as the standard sea level at which atmospheric pressure is measured to calibrate altitude and, consequently, aircraft flight levels . A common and relatively straightforward mean sea-level standard

462-420: Is also known to result in progradation of deltas and river sediment at lakes or sea. If the base level falls below the continental shelf , rivers may form a plain of braided rivers until headward erosion penetrates enough inland from the shelfbreak . When base levels are stable or rising rivers may aggrade . Rising base levels may also drown the lower courses of rivers creating rias . This happened in

SECTION 10

#1732791933190

504-488: Is because the sea is in constant motion, affected by the tides, wind , atmospheric pressure, local gravitational differences, temperature, salinity , and so forth. The mean sea level at a particular location may be calculated over an extended time period and used as a datum . For example, hourly measurements may be averaged over a full Metonic 19-year lunar cycle to determine the mean sea level at an official tide gauge . Still-water level or still-water sea level (SWL)

546-427: Is due to change in either the volume of water in the world's oceans or the volume of the oceanic basins . Two major mechanisms are currently causing eustatic sea level rise. First, shrinking land ice, such as mountain glaciers and polar ice sheets, is releasing water into the oceans. Second, as ocean temperatures rise, the warmer water expands. Many factors can produce short-term changes in sea level, typically within

588-483: Is increasingly used to define heights; however, differences up to 100 metres (328 feet) exist between this ellipsoid height and local mean sea level. Another alternative is to use a geoid -based vertical datum such as NAVD88 and the global EGM96 (part of WGS84). Details vary in different countries. When referring to geographic features such as mountains, on a topographic map variations in elevation are shown by contour lines . A mountain's highest point or summit

630-408: Is instead a long-term average of tide gauge readings at a particular reference location. Sea levels can be affected by many factors and are known to have varied greatly over geological time scales . Current sea level rise is mainly caused by human-induced climate change . When temperatures rise, mountain glaciers and polar ice sheets melt, increasing the amount of water in the oceans, while

672-431: Is irrelevant and that the term peneplain has been used and can be used in a purely descriptive manner. Further, alternation of processes with varying climate, relative sea level and biota make old surfaces unlikely to be of a single origin. Peneplains that are detached from their base level are identified by either hosting an accumulation of sediments that buries it or by being in an uplifted position. Burial preserves

714-624: Is limited. In the Fennoscandian Shield average glacier erosion during the Quaternary amounts to tens of meters, albeit this was not evenly distributed. For glacier erosion to be effective in shields a long "preparation period" of weathering under non-glacial conditions may be a requirement. Silicification of peneplain surfaces exposed to sub-tropical and tropical climate for long enough time can protect them from erosion. Base level In geology and geomorphology

756-405: Is structurally controlled, for example, drainage divides in peneplain can follow more resistant rock. In the view of Davis large streams do became insensitive to lithology and structure, which they were not during the valley phase of erosion cycle. This may explain the existence of superimposed streams . There are various terms for landforms that are either alternatives to classical peneplains,

798-450: Is the level of the sea with motions such as wind waves averaged out. Then MSL implies the SWL further averaged over a period of time such that changes due to, e.g., the tides , also have zero mean. Global MSL refers to a spatial average over the entire ocean area, typically using large sets of tide gauges and/or satellite measurements. One often measures the values of MSL with respect to

840-727: Is the main cause. Between 1993 and 2018, melting ice sheets and glaciers accounted for 44% of sea level rise , with another 42% resulting from thermal expansion of water . Sea level rise lags behind changes in the Earth 's temperature by many decades, and sea level rise will therefore continue to accelerate between now and 2050 in response to warming that has already happened. What happens after that depends on human greenhouse gas emissions . If there are very deep cuts in emissions, sea level rise would slow between 2050 and 2100. It could then reach by 2100 slightly over 30 cm (1 ft) from now and approximately 60 cm (2 ft) from

882-531: Is typically illustrated with the AMSL height in metres, feet or both. In unusual cases where a land location is below sea level, such as Death Valley, California , the elevation AMSL is negative. It is often necessary to compare the local height of the mean sea surface with a "level" reference surface, or geodetic datum, called the geoid . In the absence of external forces, the local mean sea level would coincide with this geoid surface, being an equipotential surface of

SECTION 20

#1732791933190

924-583: The Mediterranean Sea dried up making the base level drop more than 1000 m below sea level. The height of a base level also influences the position of deltas and river terraces . Together with river discharge and sediment flux the position of the base level influences the gradient , width and bed conditions in rivers. A relative drop in base level can trigger re-adjustments in river profiles including knickpoint migration and abandonment of terraces leaving them "hanging". Base level fall

966-646: The Nile during the Zanclean flood when its lower course became, in a relatively short time, a large estuary extending up to 900 km inland from the Mediterranean coast. Base level change may be related to the following factors: Sea level Mean sea level ( MSL , often shortened to sea level ) is an average surface level of one or more among Earth 's coastal bodies of water from which heights such as elevation may be measured. The global MSL

1008-544: The Pyrenees and Tibetan Plateau may exemplify these two cases respectively. A common misconception about peneplains is that they ought to be so plain they are featureless. In fact, some peneplains may be hilly as they reflect irregular deep weathering , forming a plain grading to a base level only at a grand-scale. At the grand-scale peneplains are characterized by appearing to be sculpted in rock with disregard of rock structure and lithology , but in detail, their shape

1050-622: The geoid of the Earth, which approximates the local mean sea level for locations in the open ocean. The geoid includes a significant depression in the Indian Ocean , whose surface dips as much as 106 m (348 ft) below the global mean sea level (excluding minor effects such as tides and currents). Precise determination of a "mean sea level" is difficult because of the many factors that affect sea level. Instantaneous sea level varies substantially on several scales of time and space. This

1092-418: The height above mean sea level (AMSL). The term APSL means above present sea level, comparing sea levels in the past with the level today. Earth's radius at sea level is 6,378.137 km (3,963.191 mi) at the equator. It is 6,356.752 km (3,949.903 mi) at the poles and 6,371.001 km (3,958.756 mi) on average. This flattened spheroid , combined with local gravity anomalies , defines

1134-562: The 1690s. Satellite altimeters have been making precise measurements of sea level since the launch of TOPEX/Poseidon in 1992. A joint mission of NASA and CNES , TOPEX/Poseidon was followed by Jason-1 in 2001 and the Ocean Surface Topography Mission on the Jason-2 satellite in 2008. Height above mean sea level ( AMSL ) is the elevation (on the ground) or altitude (in the air) of an object, relative to

1176-973: The 19th century. With high emissions it would instead accelerate further, and could rise by 1.0 m ( 3 + 1 ⁄ 3  ft) or even 1.6 m ( 5 + 1 ⁄ 3  ft) by 2100. In the long run, sea level rise would amount to 2–3 m (7–10 ft) over the next 2000 years if warming stays to its current 1.5 °C (2.7 °F) over the pre-industrial past. It would be 19–22 metres (62–72 ft) if warming peaks at 5 °C (9.0 °F). Rising seas affect every coastal and island population on Earth. This can be through flooding, higher storm surges , king tides , and tsunamis . There are many knock-on effects. They lead to loss of coastal ecosystems like mangroves . Crop yields may reduce because of increasing salt levels in irrigation water. Damage to ports disrupts sea trade. The sea level rise projected by 2050 will expose places currently inhabited by tens of millions of people to annual flooding. Without

1218-448: The Earth's gravitational field which, in itself, does not conform to a simple sphere or ellipsoid and exhibits gravity anomalies such as those measured by NASA's GRACE satellites . In reality, the geoid surface is not directly observed, even as a long-term average, due to ocean currents, air pressure variations, temperature and salinity variations, etc. The location-dependent but time-persistent separation between local mean sea level and

1260-705: The Marégraphe in Marseilles measures continuously the sea level since 1883 and offers the longest collated data about the sea level. It is used for a part of continental Europe and the main part of Africa as the official sea level. Spain uses the reference to measure heights below or above sea level at Alicante , while the European Vertical Reference System is calibrated to the Amsterdam Peil elevation, which dates back to

1302-431: The base level criterion crucial and above the precise mechanism of formation of peneplains, including this way some pediplains among peneplains. While peneplains are usually assumed to form near sea level it has also been posited that peneplains can form at height if extensive sedimentation raises the local base level sufficiently or if river networks are continuously obstructed by tectonic deformation . The peneplains of

Peneplain - Misplaced Pages Continue

1344-416: The coalesced pediments of the pediplains form a series of very gentle concave slopes, a difference with Davis' understanding of peneplains may lie in the fact that his idealized peneplains had very gentle convex slopes instead. However, Davis' views on the subject are not fully clear. Contrary to this view Rhodes Fairbridge and Charles Finkl argue that the precise mechanism of formation (pediplanation, etc.)

1386-457: The difference between pediplains and Davis’ peneplains is in the history and processes behind their formation, and less so in the final shape. A difference in form that may be present is that of residual hills, which in Davis’ peneplains are to have gentle slopes, while in pediplains they ought to have the same steepness as the slopes in the early stages of erosion leading to pediplanation. Given that

1428-415: The existing seawater also expands with heat. Because most of human settlement and infrastructure was built in response to a more-normalized sea level with limited expected change, populations affected by sea level rise will need to invest in climate adaptation to mitigate the worst effects or, when populations are at extreme risk, a process of managed retreat . The term above sea level generally refers to

1470-482: The geoid is referred to as (mean) ocean surface topography . It varies globally in a typical range of ±1 m (3 ft). Several terms are used to describe the changing relationships between sea level and dry land. The melting of glaciers at the end of ice ages results in isostatic post-glacial rebound , when land rises after the weight of ice is removed. Conversely, older volcanic islands experience relative sea level rise, due to isostatic subsidence from

1512-634: The greatest exposure to sea level rise, twelve are in Asia , including Indonesia , Bangladesh and the Philippines. The resilience and adaptive capacity of ecosystems and countries also varies, which will result in more or less pronounced impacts. The greatest impact on human populations in the near term will occur in the low-lying Caribbean and Pacific islands . Sea level rise will make many of them uninhabitable later this century. Pilots can estimate height above sea level with an altimeter set to

1554-555: The height of planetary features. Local mean sea level (LMSL) is defined as the height of the sea with respect to a land benchmark, averaged over a period of time long enough that fluctuations caused by waves and tides are smoothed out, typically a year or more. One must adjust perceived changes in LMSL to account for vertical movements of the land, which can occur at rates similar to sea level changes (millimetres per year). Some land movements occur because of isostatic adjustment to

1596-591: The land; hence a change in relative MSL or ( relative sea level ) can result from a real change in sea level, or from a change in the height of the land on which the tide gauge operates, or both. In the UK, the ordnance datum (the 0 metres height on UK maps) is the mean sea level measured at Newlyn in Cornwall between 1915 and 1921. Before 1921, the vertical datum was MSL at the Victoria Dock, Liverpool . Since

1638-481: The melting of ice sheets at the end of the last ice age . The weight of the ice sheet depresses the underlying land, and when the ice melts away the land slowly rebounds . Changes in ground-based ice volume also affect local and regional sea levels by the readjustment of the geoid and true polar wander . Atmospheric pressure , ocean currents and local ocean temperature changes can affect LMSL as well. Eustatic sea level change (global as opposed to local change)

1680-398: The peneplain. Any exposed peneplain detached from its baselevel can be considered a paleosurface or paleoplain . Uplift of a peneplain commonly results in renewed erosion. As Davis put it in 1885: Uplifted peneplains can be preserved as fossil landforms in conditions of extreme aridity or under non-eroding cold-based glacier ice. Erosion of peneplains by glaciers in shield regions

1722-518: The times of the Russian Empire , in Russia and its other former parts, now independent states, the sea level is measured from the zero level of Kronstadt Sea-Gauge. In Hong Kong, "mPD" is a surveying term meaning "metres above Principal Datum" and refers to height of 0.146 m (5.7 in) above chart datum and 1.304 m (4 ft 3.3 in) below the average sea level. In France,

Peneplain - Misplaced Pages Continue

1764-411: The weight of cooling volcanos. The subsidence of land due to the withdrawal of groundwater is another isostatic cause of relative sea level rise. On planets that lack a liquid ocean, planetologists can calculate a "mean altitude" by averaging the heights of all points on the surface. This altitude, sometimes referred to as a "sea level" or zero-level elevation , serves equivalently as a reference for

#189810